EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 25.07.2018 Bulletin 2018/30

Application number: 09003681.5

Date of filing: 13.03.2009

Refrigerator having dispenser
Kühlschrank mit Ausgabevorrichtung
Réfrigérateur ayant un distributeur

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

Date of publication of application: 16.06.2010 Bulletin 2010/24

Proprietor: LG Electronics Inc.
SEOUl, 07336 (KR)

Inventors:
• Oh, Seung-Hwan
Geumcheon-Gu
Seoul (KR)
• Lee, Ho-Youn
Geumcheon-Gu
Seoul (KR)
• Lim, Jun-Young
Geumcheon-Gu
Seoul (KR)

Representative: Ter Meer Steinmeister & Partner Patentanwälte mbB
Nymphenburger Straße 4
80335 München (DE)

References cited:

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

RELATED APPLICATION

[0001] The present application claims the benefit of priority to Korean Application No. 10-2008-0126046, filed on December 11, 2008.

FIELD

[0002] The present disclosure relates to a refrigerator having a dispenser capable of dispensing content stored inside the refrigerator without opening a refrigerator door.

BACKGROUND

[0003] A refrigerator is a device which supplies cooling air generated by a refrigerating cycle to a storage chamber and maintains freshness of various food items for a long period of time. In general, a refrigerator may include a main body having a storage chamber for storing food items, and a door hinge-coupled to one side of the main body and for opening/closing the storage chamber. The main body includes refrigerating cycle components, such as a compressor, an evaporator, a condenser, an expansion valve and the like. Cooling air generated in the evaporator is supplied to the storage chamber so that food items, etc. stored in the storage chamber may be kept at a low temperature for a long period of time.

[0004] Recent refrigerator doors include dispensers, through which a user removes water or ice cubes (pieces of ices, ice, etc.) from a water supply unit or an ice making device provided in the refrigerator without opening the refrigerator door. The dispenser may include a case concavely formed at a front surface of the refrigerator door in a thickness direction, and a communication chute for connecting the case and the water supply source and/or the ice making device. A mechanism device for opening/closing the communication chute may be installed at one side of the case, and the user may dispense ice cubes or the like by putting a container into a space where the mechanism device is not installed.

[0005] US 2008/0156027 A1 discloses a refrigerator according to the preamble of claim 1, and relates to a dispenser for a refrigerator that increases a usable space of a storage compartment of the refrigerator. The dispenser includes a chute which receives contents from an inside of the refrigerator and discharges the contents to an outside through an opening provided on an end of the chute. A cover selectively opens or shuts the opening. A first unit causes the cover to slide relative to the opening so as to open or shut the opening.

[0006] US2007/0271949 A1 relates to a dispenser of an icemaker in a refrigerator for maximizing an inner space when a total size is the same, and for minimizing the total size when the inner space is the same. The dispenser of the icemaker in the refrigerator includes an ice chute being a passage through which the ice produced from the icemaker is discharged; and a container supporter provided at an outer case and disposed to be perpendicular to an outer surface of the outer case when the ice is discharged outside through the ice chute, the contain supporter allowing a container seated thereon to receive the ice discharged from the ice chute. The ice chute is closed and not exposed outside when the ice-discharging process is finished, and the container supporter is not exposed to the outer surface of the outer case.

SUMMARY

[0007] The objects are solved by the features of the independent claim.

In one aspect, a refrigerator having a dispenser includes a main body having a cooling chamber and a door that is movable to open and close at least a portion of the cooling chamber. The refrigerator also includes a container accommodating unit that is positioned on a front surface of the door and that defines, within the door, a dispensing cavity able to accommodate at least partial insertion of a container into which content is dispensed. The front surface of the door is a surface of the door that is oriented opposite the cooling chamber when the door is in a closed position. The refrigerator further includes a communication chute that passes through the front surface of the door and that is configured to guide content to the dispensing cavity defined by the container accommodating unit. In addition, the refrigerator includes an obstruction unit disposed in the container accommodating unit, and movable, about a plane perpendicular to the front surface of the door, between at least two positions, including a first position in which content guided by the communication chute is relatively obstructed by the obstruction unit and a second position in which content guided by the communication chute is relatively unobstructed by the obstruction unit. The obstruction unit includes an obstruction member movable, about a plane perpendicular to the front surface of the door, between the first position in which the obstruction member covers an outlet of the communication chute and the second position in which the obstruction member does not cover the outlet of the communication chute. The obstruction unit includes a rotation shaft coupled to the obstruction member and a driving unit configured to transfer a rotation force to the rotation shaft and, thereby, cause the obstruction member to rotate, about the plane perpendicular to the front surface of the door, between the first position and the second position. The outlet of the communication chute may have a cross section in a plane perpendicular to the front surface of the door.

[0008] In some implementations, the outlet of the communication chute may have a cross section that is inclined with respect to the plane perpendicular to the front surface of the door about which the obstruction member is movable. In these implementations, the obstruction member may be coupled to the rotation shaft in a manner...
that enables the obstruction member to be elastically deformed when the obstruction member covers the outlet of the communication chute, and a surface of the obstruction member that covers the communication chute may have an incline that corresponds to the inclined cross section of the communication chute.

[0009] The obstruction unit further may include an elastic member that is disposed at one side of the rotation shaft and that is configured to apply, to the rotation shaft, a restoring force that causes the obstruction member to rotate, about the plane perpendicular to the front surface of the door, from the second position to the first position. The driving unit may include a driving portion disposed in the container accommodating unit and configured to generate a linear reciprocating motion and a link member having one end thereof pin-coupled to the driving portion and another end thereof pin-coupled onto an outer surface of the rotation shaft. The link member may be configured to transfer force to the rotation shaft based on the generated linear reciprocating motion.

[0010] In some examples, the obstruction member may be coupled to an extending member extending from the rotation shaft in a radial direction. In these examples, the driving unit may include a driving portion disposed in the container accommodating unit and configured to generate a linear reciprocating motion and a link member having one end thereof pin-coupled to the driving portion and another end thereof pin-coupled to one side of the extending member. The link member may be configured to transfer force to the extending member based on the generated linear reciprocating motion.

[0011] In some implementations, the driving unit may include a rotation motor disposed in the container accommodating unit and configured to generate a rotation movement and a driving link that is coupled to a driving shaft of the rotation motor and that is configured to rotate in response to the generated rotation movement. In these implementations, the driving unit also may include a driven link that is coupled to the rotation shaft and that is configured to transfer a rotation force to the rotation shaft and a connection link having a first end pin-coupled to an end portion of the driven link and a second end pin-coupled to an end portion of the driving link. The connection link may be configured to transfer force caused by rotation of the driving link to the driven link.

[0012] The rotation motor may be installed such that the driving shaft is oriented in a direction that is toward a lower surface of the container accommodating unit. The lower surface may be a surface of the container accommodating unit that is configured to support a container into which content is dispensed.

[0013] The rotation motor may be coupled to an upper surface of the container accommodating unit. The upper surface may be a surface of the container accommodating unit through which the communication chute passes.

[0014] Implementations may include one or more of the following features. For example, the obstruction member may be configured to move from the first position to the second position in a plane that is perpendicular to a front surface of the door. The refrigerator may include a tray configured to support a container accommodated by the container accommodating unit and into which content is dispensed and wherein the obstruction member may be configured to move from the first position to the second position in a plane that is parallel to a surface of the tray that supports a container.

[0015] The obstruction member may be configured to move from the first position to the second position in a plane that is parallel to a cross section of the outlet of the communication chute. The obstruction member may be configured to rotate from the first position to the second position. The obstruction member may be configured to slide from the first position to the second position.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] Figure 1 is a perspective view showing an outer appearance of a refrigerator having a dispenser;

Figure 2 is a cross-sectional view showing the dispenser in Fig. 1;

Figure 3 is a view showing the dispenser in a closed state of an opening/closing member in Fig. 1;

Figure 4 is a view showing the dispenser in an open state of the opening/closing member in Fig. 3;

Figure 5 is a view showing a dispenser in a closed state of an opening/closing member in a refrigerator having a dispenser;

Figure 6 is a diagram showing the dispenser in an open state of the opening/closing member in Fig. 5;

Figure 7 is a cross-sectional view showing a coupling structure of an opening/closing member and a rotation shaft, in the refrigerator having the dispenser shown in Figs. 5 and 6;

Figure 8 is a view showing the dispenser in a closed state of an opening/closing member in a refrigerator having a dispenser;

Figure 9 is a view showing a driving unit and the opening/closing member in Fig. 8 viewed from a rear surface of a container accommodating unit;

Figure 10 is a view showing a dispenser in a closed state of an opening/closing member in a refrigerator having a dispenser; and

Figure 11 is a view showing a driving unit and the opening/closing member in Fig. 10 viewed from a rear surface of a container accommodating unit.

DETAILED DESCRIPTION

[0017] In some implementations, a refrigerator includes a dispenser configured to dispense content (e.g., liquid water, ice, etc.). For example, the refrigerator may include an ice maker that freezes liquid water into ice
In order to increase an area of the dispensing cavity in which a container may be placed by a user, the obstruction member may be configured to move from the first position to the second position without any portion of the obstruction member further invading a portion of the dispensing cavity that accommodates a container at a position to receive content. In this regard, the obstruction member does not further invade an area of the dispensing cavity directly below the outlet of the communication chute any more so than when the obstruction member is in the first position. For example, the obstruction member may move in a plane parallel to the exterior surface of the door, in a plane parallel to a tray configured to support a container placed within the dispensing cavity, and/or in a plane parallel to a cross-section of the outlet of the communication chute. In these examples, while content is being dispensed, the obstruction member is stored at a top portion of the dispensing cavity next to or adjacent the outlet of the communication chute. Because the obstruction member does not further invade an area of the dispensing cavity directly below the outlet of the communication chute when opening the communication chute, an area or height of the dispensing cavity that is capable of accommodating a container may be increased. In this configuration, a taller container may be placed in the dispensing cavity (or a container may be placed closer to the outlet of the communication chute) because the obstruction member will not contact the container as the obstruction member moves to open the communication chute.

Referring to Fig. 1, one implementation of a refrigerator 10 having a dispenser 100 includes a main body 11 having a cooling chamber 12 and a door 13. Although not shown, a refrigerating cycle including a compressor, a condenser, an expansion unit and an evaporator is provided to cool the cooling chamber 12.

The main body 11 has a rectangular box shape, and includes the cooling chamber 12 having an opened front surface therein. An insulating material is positioned in a space defined by a wall body of the cooling chamber 12, i.e., a wall of the cooling chamber 12 and an outer wall of the main body 11, thereby insulating the cooling chamber 12 from an exterior of the main body 11.

The insulating material is generally formed by filling and hardening a liquid blowing agent.

The cooling chamber 12 is divided into a plurality of spaces having different storage temperatures and storage environment, such as a refrigerating chamber, a freezing chamber, a fresh food chamber, a vegetable compartment, a rice compartment, and the like. In general, the cooling chamber 12 includes a refrigerating chamber 12a for keeping food items in storage in a cool state at an above-freezing temperature, and a freezing chamber 12b for keeping food items in a frozen state at a below-freezing temperature.

Air cooled while passing through the evaporator is circulated to the inside of the cooling chamber 12 via a cooling air supply passage provided in the main body 11, thereby cooling the inside of the cooling chamber 12.

Regarding the number of the doors 13, two or more doors 13 may be provided, in addition to a traditional type in which each cooling chamber 12 has one door.

In this exemplary implementation, the door 13 further includes a dispenser 100 for drawing out ice cubes (ice pieces, ice, etc.) stored inside the cooling chamber 12.

The dispenser 100 may be positioned in any location so long as a user may draw out ice cubes stored inside the cooling chamber 12 from outside the main body 11, without opening the door 13. Hereinafter, the dispenser 100, as shown in Fig. 1, is assumed to be provided at the door 13a of the refrigerating chamber 12a.

The dispenser 100 includes a container accommodating unit 120 concavely defined from the front surface of the door 13a in a thickness direction and having an opened front surface, a shielding unit 101 disposed at an upper portion of the container accommodating unit 120, and a lever unit 140. The shielding unit 101 may
shield components of the dispenser 100 so as not to be seen from the outside. The lever unit 140 may generate an operation signal of the dispenser 100 and may be positioned at a rear surface of the container accommodating unit 120.

[0032] Here, the shielding unit 101 may include a control button unit 102 for controlling operations of the dispenser 100 or controlling operations of the refrigerator 10.

[0033] Referring to Fig. 2, one implementation of the dispenser 100 includes a communication chute 113 that passes through the door 13 so as to communicate inside and outside the door 13, and an opening/closing unit 130 for opening/closing an end portion of the communication chute 113 connected to the inside of the container accommodating unit 120 by being moved in a thickness direction thereof.

[0034] Here, the communication chute 113 is configured to define a path that connects the inside of the cooling chamber 12 and the inside of the container accommodating unit 120, which is concavely formed from an outer surface of the door 13. The path may extend from an ice compartment 15 positioned inside of the cooling chamber 12. The ice compartment 15 may include an ice storage bin that stores ice pieces and an ice maker that freezes liquid water into ice pieces.

[0035] In addition, the communication chute 113 is downwardly inclined in a direction facing the container accommodating unit 120. The downward incline enables the communication chute 113 to guide a piece of ice P from the inside of the cooling chamber 12 to the container accommodating unit 120 using the force of gravity.

[0036] In addition, the communication chute 130, which is open/closed by the opening/closing unit 130, has a horizontal cross section.

[0037] Meanwhile, the lever unit 140 is elastically supported and may be pressed by a container C. As the lever unit 140 is pressed, an operation switch 141 disposed at one side of the container accommodating unit 120 is activated by the lever unit 140.

[0038] The opening/closing unit 130 includes an opening/closing member 131 configured to move in a thickness direction of the communication chute 113 so as to open/close the cross section of an opening of the communication chute 113, a rotation shaft 132 coupled to the opening/closing member 131, and a driving unit 133, 134 for rotating the rotation shaft 132. For instance, the opening/closing member 131 may move in a plane perpendicular to an exterior surface of the door, in a plane parallel to a tray configured to support a container placed within the container accommodating unit 120, and/or in a plane parallel to a cross-section of an outlet of the communication chute 113.

[0039] Detailed descriptions of the configuration and operation of the opening/closing unit 130 will be given with reference to Figs. 3 and 4.

[0040] Referring to Figs. 3 and 4, the opening/closing unit 130 is positioned at an upper portion of the container accommodating unit 120, and is shielded by the shielding unit 101. The rotation shaft 132 is perpendicularly disposed at an upper portion of the container accommodating unit 120, and upper and lower ends thereof are hinge-coupled to rotate in a pendulum manner.

[0041] The opening/closing member 131 is coupled to the rotation shaft 132 such that the horizontal cross section of an opening of the communication chute 113 is open/closed as the opening/closing member 131 moves in the thickness direction of the communication chute 113.

[0042] The driving unit 133, 134 includes a driving portion 134 for generating a linear reciprocating motion, and a link member 133 having one end thereof pin-coupled to a driving shaft 134a of the driving portion 134 and another end thereof pin-coupled onto an outer surface of the rotation shaft 132.

[0043] The driving portion 134 may be implemented as a solenoid in which a plunger performs a linear reciprocating motion by a magnetic force (magnetism), a thermal actuator which generates a linear reciprocating motion by thermal expansion, or the like.

[0044] In addition, the driving portion 134 is installed such that the driving shaft 134a thereof is toward the opening/closing member 131.

[0045] Meanwhile, the opening/closing unit 130 further includes an elastic member 151 such that a restoring force is applied to the opening/closing member 131 in a direction that moves the opening/closing member 131 to close the communication chute 113.

[0046] The elastic member 151 may be implemented as a cylindrical torsion spring. In this instance, the elastic member 151 is fitted into the rotation shaft 132 such that one end thereof is fixed to one side of the container accommodating unit 120 and another end thereof is fixed to one side of the rotation shaft 132 or one side of the opening/closing member 131.

[0047] The opening/closing member 131 receives an elastic force by the elastic member 151 in a direction that moves the opening/closing member 131 to close the communication chute 113, thereby enhancing a sealing capability of the communication chute 113 and reducing a leakage of cooling air via the communication chute 113.

[0048] Hereinafter, description of a process for opening/closing the communication chute 113 by the opening/closing unit 130 will be given in detail.

[0049] If the operation signal of the dispenser 100 in the refrigerator is transferred to the driving portion 134, the driving shaft 134a of the driving portion 134 is moved to the inside of the driving portion 134.

[0050] While the link member 133 pin-coupled to the driving shaft 134a is moved in a moving direction of the driving shaft 134a, the rotation shaft 132 pin-coupled to the other end of the link member 133 is rotated.

[0051] Here, because the other end of the link member 133 is pin-coupled to the outer surface of the rotation shaft 132, a radius of the rotation shaft 132 may be a radius of gyration.
Meanwhile, the opening/closing member 131 coupled to the rotation shaft 132, together with the rotation of the rotation shaft 132, moves to rotate in a direction toward the driving unit 134 in Fig. 3, thereby opening the communication chute 113.

Thereafter, ice cubes or the like stored in the cooling chamber 12 are drawn out through the communication chute 113.

Conversely, if a signal notifying that a dispensing operation has been completed is transferred to the driving portion 134, the driving shaft 134a of the driving portion 134 outwardly protrudes from the driving portion 134, and the link member 133 pin-coupled to the driving shaft 134a is moved in a corresponding manner. Consequently, the opening/closing member 131 coupled to the rotation shaft 132 is rotated in a direction away from the driving unit 134 in Fig. 4.

Because the communication chute 113 is open/closed while the opening/closing member 131 is horizontally moved, the dispenser 100 may have an advantage of increasing a height of the container accommodating unit 120, as compared to other constructions in which the communication chute 113 is open/closed while the opening/closing member swings downward toward a container receiving space defined by the container accommodating unit 120.

Referring to Figs. 5 and 6, in the refrigerator 10 having a dispenser 200, the dispenser 200, as described above, includes the container accommodating unit 120, a communication chute 213, and an opening/closing unit 230 having an opening/closing member 231, a rotation shaft 232, a link member 233, a driving portion 234 with a driving shaft 234a, and an elastic member 251.

It should be noted in this example a cross section of an opening of the communication chute 213 being open/closed by the opening/closing member 231 is downwardly inclined in a direction the communication chute 213 is closed by the opening/closing member 231. In this example, the opening/closing member 231 is coupled to the rotation shaft 232 so as to be elastically deformed so that it corresponds to the downward-inclined section of the communication chute 213 when the communication chute 213 is closed. With such configuration, the opening/closing member 231 is elastically deformed along the inclination of the opening of the communication chute 213 when the communication chute 213 is closed. Thereby, the dispenser 200 may have an advantage of enhancing the sealing capability of the communication chute 213 by the opening/closing member 231.

Meanwhile, in this example, the coupling of the opening/closing member 231 and the rotation shaft 232 may be modified as shown in Fig. 7.

Referring to Figs. 5 through 7, the opening/closing member 231 is coupled to an extending member 235 that extends from the rotation shaft 232 in a radial direction.

For this, an end of the extending member 235 is provided with a hinge protrusion 235b hinge-coupled to a protruding portion 231b downwardly protruding from a lower surface of the opening/closing member 231. A stopping protrusion 235a vertically protrudes from each upper end of both side surfaces of the extending member 235.

In addition, hooks 231a are positioned to face each other at the lower surface of the opening/closing member 231.

Meanwhile, an elastic member 235c is positioned in a space defined between the lower surface of the opening/closing member 231 when the hook 231a contacts the stopping protrusion 235a, and an upper surface of the extending member 235.

Referring to Figs. 8 and 9, in the refrigerator 10 having a dispenser 300, the dispenser 300 includes the container accommodating unit 120, a communication chute 313, and an opening/closing unit 330 including an opening/closing member 331, a rotation shaft 332, a link member 333, a rotation motor 334, and an elastic member 351.

It should be noted in this example that the opening/closing unit 330 includes a rotation motor 334 for generating a rotation motion, instead of the driving portion 134 described above.

In addition, the opening/closing unit 330 includes, instead of the link member 133 described above, a driving link 333a rotating by being vertically coupled to the driving shaft 334a of the rotation motor 334, a driven link 333c vertically fixed to the rotation shaft 332 and transferring a rotation force to the rotation shaft 332, and a connection link 333b having both ends thereof each pin-coupled to an end of the driven link 333c and an end portion of the driving link 333a.

With such configuration, a four-link mechanism is formed as a virtual link for connecting the driving link 333a, the connection link 333b, the driven link 333c, the driving shaft 334a of the rotation motor 334 and the ro-
In some implementations, the rotation motor 334 is installed such that the driving shaft 334a thereof is toward a lower surface of the container accommodating unit 120. In addition, the driven link 333c may be coupled to the rotation shaft 332 at a lower position than where the opening/closing member 331 is coupled to the rotation shaft 332.

In this example, the rotation motor 334 may be inserted to be fixed onto an upper surface of the container accommodating unit 120.

In the dispenser 300, the rotation motor 334 is employed, thereby having an effect of preventing a collision sound generated when a solenoid or a thermal actuator performs a linear reciprocating motion.

Referring to Figs. 10 and 11, in the refrigerator 10 having a dispenser 400, the dispenser 400, as described above, includes the container accommodating unit 120, a communication chute 413, and an opening/closing unit 430 having an opening/closing member 431, a rotation shaft 432, a link member 433, a rotation motor 434, and an elastic member 451.

In the dispenser 400, the opening/closing unit 430 includes a rotation motor 434 for generating a rotation movement, a driving link 433a rotating by being coupled to the driving shaft 434a of the rotation motor 434, an extending member 435 extending from the rotation shaft 432 in a radial direction and coupled to the opening/closing member 431 so as to be elastically deformed, and a connection link 433b having one end thereof pin-coupled to one side of the extending member 435 and another end thereof pin-coupled to an end portion of the driving link 433a.

In the dispenser 400, a cross section of an opening of the communication chute 413 that is opened/closed by the opening/closing member 431 is downwardly inclined in a direction the communication chute 413 is closed by the opening/closing member 413.

By this, when the communication chute 413 is closed, the opening/closing member 431 is elastically deformed along an inclination formed on the cross section of the communication chute 413. Thereby, the dispenser 400 may have an advantage of enhancing the sealing capability of the communication chute 413 by the opening/closing member 431.

In this example, the coupling structure between the opening/closing member 431 and the extending member 435 is substantially the same as that described above with respect to the extending member 235, and detailed explanations therefor are omitted.

Further, the opening/closing member 431 may be coupled to the rotation shaft 432 so as to be elastically deformed so that it corresponds to the downward-inclined section of the communication chute 413 when the communication chute 413 is closed.

As described above, in some implementations of the refrigerator having a dispenser, the opening/closing unit moves in a thickness direction of the communication chute so as to selectively open/close the communication chute, thereby reducing an installation space of the opening/closing unit. Thus, a height for enabling accommodation of containers, etc., may be increased without increasing a size of the container accommodating unit.

It will be understood that various modifications may be made without departing from the scope of the claims.

Claims

1. A refrigerator having a dispenser, comprising:

 a main body (11) having a cooling chamber (12) and a door (13) that is movable to open and close at least a portion of the cooling chamber (12);

 a container accommodating unit (120) that is positioned on a front surface of the door (13) and that defines, within the door (13), a dispensing cavity able to accommodate at least partial insertion of a container (C) into which content is dispensed, the front surface of the door (13) being a surface of the door (13) that is oriented opposite the cooling chamber (12) when the door (13) is in a closed position;

 a communication chute (113,213,313,413) that passes through the front surface of the door (13) and that is configured to guide content to the dispensing cavity defined by the container accommodating unit (120); an obstruction unit (130,230,330,430) disposed in the container accommodating unit (120), and movable, about a plane perpendicular to the front surface of the door (13), between at least two positions, including a first position in which content guided by the communication chute (113,213,313,413) is relatively obstructed by the obstruction unit (130,230,330,430) and a second position in which content guided by the communication chute (113,213,313,413) is relatively unobstructed by the obstruction unit (130,230,330,430), wherein the obstruction unit (130,230,330,430) comprises:

 an obstruction member (131,231,331,431) movable, about the plane perpendicular to the front surface of the door (13), between the first position in which the obstruction member (131,231,331,431) covers an outlet of the communication chute (113,213,313,413), and the second position in which the obstruction member (131,231,331,431) is withdrawn from the outlet of the communication chute (113,213,313,413).
chute (113,213,313,413) and the second position in which the obstruction member (131,231,331,431) does not cover the outlet of the communication chute (113,213,313,413); characterized in that the obstruction unit further comprises:

- a rotation shaft (132,232,332,432) coupled to the obstruction member (131,231,331,431); and
- a driving unit configured to transfer a rotation force to the rotation shaft (132,232,332,432) and, thereby, cause the obstruction member (131,231,331,431) to rotate, in the horizontal plane perpendicular to the front surface of the door (13), between the first position and the second position.

7. The refrigerator having a dispenser of any one of claims 1 to 5, wherein the obstruction member (231) is coupled to an extending member (235) extending from the rotation shaft (232) in a radial direction.

8. The refrigerator having a dispenser of claim 7, wherein the driving unit comprises:

- a driving portion (234) disposed in the container accommodating unit (120) and configured to generate a linear reciprocating motion; and
- a link member (233,233) having one end thereof pin-coupled to the driving portion and another end thereof pin-coupled onto an outer surface of the rotation shaft (132,232), the link member (133,233) being configured to transfer force to the rotation shaft (132,232) based on the generated linear reciprocating motion.

9. The refrigerator having a dispenser of any one of claims 1 to 5, wherein the driving unit comprises:

- a rotation motor (334) disposed in the container accommodating unit (120) and configured to generate a rotation movement;
- a driving link (333a) that is coupled to a driving shaft (334a) of the rotation motor (334) and that is configured to rotate in response to the generated rotation movement;
- a driven link (333c) that is coupled to the rotation shaft (332) and that is configured to transfer a rotation force to the rotation shaft (332); and
- a connection link (333b) having a first end pin-coupled to an end portion of the driven link (333c) and a second end pin-coupled to an end portion of the driving link (333a), the connection link being configured to transfer force caused by rotation of the driving link to the driven link.

10. The refrigerator having a dispenser of any one of claims 1 to 5, wherein the driving unit comprises:

- a rotation motor (434) disposed in the container accommodating unit (120) and configured to generate a rotation movement;
- an extending member (435) extending from the rotation shaft (432) in a radial direction and coupled to the obstruction member (431); a driving link (433a) that is coupled to the driving shaft (434a) of the rotation motor and that is con-
figured to rotate in response to the generated rotation movement; and
a connection link (433b) having one end thereof pin-coupled to a side of the extending member (435) and another end thereof pin-coupled to the end portion of the driving link (433a), the connection link (433b) being configured to transfer force caused by rotation of the driving link to the extending member.

11. The refrigerator having a dispenser of any one of claims 9 and 10, wherein the rotation motor (334, 434) is installed such that a driving shaft (334a,434a) of the rotation motor (334,434) is oriented in a direction that is toward a lower surface of the container accommodating unit (120), the lower surface being a surface of the container accommodating unit (120) that is configured to support the container (c) into which content is dispensed.

12. The refrigerator having a dispenser of claim 11, wherein the rotation motor (334,434) is coupled to an upper surface of the container accommodating unit (120), the upper surface being a surface of the container accommodating unit (120) through which the communication chute (313,413) passes.

13. The refrigerator of any one of claims 1 to 12 further comprising:

a tray configured to support the container (c) accommodated by the container accommodating unit (120) and into which content is dispensed, wherein the obstruction member (131,231,331,431) is configured to move from the first position to the second position in a plane that is parallel to a surface of the tray that supports the container (c).

Patentansprüche

1. Kühlzskrank, der eine Ausgabeeinheit aufweist, wobei der Kühlzskrank Folgendes umfasst:

- einen Hauptkörper (11), der eine Kühlmkkammer (12) und eine Tür (13) aufweist, die bewegt werden kann, um wenigstens einen Abschnitt der Kühlmkkammer (12) zu öffnen und zu schließen;
- eine Behälteraufnahmeinheit (120), die an einer vorderen Oberfläche der Tür (13) positioniert ist und die in der Tür (13) einen Ausgabebohrhöhlraum definiert, in den ein Behälter (C) wenigstens teilweise eingesetzt werden kann, in den Inhalt ausgegeben wird, wobei die vordere Oberfläche der Tür (13) eine Oberfläche der Tür (13) ist, die gegen die Kühlmkkammer (12) orientiert ist, wenn die Tür (13) in einer geschlosse-
weist, der in Bezug auf die Ebene senkrecht zu der vorderen Oberfläche der Tür (13), um die das Blockierelement (230, 430) bewegt werden kann, schräg ist.

4. Kühlschrank, der eine Ausgabeeinheit aufweist, nach Anspruch 3, wobei das Blockierelement (230, 430) mit der drehbaren Welle (232, 432) so gekoppelt ist, dass das Blockierelement (230, 430) elastisch verformt werden kann, wenn das Blockierelement (230, 430) den Auslass des Kommunikationschachts (213, 413) bedeckt, und wobei eine Oberfläche des Blockierelements (230, 430), die den Kommunikationsschacht (213, 413) bedeckt, eine Schräge aufweist, die dem schrägen Querschnitt des Kommunikationschachts (213, 413) entspricht.

5. Kühlschrank, der eine Ausgabeeinheit aufweist, nach Anspruch 1, wobei die Blockiereinheit (130, 230, 330) ferner ein elastisches Element (151, 251, 351) umfasst, das an einer Seite der drehbaren Welle (132, 232, 332) angeordnet ist und das konfiguriert ist, auf die drehbare Welle (132, 232, 332) eine Rückstellkraft auszuüben, die eine Drehung des Blockierelements bezüglich der Ebene senkrecht zu der vorderen Oberfläche der Tür (13) von der zweiten Position zu der ersten Position bewirkt.

6. Kühlschrank, der eine Ausgabeeinheit aufweist, nach einem der Ansprüche 1 bis 5, wobei die Antriebseinheit Folgendes umfasst:

 einen Antriebsabschnitt (134, 234), der in der Behälteraufnahmeeinheit (120) angeordnet ist und konfiguriert ist, eine geradlinige Hin- und Herbewegung zu erzeugen; und
 ein Gelenkelement (133, 233), wovon ein Ende mit dem Antriebsabschnitt über einen Stift gekoppelt ist und das andere Ende mit einer äußeren Oberfläche der drehbaren Welle (132, 232) über einen Stift gekoppelt ist, wobei das Gelenkelement (133, 233) konfiguriert ist, Kraft auf die drehbare Welle (132, 232) auf der Basis der erzeugten geradlinigen Hin- und Herbewegung zu übertragen.

8. Kühlschrank, der eine Ausgabeeinheit aufweist, nach Anspruch 7, wobei die Antriebseinheit Folgendes umfasst:

 einen Antriebsabschnitt (234), der in der Behälteraufnahmeeinheit (120) angeordnet ist und konfiguriert ist, eine geradlinige Hin- und Herbewegung zu erzeugen; und
 ein Gelenkelement (233), wovon ein Ende mit dem Antriebsabschnitt (234) über einen Stift gekoppelt ist und das andere Ende an eine Seite des Erweiterungselements (235) über einen Stift gekoppelt ist, wobei das Gelenkelement (233) konfiguriert ist, Kraft auf die erzeugten geradlinigen Hin- und Herbewegung zu übertragen.

9. Kühlschrank, der eine Ausgabeeinheit aufweist, nach einem der Ansprüche 1 bis 5, wobei die Antriebseinheit Folgendes umfasst:

 einen Drehmotor (334), der in der Behälteraufnahmeeinheit (120) angeordnet ist und konfiguriert ist, eine Drehbewegung zu erzeugen; ein antreibendes Gelenkelement (333a), das mit einer Antriebswelle (334a) des Drehmotors (334) gekoppelt ist und das konfiguriert ist, sich in Reaktion auf die erzeugte Drehbewegung zu drehen; ein angetriebenes Gelenkelement (333c), das mit der drehbaren Welle (332) gekoppelt ist und das konfiguriert ist, eine Drehkraft auf die drehbare Welle (332) zu übertragen; und ein Verbindungsgelenkelement (333b), wovon ein erstes Ende mit einem Endabschnitt des angetriebenen Gelenkelements (333c) über einen Stift gekoppelt ist und ein zweites Ende an eine Seite des Erweiterungselements (333b) über einen Stift gekoppelt ist.

10. Kühlschrank, der eine Ausgabeeinheit aufweist, nach einem der Ansprüche 1 bis 5, wobei die Antriebseinheit Folgendes umfasst:

 einen Drehmotor (434), der in der Behälteraufnahmeeinheit (120) angeordnet ist und konfiguriert ist, eine Drehbewegung zu erzeugen; ein Erweiterungselement (435), das sich von der drehbaren Welle (432) in einer radialen Richtung erstreckt und mit dem Blockierelement (431) gekoppelt ist; ein antreibendes Gelenkelement (433a), das mit der Antriebswelle (434a) des Drehmotors (434) gekoppelt ist und das konfiguriert ist, sich in Reaktion auf die erzeugte Drehbewegung zu drehen; und ein Verbindungsgelenkelement (433b), wovon ein Ende mit einer Seite des Erweiterungselements (435) über einen Stift gekoppelt ist und
ein anderes Ende mit dem Endabschnitt des antreibenden Gelenkelements (433a) über einen Stift gekoppelt ist, wobei das Verbindungsge-}

{5}lenkelement (433b) konfiguriert ist, Kraft, die durch die Drehung des antreibenden Gelenkelements erzeugt wird, auf das Erweitungs-}

{10}element zu übertragen.

11. Kühlschrank, der eine Ausgabeeinheit aufweist, nach einem der Ansprüche 9 und 10, wobei der Drehmotor (334, 434) so eingebaut ist, dass eine antreiben-}

{10}de Welle (334a, 434a) des Drehmotors (334, 434) in einer Richtung orientiert ist, die auf eine untere Oberfläche der Behälteraufnahmeinheit (120) zeigt, wobei die untere Oberfläche eine Oberfläche der Behälteraufnahmeinheit (120) ist, die so konfiguriert ist, dass sie den Behälter (c) hält, in den der Inhalt ausgegeben wird.

12. Kühlschrank, der eine Ausgabeeinheit aufweist, nach Anspruch 11, wobei der Drehmotor (334, 434) mit einer oberen Oberfläche der Behälteraufnahmeinheit (120) gekoppelt ist, wobei die obere Oberfläche eine Oberfläche der Behälteraufnahmeinheit (120) ist, durch die der Kommunikationsschacht (313, 413) verläuft.

13. Kühlschrank nach einem der Ansprüche 1 bis 12, der ferner Folgendes umfasst:

{30}einen Einsatz, der konfiguriert ist, den Behälter (c) zu halten, der durch die Behälteraufnahmeinheit (120) aufgenommen wird und in der der Inhalt ausgegeben wird, wobei das Blockierelement (131, 231, 331, 431) so konfiguriert ist, dass es sich von der ersten Position zu der zweiten Position in einer Ebene bewegt, die parallel zu einer Oberfläche des Einsatzes ist, der den Behälter (c) hält.

Revendications

1. Réfrigérateur ayant un distributeur, comprenant :

{45}un corps principal (11) ayant une chambre de refroidissement (12) et une porte (13) qui est déplaçable pour ouvrir et fermer au moins une portion de la chambre de refroidissement (12) ; une unité de réception de conteneur (120) qui est positionnée sur une surface avant de la porte (13) et qui définit, à l’intérieur de la porte (13), une cavité de distribution capable de recevoir au moins une insertion partielle d’un conteneur (C) jusque dans lequel un contenu est distribué, la surface avant de la porte (13) étant une surface de la porte (13) qui est orientée à l’opposé de la chambre de refroidissement (12) quand la porte (13) est dans une position fermée ; une goulotte de communication (113, 213, 313, 413) qui passe à travers la surface avant de la porte (13) et qui est configurée de manière à guider le contenu vers la cavité de distribution définie par l’unité de réception de conteneur (120) ; une unité d’obstruction (130, 230, 330, 430) disposée dans l’unité de réception de conteneur (120), et déplaçable, autour d’un plan perpendiculaire à la surface avant de la porte (13), entre au moins deux positions, incluant une première position dans laquelle le contenu guidé par la goulotte de communication (113, 213, 313, 413) est relativement obstrué par l’unité d’obstruction (130, 230, 330, 430), et une deuxième position dans laquelle le contenu guidé par la goulotte de communication (113, 213, 313, 413) est relativement non obstrué par l’unité d’obstruction (130, 230, 330, 430), dans lequel l’unité d’obstruction (130, 230, 330, 430) comprend :

{55}un élément d’obstruction (131, 231, 331, 431) déplaçable, autour du plan perpendiculaire à la surface avant de la porte (13), entre la première position dans laquelle l’élément d’obstruction (131, 231, 313, 431) couvre une sortie de la goulotte de communication (113, 213, 313, 413) et la deuxième position dans laquelle l’élément d’obstruction (131, 231, 313, 431) ne couvre pas la sortie de la goulotte de communication (113, 213, 313, 413) ; caractérisé en ce que l’unité d’obstruction comprend en outre :

{60}un axe de rotation (132, 232, 332, 432) couplé à l’élément d’obstruction (131, 231, 331, 431) ; et une unité d’entraînement configurée de manière à transférer une force de rotation à l’axe de rotation (132, 232, 332, 432) pour ainsi amener l’élément d’obstruction (131, 231, 331, 431) à entrer en rotation, dans le plan horizontal perpendiculaire à la surface avant de la porte (13), entre la première position et la deuxième position.

2. Réfrigérateur ayant un distributeur selon la revendication 1, dans lequel la sortie de la goulotte de communication (113, 313) a une section transversale dans un plan perpendiculaire à la surface avant de la porte (13).

3. Réfrigérateur ayant un distributeur selon la revendication 1, dans lequel la sortie de la goulotte de com-
Réfrigérateur ayant un distributeur selon la revendication 3, dans lequel l’élément d’obstruction (230, 430) est coupé à l’axe de rotation (232, 432) dans une manière qui permet à l’élément d’obstruction (230, 430) d’être élastiquement déformé quand l’élément d’obstruction (230, 430) couvre la sortie de la goulotte de communication (213, 413), et une surface de l’élément d’obstruction (230, 430) qui couvre la goulotte de communication (213, 413) a une inclinaison qui correspond à la section transversale inclinée de la goulotte de communication (213, 413).

4. Réfrigérateur ayant un distributeur selon la revendication 3, dans lequel le côté du plan perpendiculaire à la surface avant de la porte (13) autour duquel l’élément d’obstruction (230, 430) est déplaçable.

5. Réfrigérateur ayant un distributeur selon la revendication 1, dans lequel l’élément d’obstruction (130, 230, 330) comprend en outre un élément élastique (151, 251, 351) qui est disposé au niveau d’un côté de l’axe de rotation (132, 232, 332) et qui est configuré de manière à appliquer à l’axe de rotation (132, 232, 332) une force de rappel qui amène l’élément d’obstruction (231) à entrer en rotation, autour du plan perpendiculaire à la surface avant de la porte (13), depuis la deuxième position vers la première position.

6. Réfrigérateur ayant un distributeur selon l’une quelconque des revendications 1 à 5, dans lequel l’unité d’entraînement comprend :

 une portion d’entraînement (134, 234) disposée dans l’unité de réception de conteneur (120) et configurée de manière à générer un mouvement de va-et-vient linéaire ; et
 un élément de liaison (133, 233) ayant l’une de ses extrémités couplée par broche à la portion de va-et-vient linéaire ; et
 un élément de liaison (133, 233) ayant l’une de ses extrémités couplée par broche à la portion d’entraînement du moteur de rotation généré ; et

7. Réfrigérateur ayant un distributeur selon l’une quelconque des revendications 1 à 5, dans lequel l’élément d’obstruction (231) est coupé à un élément d’extension (235) s’étendant à partir de l’axe de rotation (232) dans une direction radiale.

8. Réfrigérateur ayant un distributeur selon la revendication 7, dans lequel l’unité d’entraînement comprend :

 une portion d’entraînement (234) disposée dans l’unité de réception de conteneur (120) et configurée de manière à générer un mouvement de va-et-vient linéaire ; et
 un élément de liaison (233) ayant l’une de ses extrémités couplée par broche à la portion d’entraînement (234) et l’autre de ses extrémités à un côté de l’élément d’extension (235), l’élément de liaison (233) étant configuré de manière à transférer une force à l’élément d’extension sur la base du mouvement de va-et-vient linéaire généré.

9. Réfrigérateur ayant un distributeur selon l’une quelconque des revendications 1 à 5, dans lequel l’unité d’entraînement comprend :

 un moteur de rotation (334) disposé dans l’unité de réception de conteneur (120) et configuré de manière à générer un mouvement de rotation ;
 une liaison d’entraînement (333a) qui est couplée à un axe d’entraînement (334a) du moteur de rotation (334) et qui est configurée de manière à entrer en rotation en réponse au mouvement de rotation généré ;
 une liaison entraînée (333c) qui est couplée à l’axe de rotation (332) et qui est configurée de manière à transférer une force de rotation à l’axe de rotation (332) ; et
 une liaison de connexion (333b) ayant une première extrémité couplée par broche à une portion d’extrémité de la liaison entraînée (333c) et une deuxième extrémité couplée par broche à une portion d’extrémité de la liaison d’entraînement (333a), la liaison de connexion étant configurée de manière à transférer une force causée par la rotation de la liaison d’entraînement vers la liaison entraînée.

10. Réfrigérateur ayant un distributeur selon l’une quelconque des revendications 1 à 5, dans lequel l’unité d’entraînement comprend :

 un moteur de rotation (434) disposé dans l’unité de réception de conteneur (120) et configuré de manière à générer un mouvement de rotation ;
 un axe d’extension (435) s’étendant à partir de l’axe de rotation (432) dans une direction radiale et couplé à l’élément d’obstruction (431) ;
 une liaison d’entraînement (433a) qui est couplée à un axe d’entraînement (434a) du moteur de rotation et qui est configurée de manière à entrer en rotation en réponse au mouvement de rotation généré ; et
 une liaison de connexion (433b) ayant l’une de ses extrémités couplée par broche à un côté de l’élément d’extension (435) et l’autre de ses extrémités couplée par broche à la portion d’extrémité de la liaison d’entraînement (433a), la liaison de connexion (433b) étant configurée de
manière à transférer une force causée par la rotation de la liaison d’entraînement vers l’élément d’extension.

11. Réfrigérateur ayant un distributeur selon l’une quelconque des revendications 9 et 10, dans lequel le moteur de rotation (334, 434) est installé de sorte qu’un axe d’entraînement (334a, 434a) du moteur de rotation (334, 434) est orienté dans une direction qui va vers une surface inférieure de l’unité de réception de conteneur (120), la surface inférieure étant une surface de l’unité de réception de conteneur (120) qui est configurée de manière à supporter le conteneur (c) vers lequel le contenu est distribué.

12. Réfrigérateur ayant un distributeur selon la revendication 11, dans lequel le moteur de rotation (334, 434) est couplé à une surface supérieure de l’unité de réception de conteneur (120), la surface supérieure étant une surface de l’unité de réception de conteneur (120) à travers laquelle passe la goulotte de communication (313, 413).

13. Réfrigérateur selon l’une quelconque des revendications 1 à 12, comprenant en outre :

- un plateau configuré de manière à supporter le conteneur (c) reçu par l’unité de réception de conteneur (120) et vers lequel un contenu est distribué,
- dans lequel l’élément d’obstruction (131, 231, 331, 431) est configuré de manière à se déplacer depuis la première position vers la deuxième position dans un plan qui est parallèle à une surface du plateau qui supporte le conteneur (c).
FIG. 11
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- KR 1020080128046 [0001]
- US 20080156027 A1 [0005]
- US 20070271949 A1 [0006]