EUROPEAN PATENT SPECIFICATION

Method for operating an energy storage system
Verfahren zum Betrieb eines Energiespeichersystems
Procédé pour commander un système de stockage d’énergie

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

Date of publication and mention of the grant of the patent:
16.05.2012 Bulletin 2012/20

Application number: 08169829.2
Date of filing: 25.11.2008

Proprietor: ABB Research Ltd.
8050 Zürich (CH)

Inventors:
• Paice, Andrew
 CH-5405, Dättwil (CH)
• Oudalov, Alexandre
 CH-5442, Fislisbach (CH)
• von Hoff, Thomas
 CH-5443, Niederrohrdorf (CH)

Representative: ABB Patent Attorneys
C/o ABB Schweiz AG
Intellectual Property (CH-LC/IP)
Brown Boveri Strasse 6
5400 Baden (CH)

References cited:
WO-A-03/036775
WO-A-2008/058284

• MALYDKETAL: "Optimal battery energy storage system (BESS) charge scheduling with dynamic programming" IEE PROCEEDINGS: SCIENCE, MEASUREMENT AND TECHNOLOGY, IEE, STEVENAGE, HERTS, GB, vol. 142, no. 6, 1
 November 1995 (1995-11-01), pages 453-8,
 XP006004445 ISSN: 1350-2344

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Field of the Invention

The present invention relates generally to the configuration and operation of an electric power system. The invention refers to a method for operating an energy storage system (ESS).

Background of the Invention

An electric power system is unique in that aggregate production and consumption must be matched instantaneously and continuously, whilst all system elements should operate within acceptable limits. Unexpected loss of generating units or transmission lines, or errors in daily load forecast, result in sudden imbalances between generation and consumption. Such imbalances lead to frequency deviations from the nominal frequency of the power system. This is problematic because generators may get disconnected by over- or under-frequency protection systems and cause even larger deviations leading to a system blackout. Loads such as rotating machines, need to operate at constant frequency and therefore frequency deviations would result in the interruption of various manufacturing processes.

A further problem known in electric power systems lies in the operational variations of renewable energy generation. These operational variations cause system frequency variation and transmission system operators must allocate more frequency regulation reserves than in the case of dispatchable energy generation.

An ESS can be an effective means of alleviating these known problems. The ESS can function as a supplier of a frequency balancing reserve. An ESS may absorb power from the grid when the actual frequency is above a defined frequency tolerance band thereby charging the battery, and an ESS may provide power to the grid when the actual frequency is below the frequency tolerance band, in that case discharging the battery.

WO 2007/104167 describes a method of operation of an ESS in which a lower state-of-charge set-point (SoC1) and an upper state-of-charge set-point (SoC2) of the battery are determined. These set-points lie between the minimum state-of-charge (SoCmin), wherein the battery is empty, and the maximum state-of-charge (SoCmax), wherein the battery is fully charged, respectively. The ESS is controlled with the aim that the SoC of the battery is maintained in the preferred band between the SoC1 and SoC2.

WO 2008 058 284 discloses a method of operation of a BESS connected to the grid. Charge and discharge of the BESS is controlled based on measured SoC and load requirements.

US Patent Number 5798633 (Larsen et al.) discloses a battery energy storage system of the type in which an inverter is coupled to convert direct current power from a DC source to a control frequency AC power suitable for supplementing utility power or for replacing utility power. The battery energy storage system includes a control mechanism for operating the system and either a supplemental or replacement mode in parallel with a utility power system.

WO 2005/029667 describes a system for regulating the frequency of generated power. An energy storage subsystem uses one or more flywheel energy storage systems to control the system frequency. Furthermore, an open-loop control uses a difference between measured frequency and reference frequency as an input signal.

A disadvantage associated with such known ESSs is that the ESSs do not operate with optimum efficiency and have unnecessarily oversized dimensions. Therefore, there is a need for an efficient ESS having a charging rate which optimises operation.

Description of the Invention

It is therefore an objective of the invention, to improve the performance of an ESS and in particular to reduce the required ESS dimensions for different applications.

This objective is achieved by a method and system for operating an ESS according to claims 1 and 8. Further preferred embodiments are disclosed in the dependent claims.

According to a first aspect of the invention a method is provided for operating an ESS for connection to a power system, said energy storage system comprising a physical energy storage having a dynamically adjustable charging/discharging rate, the method comprising the steps of measuring a state of charge of the physical energy storage, obtaining a time-dependent forecast vector of properties of the energy storage system and the power system, determining a charging/discharging rate for the energy storage system, based on the measured state of charge and the time-dependent forecast vector, to maximise operational efficiency, and adjusting the charging/discharging rate of the physical energy storage in accordance with the determined charging/discharging rate.

Further, the step of determining a charging/discharging rate for the energy storage system further comprises determining a charging/discharging rate sequence. Preferably, the step of measuring a state of charge of the physical energy storage further comprises determining a charge operation mode.
Preferably, the time-dependent forecast vector of properties of the energy storage system and the power system, is based on historical data defining the properties of the energy storage system and the power system.

Advantageously, an ESS that is operational for the purpose of frequency regulation, peak load shaving, arbitrage, load levelling or integration-of-renewables or other utility scale applications, is generally operated with a certain periodicity due to the nature of these purposes. In such a scenario, a statistical analysis of the power system variables is performed over a time-span of at least one year to catch seasonal variations. Variables that may be analysed are nominal frequency, line load and customer peak load, renewable generation output, electricity market price variations. This analysis provides information on the time-dependent behaviour of these variables (ie. deviations from the nominal values) and is used to calculate a forecast vector, \(F \).

Furthermore, the step of determining a charging/discharging rate for the energy storage system to maximise operational efficiency is also based on a physical energy storage system model.

Preferably, the physical energy storage system model is modified dependent upon feedback of the state of charge of the physical energy storage.

Further, the above method steps are repeated after a time period \(T \) or when triggered by an event which modifies the properties of the energy storage system or the power system. According to a second aspect of the invention an ESS is provided comprising a physical energy storage which is connectable to a power system, and a control unit for controlling the charging/discharging rate of the physical energy storage in accordance with the method of the first aspect.

Further, the control unit stores the historical data defining the properties of the energy storage system and the power system, and has a state of charge input from the physical energy storage and a feedback input from the power system.

BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter of the invention will be explained in more detail in the following text with reference to preferred exemplary embodiments, which are illustrated in the attached drawings, in which:

Figure 1 schematically illustrates a power system including an ESS and an associated control unit.

Figure 2 shows a flow diagram of the operational method of the present invention.

Figure 3 schematically illustrates the control function of an ESS of the present invention.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

A power system including an ESS is illustrated in Figure 1. The power system 10 is in connection with the ESS 12 such that power can be transferred between them. The ESS 12 comprises a physical energy storage 14 and a control unit 16 which are in bidirectional communication 18 with each other. A further communication link 20 is located between the power system and the control system.

In operation, the communication link 20 between the power system 10 and the control unit 16 functions to provide information on the power system condition to the control unit 16. The control unit 16 comprises a predictive charging/discharging control function and a historic data unit. The control unit 16 provides charging rate set point to the ESS 12 and the ESS provides a state-of-charge indication to the control unit. The charging rate set point enables the ESS state of operation to be maintained within a certain optimal operating range. The further communication link 20 functions to provide feedback information to the control unit.

The ESS of the present invention may be a battery, a flywheel, a super-capacitor, an ultra-capacitor or other type of energy storage system.

The flow diagram of Figure 2 shows the steps in the control operation of the present invention. In a first step, a computation of the charging rate sequence is initiated. This may occur periodically with period \(T \) (for example, 15 minutes for a load levelling application or 1-5 seconds for frequency control) or be triggered by an event such as a fault, a variation in the electricity price, or a variation in electricity demand. In a second step, a state-of-charge at time \(k \), \(L(k) \), is measured and in a third step, a time-dependent forecast vector \(F(k) \) is obtained. Specifically, the time-dependent forecast vector \(F(k) \) is obtained by reading historical data, or it is generated by an external application, or it is generated by a black-box model running as an on line estimator and predictor.

In the next step of the control operation, a charging rate sequence starting at time \(k \), \(C(k) \), is determined for the operation of the ESS to maximize an objective function \(G_{tot}(k) \), describing efficient operation and lifecycle aspects.

The charging rate sequence \(C(k) \) determines the charging/discharging rate of the ESS. Presented in expanded form, the charging rate sequence \(C(k) \) is:
and similarly, the objective function is:

\[G_{tot}(k) = G(k) + G(k+1) + \ldots + G(k+M-1). \]

An optimal charging rate sequence \(C(k) \) over a horizon of \(M \) time steps is determined (as detailed with reference to Figure 3).

In a fifth step, the first value of the charging rate sequence \(C(k) \), \(C(k) \) is executed as a charge set point to the ESS. As stated above, after period \(T \) or triggered by an event, the procedure of finding a new optimal charging/discharging rate is repeated, and thus the next procedural step returns to the first step of Figure 2 and repeats the steps in the control operation in respect of times \(k+1, \ldots, k+M \). In this way, the charging rate sequence for \(C(k+1) = [C(k+1), \ldots, C(k+M)] \) is determined utilizing new states \([L(k+1), O(k+1)] \) and new time-dependent forecast \(F(k+1) = [F(k+1), \ldots, F(k+M)] \). The state \(O(k+1) \) is defined as the new current charge operation mode.

A Model-Predictive Control (MPC) standard may be utilized for the control operation computation defined in Figure 2. The MPC enables an optimal control step to be determined that anticipates the behavior of the power system \(M \) time steps into the future. After the first cycle, the situation is reassessed by repeating the procedure. This allows the ESS to react on any unforeseen disturbances.

The complete charging rate sequence for \(C(k) = [C(k), \ldots, C(k+M-1)] \) is determined at each control operation cycle. However, only the first value of the determined charging rate sequence \(C(k) = [C(k), \ldots, C(k+M-1)] \), is executed as a charge set point to the ESS. The second and further values in the sequence are not applied but are calculated for an optimal anticipation of the dynamics.

The control operation of the present invention is now explained in further detail with reference to Figure 3. Figure 3 schematically shows the model on which the control logic is based for deducing the optimal control sequence. A model of a physical ESS receives an input from a physical parameter vector \(Q \) which comprises ESS and power system model parameters, from a one step time delay \(D \) and from a charging rate sequence at time \(k \), \(C(k) \). The model of a physical ESS provides an output of \(L(k) \), \(O(k) \); where \(L(k) \) is the state of charge at time \(k \), and \(O(k) \) is current charge operation mode. This output of the model of a physical ESS is input to an objective criterium block and also into the one step time delay \(D \). The objective criterium block also receives inputs from an economic model parameter vector \(P \), a time-dependent forecast vector \(F(k) \) and the charging rate sequence \(C(k) \). The objective criterium block provides an output of an objective function, \(G(k) \). In relation to Figure 1, the following parameters are stored in the historic data unit; the physical parameter vector \(Q \), the economic model parameter vector \(P \) and the time-dependent forecast vector \(F(k) \).

The charging rate sequence \(C(k) \) determines the charging/discharging rate of the ESS. The physical ESS model is a dynamic model which is comprised of two states - a level \(L(k) \) and a mode \(O(k) \). As previously defined, the level \(L(k) \) describes the amount of stored energy (also referred to as the "state of charge"). The mode \(O(k) \) is a discrete value;

\[O(k) = -1 \] describes a discharging mode
\[O(k) = 0 \] describes an idle mode
\[O(k) = 1 \] describes a charging mode

The physical parameter vector \(Q \) defines parameters such as the charge/discharge efficiency of the ESS and the storage efficiency of the ESS. The effect of the time delay \(D \) on states \(L(k) \) and \(O(k) \) is to modify them to \(L(k-1) \) and \(O(k-1) \), respectively.

The calculation performed by the model of a physical ESS on its inputs is defined as follows:

\[L(k) = f(C(k), L(k-1), O(k-1); Q) \]

\[-O(k) = \text{sgn}(C(k)) \]
The level of the stored energy $L(k)$, is determined as a function of the charge rate sequence $C(k)$, the former level of stored energy $L(k-1)$, the former mode $O(k-1)$ (charging or discharging) and the physical parameter vector Q which comprises some physical parameters of the ESS and the power system.

The objective criterium block functions to evaluate the objective function $G(k)$ of the physical ESS model over a prediction horizon M for a charging rate sequence $C(k)$. The prediction horizon M is a time period, the length of which is defined such that within this period the physical energy storage could be charged and discharged several times. (In practice, this can be from a few minutes up to a few hours, depending on the application.) As stated above, the objective criterium block receives inputs from an economic model parameter vector P (comprising static economic model parameters) and a time-dependent forecast vector $F(k)$ (comprising time-varying forecast variables). The static economic model parameters are, for example, ESS lifecycle cost (charging from charge to discharge, depth of discharge). The time-varying forecast variables are, for example, a forecast of power price, a forecast of power system frequency, a forecast of peak load and a forecast of charging/discharging capacity reserves.

The calculation performed by the objective criterium block on its inputs is defined as follows:

$$G(k) = h(L(k), F(k), C(k), O(k), O(k-1); P)$$

As specified in respect of Figure 2, the time-dependent forecast vector $F(k)$ is obtained by reading-historical data, or it is generated by an external application, or it is generated by a black-box model running as an on-line estimator and predictor.

The skilled person would be aware that the control logic represented schematically in Figure 3 may be realised as software or hardware and may be located locally or remotely from the physical energy storage. Further, it would be clear to the skilled person that modification of the charging rate sequence in shorter time periods will be possible where the statistical data analysis used for the predictive control was collected with greater frequency of sampling.

It is noted that the reduced storage capacity requirement of the ESS of the present invention, in comparison with the known ESS arrangements, leads to a lower capital cost of the ESS.

In summary, the present invention functions to determine a charging rate sequence $C(k)$ of an ESS that optimizes aspects of the ESS operation. Specifically, this is a dynamic adjustment of the state of charge of the ESS, based on statistical analysis of historical data. This invention is particularly relevant to ESSs which have been historically activated with a certain periodicity, for example, for the purposes of power system load leveling, frequency regulation, arbitrage, peak load shaving or integration of renewable power generation.

Claims

1. A method for operating an energy storage system for connection to a power system, said energy storage system comprising a physical energy storage having a dynamically adjustable charging/discharging rate, the method comprising the steps of:

 - measuring a state of charge ($L(k)$) of the physical energy storage (14),
 - obtaining a time-dependent forecast vector ($F(k)$) of properties of the energy storage system (14) and the power system (10),
 - determining a charging/discharging rate ($C(k)$) for the energy storage system, based on the measured state of charge ($L(k)$) and the time-dependent forecast vector ($F(k)$), to maximise operational efficiency, and
 - adjusting the charging/discharging rate of the physical energy storage (14) in accordance with the determined charging/discharging rate ($C(k)$).

2. The method according to claim 1, wherein the step of determining a charging/discharging rate ($C(k)$) for the energy storage system further comprises determining a charging/discharging rate sequence ($C(k)$).

3. The method according to claims 1 or 2, wherein the step of measuring a state of charge ($L(k)$) of the physical energy storage (14) further comprises determining a charge operation mode.

4. The method according to any of claims 1 to 3, wherein the time-dependent forecast vector ($F(k)$) of properties of the energy storage system and the power system, is based on historical data defining the properties of the energy storage system (12) and the power system (10).
5. The method according to any preceding claim, wherein the step of determining a charging/discharging rate \(C(k) \) for the energy storage system to maximise operational efficiency is also based on a physical energy storage system model, wherein said physical energy storage system model receives an input from a physical parameter vector \(Q \) which comprises energy storage system and power system model parameters from a one step time delay \(D \) and from the charging/discharging rate sequence \(C(K) \) at time \(k \).

6. The method according to any preceding claim, wherein the physical energy storage system model is modified dependent upon feedback of the state of charge \(L(k) \) of the physical energy storage \(14 \).

7. The method according to any preceding claim, wherein the method steps are repeated after a time period \(T \) or when triggered by an event which modifies the properties of the energy storage system \(12 \) or the power system \(10 \).

8. An energy storage system, comprising a physical energy storage which is connectable to a power system, and a control unit for controlling the charging/discharging rate \(C(k) \) of the physical energy storage in accordance with the method of any of claims 1 to 7.

9. The energy storage system of claim 8, wherein the control unit stores the historical data defining the properties of the energy storage system \(12 \) and the power system \(10 \), and has a state of charge input \(L(k) \) from the physical energy storage \(14 \) and a feedback input from the power system.

Patentansprüche

1. Verfahren zum Betreiben eines Energiespeichersystems für die Verbindung mit einem Leistungssystem, wobei das Energiespeichersystem einen physikalischen Energiespeicher mit einer dynamisch einstellbaren Lade-/Entladerate umfasst, wobei das Verfahren die folgenden Schritte umfasst:

 Messen eines Ladezustands \(L(k) \) des physikalischen Energiespeichers \(14 \)
 Erhalten eines zeitabhängigen Vorhersagevektors \(F(k) \) für Eigenschaften des Energiespeichersystems \(14 \) und des Leistungssystems \(10 \),
 Bestimmen einer Lade-/Entladerate \(C(k) \) für das Energiespeichersystem anhand des gemessenen Ladezustands \(L(k) \) und des zeitabhängigen Vorhersagevektors \(F(k) \), um den Betriebswirkungsgrad maximal zu machen, und
 Einstellen der Lade-/Entladerate des physikalischen Energiespeichers \(14 \) in Übereinstimmung mit der bestimmten Lade-/Entladerate \(C(k) \).

2. Verfahren nach Anspruch 1, wobei der Schritt des Bestimmens einer Lade-/Entladerate \(C(k) \) für das Energiespeichersystem ferner das Bestimmen einer Lade-/Entladeraten-Sequenz \(C(k) \) umfasst.

3. Verfahren nach Anspruch 1 oder 2, wobei der Schritt des Messens eines Ladezustands \(L(k) \) des physikalischen Energiespeichers \(14 \) ferner das Bestimmen einer Ladebetriebsart umfasst.

4. Verfahren nach einem der Ansprüche 1 bis 3, wobei der zeitabhängige Vorhersagevektor \(F(k) \) von Eigenschaften des Energiespeichersystems und des Leistungssystems auf historischen Daten beruht, die die Eigenschaften des Energiespeichersystems \(12 \) und des Leistungssystems \(10 \) definieren.

5. Verfahren nach einem vorhergehenden Anspruch, wobei der Schritt des Bestimmens einer Lade-/Entladerate \(C(k) \) für das Energiespeichersystem, um den Arbeitswirkungsgrad maximal zu machen, außerdem auf einem Systemmodell für den physikalischen Energiespeicher beruht, wobei das Systemmodell für den physikalischen Energiespeicher einen Eingang von einem Vektor \(Q \) eines physikalischen Parameters empfängt, der Modellparameter des Energiespeichersystems und des Leistungssystems aus einer Einzelschritt-Zeitverzögerung \(D \) und aus der Lade-/Entladeraten-Sequenz \(C(K) \) zum Zeitpunkt \(k \) enthält.

6. Verfahren nach einem vorhergehenden Anspruch, wobei das Systemmodell des physikalischen Energiespeichers in Abhängigkeit von der Rückkopplung des Ladezustands \(L(k) \) des physikalischen Energiespeichers \(14 \) modifiziert wird.

7. Verfahren nach einem vorhergehenden Anspruch, wobei die Verfahrensschritte nach einer Zeitdauer \(T \) oder dann,
wenn sie durch ein Ereignis ausgelöst werden, das die Eigenschaften des Energiespeichersystems (12) oder des Leistungssystems (10) modifiziert, wiederholt werden.

8. Energiespeichersystem, das einen physikalischen Energiespeicher, der mit einem Leistungssystem verbunden werden kann, und eine Steuereinheit zum Steuern der Lade-/Entladerate (C(k)) des physikalischen Energiespeichers in Übereinstimmung mit dem Verfahren nach einem der Ansprüche 1 bis 7 umfasst.

9. Energiespeichersystem nach Anspruch 8, wobei die Steuereinheit die historischen Daten, die die Eigenschaften des Energiespeichersystems (12) und des Leistungssystems (10) definieren, speichert und eine Eingabe des La-

dezustands (L(k)) von dem physikalischen Energiespeicher (14) und eine Rückkopplungseingabe von dem Lei-

stungssystem besitzt.

Revendications

1. Procédé de commande d’un système de stockage d’énergie destiné à être connecté à un réseau électrique, ledit système de stockage d’énergie comprenant un stockage d’énergie physique ayant un régime de charge/décharge réglable dynamiquement, ce procédé comprenant les étapes consistant à :

- mesurer un état de charge (L(k)) du stockage d’énergie physique (14),
- obtenir un vecteur de prévision chronologique (F(k)) des propriétés du système de stockage d’énergie (14) et du réseau électrique (10),
- déterminer un régime de charge/décharge (C(k)) pour le système de stockage d’énergie, en se basant sur l’état mesuré de charge (L(k)) et sur le vecteur de prévision chronologique (F(k)), afin de maximiser le rendement opérationnel, et à
- régler le régime de charge/décharge du stockage d’énergie physique (14) conformément au régime de charge/décharge déterminé (C(k)).

2. Procédé selon la revendication 1, dans lequel l’étape consistant à déterminer un régime de charge/décharge (C(k)) pour le système de stockage d’énergie comprend en outre la détermination d’une séquence de régime de charge/décharge (C(k)).

3. Procédé selon les revendications 1 ou 2, dans lequel l’étape consistant à mesurer un état de charge (L(k)) du stockage d’énergie physique (14) comprend en outre la détermination d’un mode de fonctionnement de charge.

4. Procédé selon l’une quelconque des revendications 1 à 3, dans lequel le vecteur de prévision chronologique (E(k)) des propriétés du système de stockage d’énergie et du réseau électrique est basé sur des données historiques définissant les propriétés du système de stockage d’énergie (12) et du réseau électrique (10).

5. Procédé selon l’une quelconque des revendications précédentes, dans lequel l’étape consistant à déterminer un régime de charge/décharge (C(k)) pour le système de stockage d’énergie de façon à maximiser le rendement opérationnel est aussi basé sur un modèle de système de stockage d’énergie physique, ledit modèle de système de stockage d’énergie physique recevant une entrée venant d’un vecteur de paramètre physique (Q) qui comprend les paramètres du modèle du système de stockage d’énergie et du réseau électrique, d’une temporisation à un pas (D) et de la séquence de régime de charge/décharge (C(k)) au temps k.

6. Procédé selon l’une quelconque des revendications précédentes, dans lequel le modèle du système de stockage d’énergie physique est modifié selon la rétroaction de l’état de charge (L(k)) du stockage d’énergie physique (14).

7. Procédé selon l’une quelconque des revendications précédentes, dans lequel les étapes du procédé sont répétées après une période de temps (T) ou lorsqu’elles sont déclenchées par un événement qui modifie les propriétés du système de stockage d’énergie (12) ou du réseau électrique (10).

8. Système de stockage d’énergie, comprenant un stockage d’énergie physique qui est connectable à un réseau électrique, et un dispositif de commande pour commander le régime de charge/décharge (C(k)) du stockage d’énergie physique conformément au procédé selon l’une quelconque des revendications 1 à 7.

9. Système de stockage d’énergie selon la revendication 8, dans lequel le dispositif de commande stocke les données
historiques définissant les propriétés du système de stockage d'énergie (12) et du réseau électrique (10), et a un entrée d'état de charge (L(k)) venant du stockage d'énergie physique (14) et une entrée de rétroaction venant du réseau électrique.
FIG. 1
Initiate computation (after period T or by event)

Measure State-of-Charge L(k) and charging mode O(k)

Obtain time dependent forecasts F(k)

Find charging rate sequence C(k) for operation of ESS to maximize objective function G(k)

Execute a 1st value of charging rate sequence C(k) as a set point to ESS
FIG. 3
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 2007104167 A [0005]
- WO 2008058284 A [0006]
- US 5798633 A, Larsen [0007]
- WO 2005029667 A [0008]