A method, device and system for transmitting messages are provided. The method for transmitting messages includes: receiving a message with a mobile terminal identification of a called user as a receipt identification; acquiring network service entity information corresponding to the mobile terminal identification of the called user recorded in a status recording device; and transmitting the message to a network service entity server according to the acquired network service entity information. The corresponding device includes a message center and a status recording device. According to the disclosure, a status recording device records network service entity information corresponding to a mobile terminal identification of a called user, and a message center transmits a message to a network service entity server according to the network service entity information, thus allowing a calling user to transmit the message to the network service entity server corresponding to the mobile terminal identification of the called user by inputting the real mobile terminal identification of the called user on a mobile terminal.

FIG.1
FIELD OF THE INVENTION

The disclosure relates to communication field, particularly to a method, device and system for transmitting messages.

BACKGROUND

At present, a network service entity (such as, website, QQ, and so on) generally accesses a mobile communication network as a Service Provider (SP). To transmit a message to a mobile telephone user through the network service entity, a calling party has to carry an SP access preamble in the message. In this case, the mobile communication network assigns an SP access code to the network service entity. When a user transmits a message to a called mobile terminal via a network service entity client, calling number of the message displayed on the called mobile terminal is the SP access code and a session identification. After receiving the short message, the called mobile terminal may reply the message. However, during the implementation of the disclosure, the inventor finds that since the called mobile terminal can not identify the real identity of the calling user according to the calling number and the addition of the preamble makes the called mobile terminal pre-emptive, the called mobile terminal is unwilling to reply this kind of message. Moreover, when the calling user actively transmits a message to the network service entity via a mobile terminal, the calling user can not input the called mobile terminal identification (such as a mobile telephone number) to be used for transmitting, which makes the calling user feel inconvenient to transmit messages to a client of the network service entity via the mobile terminal and obstructs the deployment and popularization of this type of service.

SUMMARY

The problem to be solved by embodiments of the disclosure is to allow a calling user to transmit a message to a mobile terminal to a network service entity of the called user. In order to solve the above-mentioned technical problem, an embodiment of the disclosure provides a method for transmitting messages, including: receiving a message, wherein the receipt identification of the message is a mobile terminal identification of a called user; acquiring network service entity information corresponding to the mobile terminal identification of the called user recorded in a status recording device; and transmitting the message to the network service entity server according to the network service entity information.

An embodiment of the disclosure provides a status recording device, including: a recording unit, configured to receive a mobile terminal identification of a user transmitted by a network service entity server and record a correspondence relation between the mobile terminal identification of the user and the network service entity server; and a providing unit, configured to receive a request for acquiring network service entity information corresponding to a mobile terminal identification of a called user and provide the network service entity information corresponding to the mobile terminal identification of the called user according to the request.

An embodiment of the disclosure provides a system for transmitting messages, including: a message center, configured to receive a message with a mobile terminal identification of a called user as a receipt identification, acquire network service entity information corresponding to the mobile terminal identification of the called user recorded in a status recording device, and transmit the message to a network service entity server according to the network service entity information; and the status recording device, configured to receive a mobile terminal identification of a user transmitted by the network service entity server and record the correspondence relation between the mobile terminal identification of the user and the network service entity server.

According to the method, device and system for transmitting messages provided in embodiments of the disclosure, network service entity information corresponding to a mobile terminal identification of a called user recorded in a status recording device is acquired. Thus, a calling user is allowed to transmit a message to a network service entity server corresponding to the mobile terminal identification of the called user by inputting the real mobile terminal identification of the called user on the mobile terminal.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig.1 is a flow chart of a method for transmitting messages according to an embodiment of the disclosure; Fig.2 is a schematic structure diagram of a status recording device according to an embodiment of the disclosure; Fig.3 is a schematic structure diagram of a status recording device according to another embodiment of the disclosure; Fig.4 is a schematic structure diagram of a status recording device according to another embodiment of the disclosure.
of the disclosure;

[0014] Fig. 5 is a schematic structure diagram of a message center according to an embodiment of the disclosure;

[0015] Fig. 6 is a schematic structure diagram of a message center according to another embodiment of the disclosure;

[0016] Fig. 7 is a schematic structure diagram of a system for transmitting messages according to an embodiment of the disclosure;

[0017] Fig. 8 is a flow chart of a method for transmitting messages according to an embodiment of the disclosure, in which a calling user and a called user belong to the same message center;

[0018] Fig. 9 is a flow chart of a method for transmitting messages according to an embodiment of the disclosure, in which a calling user and a called user belong to different message centers;

[0019] Fig. 10 is a flow chart of a method for transmitting messages according to an embodiment of the disclosure, in which a calling user and a called user belong to different message centers and locate in a communication network to which the calling user belongs;

[0020] Fig. 11 is a flow chart of a method for transmitting messages according to another embodiment of the disclosure, in which a calling user and a called user belong to different message centers and locate in a communication network to which the calling user belongs;

[0021] Fig. 12 is a flow chart of a method for transmitting messages according to another embodiment of the disclosure, in which a calling user and a called user belong to different message centers and locate in a communication network to which the calling user belongs.

DETAILED DESCRIPTION

[0022] In order to make the objects, technical solutions and advantages of the disclosure clearer, the disclosure will be further described in detail below with reference to accompanying drawings and embodiments. It is understood that specific embodiments described here are only for illustrating the disclosure but not for limiting the disclosure.

[0023] Fig. 1 is a flow chart of a method for transmitting messages according to an embodiment of the disclosure, which includes the following steps.

[0024] S101: A message is received, where a receipt identification of the message is a mobile terminal identification of a called user.

[0025] A message center (MC) receives the message transmitted from a calling user A to a called user B.

[0026] The receipt identification of the message is the mobile terminal identification (such as a mobile telephone number) of the called user B. The calling user A may actively transmit the message to the called user B or reply the message to the called user B after receiving a message transmitted by the called user B. The called user B may transmit the message from a network service entity to the calling user A where the calling identification of the message is the real mobile terminal identification of the called user B (such as the real mobile telephone number of the called user B), or the called user B may transmit a short message on a mobile terminal.

[0027] S102: Network service entity information corresponding to the mobile terminal identification of the called user recorded in a status recording device is acquired;

[0028] In an embodiment of the disclosure, the network service entity may be an instant messaging tool (such as QQ), a website with message transmitting and receiving function, or a communicating tool with message transmitting and receiving function in a local area network.

[0029] When the called user logs on a network service entity server, the network service entity server transmits the mobile terminal identification of the called user associated with an identification of a network service entity client of the called user to the status recording device. The status recording device records a correspondence relation between the mobile terminal identification and the network service entity information. The network service entity information may be an identification of the network service entity (such as the name of the network service entity) or an IP address of the network service entity server. The mobile terminal identification of the called user is provided to the network service entity server by the called user, which corresponds to the identification of the network service entity client of the called user (such as a mobile telephone number corresponding to a bound QQ number).

[0030] After receiving the message that the receipt identification of the message is the mobile terminal identification of the called user, the message center requests to acquire the network service entity information corresponding to the mobile terminal identification of the called user from the status recording device according to the mobile terminal identification of the called user. The status recording device looks up corresponding network service entity information according to the correspondence relation between the recorded mobile terminal identification and the network service entity.

[0031] S103: The message is transmitted to the network service entity server according to the network service entity information.

[0032] After the message center acquires the network service entity information corresponding to the mobile terminal identification of the called user recorded in the status recording device successfully, the message center transmits the message to the network service entity server according to the network service entity information. If the message center fails to acquire the network service entity information corresponding to the mobile terminal identification of the called user recorded in the status recording device, the message center transmits the message to the mobile terminal of the called user according to the mobile terminal identification of the called user.
When the network service entity communicates with the message center, the message center may record a correspondence relation between the identification of the network service entity server and the IP address of the network service entity server. When the network service entity information acquired by the message center from the status recording device is the identification of the network service entity server, the message center obtains the corresponding IP address by the correspondence relation between the identification of the network service entity server and the IP address of the network service entity server and transmits the message to the network service entity server according to the IP address of the network service entity server.

In the present embodiment, through acquiring the corresponding network service entity information from the status recording device according to the mobile terminal identification of the called user, the calling user is allowed to transmit the message to the network service entity server associated with the called mobile terminal identification by inputting the called mobile terminal identification on a mobile terminal. In an embodiment of the disclosure, on-line status of a user on a certain network service entity may also be represented by data in the status recording device, thus enabling selecting a transmitting mode according to the on-line status of the called user on the network service entity. The specific implementation is as follows.

When the called user logs on the network service entity server, the status recording device receives the mobile terminal identification of the called user transmitted by the network service entity server and records the correspondence relation between the mobile terminal identification and the network service entity server.

When the called user logs off the network service entity server, the status recording device deletes the mobile terminal identification of the called user, the corresponding network service entity information acquired by the status recording device from the status recording device is the identification of the user and each piece of network service entity information may be recorded in the status recording device when the user is on-line on multiple network service entity servers. The status recording device may select any network service entity information from multiple correspondence relations to provide the network service entity information to the message center, or may also provide all the network service entity information indicating the called user is on-line to the message center which further selects one of them for delivering.

When the called user logs on the network service entity server, the status recording device receives the mobile terminal identification of the called user transmitted by the network service entity server and records the correspondence relation between the mobile terminal identification and the network service entity server. If the acquisition of the network service entity information fails, the MC(B) transmits the message to the mobile terminal of the called user B. After receiving the message, the MC(B) acquires the network service entity information corresponding to the mobile terminal identification of the called user from the status recording device of the called party. If the acquisition of the network service entity information is successful, S103 is performed, and if the acquisition of the network service entity information fails, the message center transmits the message to the mobile terminal of the called user B.

When the called user logs off the network service entity server, the status recording device deletes the recorded correspondence relation between the mobile terminal identification and the network service entity server. Thus, it is ensured that when the called user logs on a certain network service entity server and remains an on-line status, the message center may acquire the network service entity information corresponding to the mobile terminal identification of the called user recorded in the status recording device successfully, and thus S103 may be performed.

When the message center fails to acquire the network service entity information corresponding to the mobile terminal identification of the called user recorded in the status recording device, the message center transmits the message to the mobile terminal of the called user according to the mobile terminal identification of the called user.

Thus, the message center may transmit the message according to the on-line status of the called user on the network service entity server. That is, when the user is on-line on a certain network service entity server, the messages is transmitted to the network service entity server which in turn delivers the message to a client. And when the user is off-line, the message is delivered to the mobile terminal of the called user.

Particularly, if a mobile terminal identification of the user is bound to multiple network service entities, correspondence relations between the mobile terminal identification of the user and each piece of network service entity information may be recorded in the status recording device when the user is on-line on multiple network service entity servers. The status recording device may select any network service entity information from multiple correspondence relations to provide the network service entity information to the message center, or may also provide all the network service entity information indicating the called user is on-line to the message center which further selects one of them for delivering.

In addition, in specific implementation processes of S102–S103, if the calling user A and the called user B belong to the same message center, after receiving the message transmitted by the calling user A, the message center acquires the network service entity information corresponding to the mobile terminal identification of the called user from the status recording device of the called party. If the acquisition of the network service entity information is successful, S103 is performed, and if the acquisition of the network service entity information fails, the message center transmits the message to the mobile terminal of the called user B.
In the second case, the calling party also corresponds to a status recording device. The MC(A) acquires the network service entity information corresponding to the mobile terminal identification of the called user from the status recording device of the called party through the status recording device. If the acquisition of the network service entity information is successful, the message is transmitted to the MC(B) which will perform S103. If the corresponding network service entity also communicates with the MC(A), the MC(A) may also perform S103 by itself. If the acquisition of the network service entity information fails, the MC(A) transmits the message to the mobile terminal of the called user B.

The acquired network service entity information may include the identification of the network service entity server or the IP address of the network service entity server.

If the network service entity information acquired by the message center is the identification of the network service entity server, the IP address of the network service entity server is recorded by the message center when the network service entity server communicates with the message center. The message center obtains the IP address of the corresponding network service entity server according to the received identification of the network service entity server and transmits the message to the network service entity server according to the IP address of the network service entity server.

The message center may not record the IP address of the network service entity server by itself, but acquires the IP address of the network service entity server from the status recording device by use of the mobile terminal identification of the called user. However, in this case, it is required that the server of the network service entity for transmitting messages to the status recording device and the server of the network service entity for receiving messages transmitted from the message center are of the same IP address.

To make the technical solution of the present embodiment clearer, description will be given below with respect to the case in which the calling user A and the called user B belong to the same message center. If a user logs on an QQ server with a QQ number 8888 through a QQ client and provides his/her mobile telephone number 13888888888 which is bound to the QQ number to the QQ server, and if the QQ number 8888 is on-line, the QQ server registers the mobile telephone number 13888888888 with the status recording device which then records a correspondence relation between the mobile telephone number 13888888888 and the QQ server.

Since the message center needs to communicate with the QQ server, the QQ server needs to communicate with the message center and then the message center records the IP address corresponding to the QQ server. When the message center acquires network service entity information from the status recording device by use of the called mobile telephone number 13888888888, if the QQ number 8888 is on-line, what is acquired is that the service entity corresponding to 13888888888 is the QQ server. Then the message center of the called party obtains the corresponding IP address according to previously recorded IP of the QQ server and transmits a message to the QQ server. If the QQ number 8888 is not on-line, the acquisition of the network service entity information fails. Since the status recording device now record no mapping relation between the mobile telephone number 13888888888 and the QQ server, the message center transmits the message to the mobile terminal corresponding to the mobile telephone number 13888888888 of the called user after receiving the message.

It should be noted that although the method for transmitting messages according to the present embodiment is illustrated in terms of the case in which the calling user A and the called user B belong to the same message center, the method for transmitting messages provided in the present embodiment is not limited to the case in which the calling user A and the called user B belong to the same message center, but also applicable to the case in which the calling user A and the called user B belong to different message centers, which will be described in detail in the following embodiment.

According to the method for transmitting messages provided in the present embodiment, when the calling user and the called user belong to the same message center or different message centers and locates in the network to which the calling user belongs or the delivering network to which the called user belongs, the calling user may input the mobile terminal identification of the called user (such as a mobile telephone number) on a mobile terminal so as to transmit the message to the network service entity server with which the called user has been registered, such that the network service entity server may transmit the message to the network service entity client of the called user. The method provided in the present embodiment makes the transmitting of messages to the network service entity server via the mobile terminal more convenient and simpler, and makes the user feel that the operation is as easy as transmitting short messages between mobile terminals, thus improving the user's experiences and promoting the popularization of this kind of service.

Further, since the status recording device records the correspondence relation between the mobile terminal identification of the called user and the network service entity server when the called user is on-line on the network service entity server, the message center is allowed to determine the receiving party of the message according to the on-line status of the called user on the network service entity server, thus improving the pertinence and timeliness of message delivering and guaranteeing that the called user may receive the message in time.

Corresponding to the above-mentioned method-
od embodiment of the disclosure, Fig.2 is a schematic structure diagram of a status recording device according to an embodiment of the disclosure, which includes the following units.

[0056] A recording unit 202 is configured to receive the mobile terminal identification of the user transmitted by the network service entity server and record the correspondence relation between the mobile terminal identification of the user and the network service entity server.

[0057] When the user logs on the network service entity server, the network service entity server transmits the mobile terminal identification corresponding to the network service entity client of the called user to the status recording device.

[0058] The recording unit 202 records the correspondence relation between the mobile terminal identification of the user and the network service entity server after receiving the mobile terminal identification of the user transmitted by the network service entity server. What the recording unit 202 records may be the correspondence relation between the mobile terminal identification of the user and the identification of the network service entity server, or the correspondence relation between the mobile terminal identification of the called user and the IP address of the network service entity server.

[0059] A providing unit 203 is configured to receive a request for acquiring the network service entity information corresponding to the mobile terminal identification of the called user and provide the network service entity information corresponding to the mobile terminal identification of the user according to the request.

[0060] The network service entity information may be provided to the message center or another status recording device. The provided network service entity information may be the identification of the network service entity server or the address of the network service entity server.

[0061] The status recording device provided in the present embodiment may communicate with the network service entity, the message center or another status recording device through any private protocol or extensions of the existing protocol specifications of the carrier, such as the extension of the Data Center for Short Message Service (DCS) specification of the China Mobile Communication Co. Ltd.

[0062] The status recording device provided in the present embodiment records the correspondence relation between the mobile terminal identification of the called user and the network service entity and provides the network service entity information, thus allowing the message center to transmit the message to the corresponding network service entity server according to the mobile terminal identification of the called user.

[0063] On the basis of the present embodiment, referring to Fig.3, the status recording device may further include a monitoring unit 201 and a deleting unit 204.

[0064] The monitoring unit 201 is configured to monitor the on-line status of the called user on the network service entity server.

[0065] The called user needs to provide his/her mobile terminal identification (such as a mobile telephone number, or a mobile telephone number bound with a QQ number) corresponding to the identification of the network service entity client to the network service entity with which the called user is registered. The network service entity stores the correspondence relation between the identification of the network service entity client and the mobile terminal identification in the server.

[0066] The monitoring unit 201 keeps real-time updating with the network service entity server corresponding to the mobile terminal identification of the called user, and thus the monitoring unit 201 may acknowledge whether the called user logs on the network service entity server currently. This may be implemented by the following two approaches.

[0067] 1. When the called user logs on the network service entity server (that is, when the called user is on-line), the network service entity server transmits an on-line status notification of the called user to the monitoring unit 201. When the called user is off-line, the network service entity server transmits an off-line notification of the called user immediately to the monitoring unit 201. Then the monitoring unit 201 transmits the off-line notification of the called user to the deleting unit 204.

[0068] 2. When the called user is off-line, the network service entity server does not transmit an off-line notification of the called user to the monitoring unit. When the called user is on-line, the network service entity server transmits an on-line status notification of the called user to the monitoring unit 201 in real-time. If the monitoring unit 201 fails to receive any more on-line status notification of the called user in a certain period (such as 30 seconds) after receiving the on-line status notification of the called user, the monitoring unit 201 determines that the called user is already off-line and thus transmits an off-line notification of the called user to the deleting unit 204.

[0069] The deleting unit 204 is configured to receive the off-line notification of the called user transmitted by the monitoring unit and delete the correspondence relation between the mobile terminal identification of the called user and the network service entity server recorded in the recording unit according to the off-line notification.

[0070] The status recording device provided in the present embodiment records the correspondence relation between the mobile terminal identification of the called user and the network service entity server when the user logs on the network service entity server and remains the on-line status, thus allowing the message center to determine the receiving party of the message according to the on-line status of the called user on the network service entity server, and thus improving the pertinence and timeliness of message delivering and guaranteeing that the called user may receive the message in time.

[0071] Referring to Fig.4, the status recording device
may further include an acquiring unit 205 and/or a synchronizing unit 206.

[0072] The acquiring unit 205 is configured to acquire the network service entity information corresponding to the mobile terminal identification of the called user from another status recording device.

[0073] When receiving a request for acquiring the network service entity information corresponding to the mobile terminal identification of the called user, the providing unit 203 firstly checks whether the correspondence relation between the mobile terminal identification of the called user and the network service entity server is recorded in the recording unit. If the correspondence relation is recorded, the providing unit 203 acquires the correspondence relation and then provides it to the requestor.

[0074] If the correspondence relation is not recorded, the providing unit 203 instructs the acquiring unit 205 to acquire the network service entity information corresponding to the mobile terminal identification of the called user from the another status recording device according to the request. After obtaining the instruction, the acquiring unit 205 acquires the network service entity information corresponding to the mobile terminal identification of the called user from the another status recording device.

[0075] The synchronizing unit 206 is configured to synchronously update the correspondence relation between the mobile terminal identification of the called user and the network service entity server to the another status recording device.

[0076] When the calling user A and the called user B belong to different message centers and locate in the delivering network to which the calling user A belongs, the calling message center may acquire, through the status recording device of the calling party, the correspondence relation between the mobile terminal identification of the called user and the network service entity server from the status recording device of the called party. The status recording device of the calling party may actively acquire the correspondence relation from the status recording device of the called party, where the status recording device of the calling party includes the acquiring unit 205. The status recording device of the called party may also actively update the correspondence relation between the mobile terminal identification of the called user and the network service entity server synchronously to the status recording device of the calling party, where the status recording device of the called party includes the synchronizing unit 206.

[0077] In this way, the message center of the calling party may acquire the correspondence relation between the mobile terminal identification of the called user and the network service entity server locally, thus enabling a faster and more convenient acquisition of the correspondence relation between the mobile terminal identification of the called user and the network service entity server by the message center of the calling party.
the receipt identification of the message is a mobile terminal configured to transmit and receive a message in which the user, thus guaranteeing that the called user may receive the message in time. If the called user is on-line, the receiving party of the message according to the on-line status of the called user is registered, and if the called user is off-line, the user B belong to different message centers, the following circumstances exist.

Further, the message center provided in the present embodiment facilitates to transmit the message of the calling user with the mobile terminal identification of the called user as the receipt identification to the network service entity server corresponding to the mobile terminal identification of the called user with which the called user is registered, such that the called user may receive the message at the service entity client. The present embodiment makes the transmitting of messages to the network service entity server via the mobile terminal more convenient and simpler, and makes the user feel that the operation is as easy as transmitting short messages between mobile terminals, thus improving the user’s experiences and promoting the popularization of this kind of service.

Further, the message center provided in the present embodiment may also determine the receiving party of the message according to the on-line status of the network service entity client of the called user. If the called user is on-line, the receiving party of the message is the network service entity server with which the called user is registered, and if the called user is off-line, the receiving party of the message is the mobile terminal of the user, thus guaranteeing that the called user may receive the message in time.

Fig. 7 is a schematic structure diagram of a system for transmitting messages according to an embodiment of the disclosure.

The system includes a message center 701 configured to transmit and receive a message in which the receipt identification of the message is a mobile terminal identification of a called user, acquire network service entity information corresponding to the mobile terminal identification of the called user recorded in a status recording device, and transmit the message to a network service entity server according to the network service entity information.

The message center 701 may be a message center MC to which a calling user and a called user commonly belong, a message center MC(A) to which the calling user belongs or a message center MC(B) to which the called user belongs.

After receiving the message transmitted from the calling user, the message center MC to which the calling user and the called user commonly belong acquires the network service entity information corresponding to the mobile terminal identification of the called user from the corresponding status recording device.

When the calling user A and the called user B belong to different message centers, the following circumstances exist.

In a delivering network to which the calling user belongs, after receiving the message transmitted from the MC(A), the MC(B) acquires the network service entity information corresponding to the mobile terminal identification of the called user from the corresponding status recording device of the called party.

In a delivering network to which the calling user belongs, the MC(A) may acquire, through the MC(B), the network service entity information corresponding to the mobile terminal identification of the called user from the status recording device corresponding to the called party, and may also acquire, through the status recording device of the called party corresponding to the MC(A), the network service entity information from the status recording device corresponding to the called party.

The message center 701 may be further configured to store a correspondence relation between an identification of the network service entity server and an IP address of the network service entity server, and inquire the IP address of the network service entity server corresponding to the server according to the acquired identification of the network service entity server so as to transmit the message according to the IP address of the network service entity server.

A status recording device 702 is configured to receive a mobile terminal identification of a user transmitted by the network service entity server and record a correspondence relation between the mobile terminal identification of the user and the network service entity server.

There may be one status recording device in the system (e.g. when the calling user A and the called user B belong to the same message center), or two and more status recording devices (e.g. when the calling user A and the called user B belong to different message centers and locate in the delivering network to which the calling user belongs. The status recording device keeps in real-time communication with the network service entity.
server, monitors an on-line status of the network service entity user bound with a mobile terminal identification, receives the mobile terminal identification corresponding to a network service entity client of the user transmitted by the network service entity server, and records the correspondence relation between the mobile terminal identification of the user and the network service entity server when the user is on-line. The specific implementation process has been described in detail in the previous embodiment of a status recording device and thus will not be further described here.

[0103] When the calling user A and the called user B belong to different message centers and locate in the delivering network to which the calling user belongs, the called party has one status recording device and the calling party may also have one status recording device. Besides the above-mentioned functions performed by the status recording device of the calling party, when the MC(A) acquires, through the status recording device of the calling party, the network service entity information corresponding to the mobile terminal identification of the called user from the status recording device of the calling party, the status recording device of the calling party needs to communicate with the status recording device of the called party to acquire the network service entity information corresponding to the mobile terminal identification of the called user recorded in the status recording device of the called party. The communication between the status recording device of the calling party and the status recording device of the called party may be realized by the following two approaches. In the first approach, when obtaining a instruction of the MC(A), the status recording device of the calling party actively transmits a request for acquiring the corresponding network service entity information to the status recording device of the called party to acquire the information and then returns the information to the MC(A). In the second approach, the status recording device of the called party synchronously updates the correspondence relation between the mobile terminal identification of the called user and the network service entity server recorded locally to the status recording device of the calling party. Through the second approach, the MC(A) may inquire in the local status recording device to acquire the network service entity information corresponding to the mobile terminal identification of the called user.

[0104] As for the implementation, the status recording device 702 may be an independent network element in the system or a module in the message center 701.

[0105] The system for transmitting messages provided in the present embodiment may be applied in different networks, such as a network in which the calling user and the called user belong to the same message center or a network in which the calling user and the called user belong to different message centers (including the delivering network to which the calling user belongs and the network to which the called user belongs). The system facilitates to transmit the message of the calling user with the mobile terminal identification of the called user as the receipt identification to the network service entity server corresponding to the mobile terminal identification of the called user with which the called user is registered, such that the called user may receive the message at the service entity client. The present embodiment makes the transmitting of messages to the network service entity server via the mobile terminal more convenient and simpler, and makes the user feel that the operation is as easy as transmitting short messages between mobile terminals, thus improving the user’s experiences and promoting the popularization of this kind of service.

[0106] The system for transmitting messages may further include a network service entity server 703 configured to transmit the mobile terminal identification associated with the network service entity client of the user to the status recording device 702 when the user logs on the network service entity server.

[0107] Thus, it is realized that when the user is on-line on the network service entity server, the status recording device 702 may record the correspondence relation between the mobile terminal identification of the user and the network service entity server, and the message center may acquire the network service entity information corresponding to the mobile terminal identification of the called user from the status recording device 702. Then the message center may determine whether the message is transmitted to the network service entity server or the mobile terminal of the called user according to whether the acquisition of the network service entity information is successful.

[0108] Fig. 8 is a flow chart of a method for transmitting messages according to an embodiment of the disclosure, in which a calling user and a called user belong to the same message center.

[0109] S801: A calling user A transmits a message to a called user B via a mobile terminal and the message is firstly received by a message center.

[0110] S802: The receipt identification of the message is a mobile terminal identification of the called user B.

[0111] The called user B needs to provide the mobile terminal identification associated with an identification of a network service entity client with which the called user B is registered to the network service entity, and the network service entity transmits the mobile terminal identification to a status recording device. Thus, the status recording device records that the mobile terminal identification corresponds to the network service entity. Moreover, the service entity needs to notify an on-line status of the called user B to the status recording device, specific process of which has been described in the previous embodiment of the status recording device and thus will not be described further here.
device and the network service entity server for receiving messages transmitted from the message center are the same server.

S803: If the acquisition of the network service entity information is successful, the message center transmits the message to the network service entity server.

A successful acquisition means that the called user B logs on the network service entity server currently, and thus the message center transmits the message to the network service entity server on which the called user B logs such that the called user B may receive the message in time.

S804: If the acquisition of the network service entity information fails, the message center transmits the message to the mobile terminal identification of the called user B.

A failed acquisition means that the called user B has not logged on the network service entity server currently. Since the status recording device monitors the on-line status of the called user B on the network service entity in real-time, if the called user B is found off-line, the status recording device would delete the correspondence relation between the network service entity server and the mobile terminal identification of the called user B recorded in it. Refer to the embodiment of the status recording device for specific implementation process.

According to the method for transmitting messages provided in the present embodiment, when the calling user and the called user belong to the same message center, the calling user may input the mobile terminal identification of the called user for transmitting a message to the network service entity. The receiving party of the message may be selected automatically according to the on-line status of the user, thus ensuring that the user can receive the message in time.

S802: The message center acquires the network service entity information corresponding to the mobile terminal identification of the called user B from the corresponding status recording device.

S803: If the acquisition of the network service entity information is successful, the message center transmits the message to the network service entity server on which the called user B logs such that the called user B may receive the message in time.

S804: If the acquisition of the network service entity information fails, the message center transmits the message to the mobile terminal identification of the called user B.

A failed acquisition means that the called user B has not logged on the network service entity server currently. Since the status recording device monitors the on-line status of the called user B on the network service entity in real-time, if the called user B is found off-line, the status recording device would delete the correspondence relation between the network service entity server and the mobile terminal identification of the called user B recorded in it. Refer to the embodiment of the status recording device for specific implementation process.

According to the method for transmitting messages provided in the present embodiment, when the calling user and the called user belong to the same message center, the calling user may input the mobile terminal identification of the called user for transmitting a message to the network service entity. The receiving party of the message may be selected automatically according to the on-line status of the user, thus ensuring that the user can receive the message in time.

Fig.9 is a flow chart of a method for transmitting messages according to an embodiment of the disclosure, in which a calling user and a called user belong to different message centers.

In the present embodiment, the calling user and the called user belong to different message centers, and locate in a communication network to which the called user belongs (such as a CDMA network).

S901: The calling user A transmits a message to the called user B via a mobile terminal, and the message is firstly received by a message center MC(A) to which the calling user belongs.

S902: After receiving the message, the MC(A) forwards the message to a message center MC(B) to which the called user belongs.

S903: After receiving the message, the MC(B) acquires network service entity information correspond-
ing to a mobile terminal identification the called user B from its corresponding status recording device.

[0131] The details of this step may be referred to those in S802 except that the message center is the message center MC(B) to which the called user belongs.

[0132] S904: If the acquisition of the network service entity information is successful, the MC(B) transmits the message to a network service entity server.

[0133] The details of this step may be referred to those in S803 except that the message center is the message center MC(B) to which the called user belongs.

[0134] According to the method for transmitting messages provided in the present embodiment, when the calling user and the called user belong to different message centers and locate in the delivering network to which the calling user belongs, the calling user may input the mobile terminal identification of the called user for transmitting a message to the network service entity. The receiving party of the message may be selected automatically according to the on-line status of the user, thus ensuring that the user can receive the message in time.

[0137] Fig.10 is a flow chart of a method for transmitting messages according to an embodiment of the disclosure, in which a calling user and a called user belong to different message centers and locate in a communication network to which the calling user belongs.

[0138] In the present embodiment, the calling user and the called user belong to different message centers, and locate in a communication network to which the calling user belongs (such as a CDMA network).

[0139] S1001: The calling user A transmits a message to the called user B via a mobile terminal, and the message is firstly received by a message center MC(A) to which the calling user belongs.

[0140] The receipt identification of the message is a mobile terminal identification of the called user B.

[0141] The details of this step may be referred to those in S801 except that the message center is the message center MC(A) to which the calling user belongs.

[0142] S1002: After receiving the message, the MC(A) transmits a request for acquiring the network service entity information corresponding to the mobile terminal identification of the called user B to the MC(B).

[0143] S1003: After receiving the request, the MC(B) requests a corresponding status recording device of the called party to acquire the network service entity information corresponding to the mobile terminal identification of the called user B.

[0144] This step may be referred to S903.

[0145] S1004: The MC(B) returns a response for the request to the MC(A).

[0146] If the acquisition of the network service entity information is successful, the MC(B) returns the network service entity information corresponding to the mobile terminal identification of the called user B to the MC(A).

[0147] If the acquisition of the network service entity information fails, the MC(B) returns a failure message to the MC(A).

[0148] S1005: The MC(A) receives the network service entity information corresponding to the mobile terminal identification of the called user B and transmits the message to the MC(B).

[0149] S1006: The MC(B) transmits the message to a network service entity server.

[0150] If the network service entity server information received by the MC(B) is an identification of the network service entity server, the MC(B) looks for an IP address of the network service entity server stored locally according to the identification. The message is transmitted to the network service entity server according to the IP address.

[0151] S1007: If the MC(A) receives a response of acquisition failure, the MC(A) delivers the message to the mobile terminal of the called user B.

[0152] According to the method for transmitting messages provided in the present embodiment, when the calling user and the called user belong to different message centers and locate in the delivering network to which the calling user belongs, the message center to which the calling user belongs may acquire, through the message center of the called user, the network service entity information corresponding to the mobile terminal identification of the called user B from the corresponding status recording device, and the calling user may input the mobile terminal identification of the called user for transmitting a message to the network service entity. The receiving party of the message may be selected automatically according to the on-line status of the user, thus ensuring that the user can receive the message in time.

[0153] Fig.11 is a flow chart of a method for transmitting messages according to another embodiment of the disclosure, in which a calling user and a called user belong to different message centers and locate in a communication network to which the calling user belongs.

[0154] S1101: The calling user A transmits a message to the called user B via a mobile terminal, and the message is firstly received by a message center MC(A) to which the calling user belongs.

[0155] The receipt identification of the message is a mobile terminal identification of the called user B.

[0156] The details of this step may be referred to those in S801 except that the message center is the message center MC(A) to which the calling user belongs.

[0157] S1102: After receiving the message, the MC(A) transmits a request for acquiring the network service entity information corresponding to the mobile terminal identification of the called user B to a status recording device of the calling party corresponding to the MC(A).

[0158] S1103: After receiving the request, the status recording device of the calling party requests a status
recording device of the called party to acquire the network service entity information corresponding to the mobile terminal identification of the called user B.

[0159] In the present embodiment, the status recording device of the calling party corresponding to the MC(A) may communicate with the status recording device of the called party through any private protocol or extensions of the existing protocol specifications of the carrier (such as the extension of the DCS specification of the China Mobile Communication Co. Ltd, the EMP specification of the China United Telecommunications Co. Ltd, the MSP specification of the China Telecommunications Corporation, and so on).

[0160] What the status recording device of the calling party acquires may be an identification or an IP address of the network service entity server corresponding to the mobile terminal identification of the called user B.

[0161] S 1104: The status recording device of the calling party transmits an acquisition response to the MC(A).

[0162] If the acquisition of the network service entity information is successful, the network service entity information corresponding to the mobile terminal identification of the called user B is returned to the MC(A).

[0163] If the acquisition of the network service entity information fails, a failure message is returned to the MC(A).

[0164] S 1105: After receiving the network service entity information corresponding to the mobile terminal identification of the called user B, the MC(A) transmits the message to the MC(B) which further transmits the message to the network service entity server.

[0165] The message carries the network service entity information corresponding to the mobile terminal identification of the called user B.

[0166] The MC(B) transmits the message to the network service entity server corresponding to the mobile terminal identification of the called user B.

[0167] If the network service entity server information carried in the message is the identification of the network service entity server, the MC(B) obtains the corresponding IP address of the network service entity server according to the identification and transmits the message to the network service entity server.

[0168] After receiving the network service entity server information, the MC(A) may firstly inquire locally whether there is a network service entity server corresponding to the information in the network service entity servers communicating with the MC(A). If there is a network service entity server corresponding to the information, the message may also be transmitted to this network service entity server.

[0169] S 1106: The MC(A) receives a response of acquisition failure and delivers the message to the mobile terminal of the called user B.

[0170] According to the method for transmitting messages provided in the present embodiment, when the calling user and the called user belong to different message centers and locate in the delivering network to which the calling user belongs, the message center to which the calling user belongs acquires, through its corresponding message center, the network service entity information corresponding to the mobile terminal identification of the called user from the status recording device corresponding to the called message center, and thus the calling user may input the mobile terminal identification of the called user for transmitting a message to the network service entity. The receiving party of the message may be selected automatically according to the on-line status of the user, thus ensuring that the user can receive the message in time.

[0171] Fig.12 is a flow chart of a method for transmitting messages according to another embodiment of the disclosure, in which a calling user and a called user belong to different message centers and locate in a communication network to which the calling user belongs.

[0172] S1201: A status recording device of the called party synchronously updates a recorded mobile terminal identification of the called party and its corresponding network service entity information to a status recording device of the calling party.

[0173] When the called party B is transmitting a message to a mobile terminal of the calling party A from a network entity terminal, the status recording device of the called party may obtain the status recording device of the calling party and perform this step. Alternatively, the status recording device of the called party may also synchronously update all other status recording devices in the network.

[0174] S1202: The calling user A transmits a message to the called user B via a mobile terminal, and the message is firstly received by the message center MC(A) to which the calling user belongs.

[0175] The receipt identification of the message is the mobile terminal identification of the called user B.

[0176] The details of this step may be referred to those in S801 except that the message center is a message center MC(A) to which the calling user belongs.

[0177] S1203: The MC(A) acquires network service entity information corresponding to the mobile terminal identification of the called user B from its corresponding status recording device of the calling party.

[0178] Since the status recording device of the calling party has already synchronously updated the network service entity information corresponding to the mobile terminal identification of the called user stored in it, the MC(A) may acquire the information locally. This step may be referred to S802.

[0179] S1204: After receiving the network service entity information corresponding to the mobile terminal identification of the called user B, the MC(A) transmits the message to the MC(B) which further transmits the message to a network service entity server.

[0180] This step may be referred to S 1105.

[0181] S1205: The MC(A) receives a response of acquisition failure and delivers the message to a mobile
terminal of the called user B.

[0182] According to the method for transmitting messages provided in the present embodiment, when the calling user and the called user belong to different message centers and locate in the delivering network to which the calling user belongs, through synchronously updating the status recording device of the calling party and the status recording device of the called party, the message center to which the calling user belongs may acquire the network service entity information corresponding to the mobile terminal identification of the called user from the local status recording device, and thus the calling user may input the mobile terminal identification of the called user for transmitting a message to the network service entity. The receiving party of the message may be selected automatically according to the on-line status of the user, thus ensuring that the user can receive the message in time.

[0183] Through the description of the above embodiments, it would be clearly understood by those skilled in the art that the embodiments of the disclosure may be implemented by software and necessary general purpose hardware platform without the need of introduction of independent functional components. Based on such understanding, the essence or the content contributing to the related art of the technical solution of the embodiments of the disclosure may be embodied in form of computer software product. The computer software product is stored in a storage medium and includes several instructions for implementing the methods described in the embodiments of the disclosure. The storage medium mentioned here is, for example, ROM/RAM, magnetic disk, compact disk, and so on.

[0184] To sum up, the above contents are preferred embodiments of the disclosure and do not intend to limit the scope of the disclosure. Any modifications, equivalent replacements and improvements within the spirit and principle of the disclosure should be included in the scope of the disclosure.

Claims

1. A method for transmitting messages, comprising:
 - receiving a message, wherein a receipt identification of the message is a mobile terminal identification of a called user;
 - acquiring network service entity information corresponding to the mobile terminal identification of the called user recorded in a status recording device; and
 - transmitting the message to a network service entity server according to the network service entity information.

2. The method of claim 1, wherein the acquiring the network service entity information corresponding to the mobile terminal identification of the called user recorded in the status recording device comprises:
 - acquiring the network service entity information corresponding to the mobile terminal identification of the called user through a correspondence relation between the mobile terminal identification of the called user and the network service entity server, wherein the correspondence relation between the mobile terminal identification of the called user and the network service entity server is recorded by the status recording device when the called user logs on the network service entity server.

3. The method of claim 2, wherein the correspondence relation between the mobile terminal identification of the called user and the network service entity server is deleted by the status recording device when the called user logs off the network service entity server.

4. The method of any one of claims 1 to 2, further comprising:
 - transmitting the message to the mobile terminal of the called user according to the mobile terminal identification of the called user when failing to acquire the network service entity information corresponding to the mobile terminal identification of the called user recorded in the status recording device.

5. The method of any one of claims 1 to 2, wherein the network service entity information is an identification of the network service entity server or an IP address of the network service entity server.

6. The method of claim 5, further comprising recording the IP address corresponding to the identification of the network service entity server when the network service entity server communicates with a message center, and
 - if the network service entity information is the identification of the network service entity server, the transmitting the message to the network service entity server of the called user according to the network service entity information comprises: obtaining the corresponding IP address according to the received identification of the network service entity server and transmitting the message to the network service entity server of the called user according to the IP address of the network service entity server.

7. A status recording device, comprising:
 - a recording unit, configured to receive a mobile terminal identification of a user transmitted by a network service entity server and record a cor-
respondence relation between the mobile terminal identification of the user and the network service entity server; and
a providing unit, configured to receive a request for acquiring network service entity information corresponding to a mobile terminal identification of a called user and provide the network service entity information corresponding to the mobile terminal identification of the called user according to the request.

8. The status recording device of claim 7, wherein the providing unit is further configured to instruct an acquiring unit to acquire the network service entity information corresponding to the mobile terminal identification of the called user from another status recording device according to the request, and the status recording device further comprises the acquiring unit configured to acquire the network service entity information corresponding to the mobile terminal identification of the called user from the another status recording device.

9. The status recording device of claim 7 or 8, further comprising:
 a synchronizing unit, configured to synchronously update the correspondence relation between the mobile terminal identification of the user and the network service entity server to the another status recording device.

10. The status recording device of any one of claims 7 to 9, further comprising:
 a monitoring unit, configured to monitor the online status of the user on the network service entity server; and
 a deleting unit, configured to receive a off-line notification of the user transmitted by the monitoring unit and delete the correspondence relation between the mobile terminal identification of the user and the network service entity server recorded in the recording unit according to the off-line notification.

11. A message center, comprising:
 a message receiving unit, configured to receive a message, wherein a receipt identification of the message is a mobile terminal identification of a called user;
 an acquiring unit, configured to acquire network service entity information corresponding to the mobile terminal identification of the called user recorded in a status recording device; and
 a first message transmitting unit, configured to transmit the message to a network service entity server according to the network service entity information.

12. The message center of claim 11, further comprising:
 a second message transmitting unit, configured to transmit the message to the mobile terminal of the called user according to the mobile terminal identification when the acquiring unit fails to acquire the network service entity information corresponding to the mobile terminal identification of the called user.

13. The message center of claim 11 or 12, further comprising a recording unit configured to record a correspondence relation between an identification of the network service entity server and an IP address of the network service entity server, and if the network service entity information is the identification of the network service entity server, the first message transmitting unit is specifically configured to inquire the IP address of the network service entity server from the recording unit according to the identification of the network service entity server and transmit the message to the network service entity server according to the inquired IP address of the network service entity server.

14. A system for transmitting messages, comprising:
 a message center, configured to receive a message with a mobile terminal identification of a called user as a receipt identification, acquire network service entity information corresponding to the mobile terminal identification of the called user recorded in a status recording device, and transmit the message to a network service entity server according to the network service entity information; and
 the status recording device, configured to receive a mobile terminal identification of a user transmitted by the network service entity server and record the correspondence relation between the mobile terminal identification of the user and the network service entity server.

15. The system for transmitting messages of claim 14, further comprising the network service entity server configured to transmit the mobile terminal identification associated with a network service entity client of the user to the status recording device when the user logs on the network service entity server, and the status recording device is further configured to delete the correspondence relation between the mobile terminal identification of the user and the network service entity server recorded locally when the user logs off the network service entity server.
Receive a message, where a receipt identification of the message is a mobile terminal identification of a called user

Acquire network service entity information corresponding to the mobile terminal identification of the called user recorded in a status recording device

Transmit the message to a network service entity server according to the network service entity information

FIG. 1

Recording Unit

Providing Unit

FIG. 2
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2008/119883 A (TELIASONERA AB [SE]; LINDQUIST VESA [FI]; PAHLMAN SAULI [FI]) 9 October 2008 (2008-10-09) * page 7, line 32 - page 8, line 33 * * figures 2,3 *</td>
<td>1-15</td>
<td>----</td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims

<table>
<thead>
<tr>
<th>Place of search</th>
<th>Date of completion of the search</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Munich</td>
<td>23 December 2009</td>
<td>Bertsch, Andreas</td>
</tr>
</tbody>
</table>

CATEGORY OF CITED DOCUMENTS
- X: particularly relevant if taken alone
- Y: particularly relevant if combined with another document of the same category
- A: technological background
- O: non-written disclosure
- P: intermediate document

CLASSIFICATION OF THE APPLICATION (IPC)
- T: theory or principle underlying the invention
- E: earlier patent document, but published on, or after the filing date
- D: document cited in the application
- L: document cited for other reasons
- A: member of the same patent family, corresponding document
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

23-12-2009

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CN 1688988 A</td>
<td>26-10-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI 20040859 A</td>
<td>11-08-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2005514684 T</td>
<td>19-05-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 03056445 A1</td>
<td>10-07-2003</td>
</tr>
<tr>
<td>EP 1793543 A</td>
<td>06-06-2007</td>
<td>CN 101322147 A</td>
<td>10-12-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008294735 A1</td>
<td>27-11-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2007064418 A1</td>
<td>07-06-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI 120177 B1</td>
<td>15-07-2009</td>
</tr>
<tr>
<td>WO 2006060340 A</td>
<td>08-06-2006</td>
<td>CA 2588824 A1</td>
<td>08-06-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1836595 A2</td>
<td>26-09-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006116139 A1</td>
<td>01-06-2006</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82