Rotary hook for a lockstitch sewing machine, comprising means to reduce the noise thereof

A rotary hook (1) of a lockstitch sewing machine - composed of at least one hook body (2) comprising a cylindrical cavity (11) and a basket (6) free to rotate in the cylindrical cavity (11), to which it is constrained by a rib (14), which engages in a C-shaped race (10), provided in the inner wall of the cylindrical cavity (11) of the hook body (2) and delimited by two plane surfaces parallel to each other and by a cylindrical surface perpendicular to the plane ones, suitable to prevent axial and radial translation of the basket (6) in the cylindrical cavity (11) - further comprises means (23; 25; 27; 29; 32; 35; 36; 37; 39; 31; 42; 43; 121; 221; 20; 200) suitable to apply to the basket (6) an axial pressure to cause the rib (14) of the basket (6) to lean against one of the plane surfaces which delimit the race (10) present in the cylindrical cavity (11) of the hook body (2).

Some of the above mentioned means (42; 43; 121; 221; 31; 21; 20; 200) are carried by the lockstitch sewing machine to which the above mentioned rotary hook (1) belongs.
Description

[0001] The present invention refers to a rotary hook for a lockstitch sewing machine, both for home and for industrial use, which comprises means to reduce the noise thereof.

[0002] The invention further refers to a lockstitch sewing machine comprising means to reduce the noise of a rotary hook and to a method for reducing the noise of a rotary hook.

[0003] The rotary hook can be of the type with a horizontal axis of rotation or of the type with a vertical axis of rotation.

[0004] Lockstitch sewing machines and the associated rotary hooks are well known and therefore will not be described herein, where it will merely be recalled that the rotary hook comprises at least one hook body, which is connected to a shaft from which it receives motion and which comprises a cylindrical cavity, a basket free to rotate inside the cylindrical cavity of the hook body, a gib which helps to constrain the basket to the hook body and possibly a bobbin case which is placed inside the basket and which helps to constrain the bobbin to the basket.

[0005] The shaft can be integral with the hook body or housed in a hole present in the centre of the cylindrical cavity.

[0006] The basket is constrained to the hook body by a rib, formed on the outer surface thereof, which engages in a race, formed in the inner wall of the cylindrical cavity of the hook body, which prevents an axial and a radial translation of the basket with respect to the cylindrical cavity, but not a rotation thereof.

[0007] This race of the hook body consists of a C-shaped groove delimited by two plane surfaces parallel to each other and by a cylindrical surface perpendicular to the plane ones.

[0008] The race of the hook body and the rib of the basket must be interrupted for a certain angular sector to allow the needle thread to pass and the stitch to be formed: these interruptions prevent the use of bearings, making necessary a coupling of the sliding type (or with sliding friction) between the race of the hook body and the rib of the basket and also causing, during the rotation of the hook body, noise (due to the play existing between the rib of the basket and the race of the hook body and to the fact that they are habitually made of metal materials) which is enhanced by vibration and resonance phenomena.

[0009] In the current state of the art, it is not possible to eliminate said play and the causes of the noise are so interdependent with each other that they cannot be identified with certainty or eliminated by adopting suitable geometric shapes and/or by imposing more restrictive dimensional or surface tolerances, which would in any case increase the production cost of the rotary hook.

[0010] US patent 7171914 (or EP 1640490) describes a hook with a vertical axis in which the basket and the hook body are made of synthetic material (synthetic resins) and the basket is constrained to the hook body by magnetic elements inserted in the bottom wall of the basket and on the bottom of the cylindrical cavity of the hook body, allowing the structure of the hook to be simplified (for example, the gib and C-shaped race formed in the inner wall of the cylindrical cavity of the hook body are not provided) and the production costs thereof to be reduced.

[0011] US 4429649 discloses a rotary hook for home sewing machines where the basket (called bobbin case holder) is constrained by a rib, provided on the outer surface of the basket, which engages in a L-shaped race, provided in the inner wall of the cylindrical cavity of the hook body and delimited by only one plane surface and by a cylindrical surface perpendicular to the plane one, suitable to prevent merely the radial translation of the basket in the cylindrical cavity.

[0012] Said basket is free to fluctuate in axial direction and a magnet positioned at the bottom of the cylindrical cavity of the hook body provides to adjust the tension of the lower thread.

[0013] EP 0 489 980 refers to a magnet placed on the bobbin case (called "bobbin holding mechanism") to adhere the same to the basket (called "bobbin case holder"): the magnet does not influence the basket in relation to the hook body.

[0014] US patent 4577572 describes a rotary hook in which, to reduce the friction between the rib of the basket and the race of the hook body, the rib of the basket is made to "float" in the race of the hook body by means of a cushion of air. The reduction in friction leads to a reduction in the thread tension necessary for stitching and to a reduction in wear on parts.

[0015] US patent 32809 describes a rotary hook in which, to reduce the friction between the rib of the basket and the race of the hook body, the rib of the hook body is made to "float" in the race of the hook body by means of a magnetic bearing. The reduction in friction leads to a reduction in the thread tension necessary for stitching and to a reduction in wear on parts.

[0016] Object of the present invention is to provide a rotary hook comprising means suitable to reduce the noise thereof within negligible noise limits with respect to the noise of the sewing machine; in particular, an object of the present invention is to provide a rotary hook whose noise is less than 45 db even in cases in which, in the absence of the above means, the noise of said hook would exceed 68 db.

[0017] This object has been achieved by means of the rotary hook of independent claim 1, which comprises means suitable to apply to the basket an axial pressure which oblige the rib of the basket to lean against one of the two plane surfaces of the race present in the cylindrical cavity of the hook body, instead of vibrating freely in said race because of the play always present between said rib and said race.

[0018] This axial pressure has the effect of stabilising the basket, preventing vibration and resonance thereof.
The invention will now be described with reference to exemplifying but non-limiting embodiments, described in the appended figures, wherein:

- Figure 1 shows diagrammatically an exploded view of a rotary hook of the prior art;
- Figure 2 shows diagrammatically the rotary hook of Figure 1 assembled and sectioned along a plane passing through its axis of rotation;
- Figures 3-16 show diagrammatically various embodiments of a rotary hook according to the invention, in which magnetic means are provided to reduce noise;
- Figures 17-19 show diagrammatically three further embodiments of a rotary hook according to the invention, in which jets of air are used to reduce the noise;
- Figures 20 and 21 show diagrammatically two further embodiments of a rotary hook according to the invention, in which a depressurisation is used to reduce the noise;
- Figures 22 and 23 show diagrammatically two further embodiments of a rotary hook according to the invention, in which a magnet is used to reduce the noise;
- Figures 24 and 25 show diagrammatically two further embodiments of a rotary hook according to the invention, in which a magnet is used to reduce the noise;
- Figures 26 and 27 show diagrammatically two further embodiments of a rotary hook according to the invention, in which a magnet is used to reduce the noise.

[0028] In the appended figures, corresponding elements will be identified by like reference numerals.

[0029] Figure 1 shows diagrammatically an exploded view of a rotary hook 1 with a horizontal axis of rotation, known to the art, in which only the elements relevant to the present description have been identified by reference numerals:

- a hook body 2, comprising a cylindrical cavity 11 which, in the example shown, has a central hole 17 (Figure 2) suitable to receive a shaft (omitted for the sake of simplicity of the graphic representation) from which the hook 1 receives motion; in a different embodiment, the shaft is integral with the hook 1 (see Figures 3 and 10);
- a basket 6, free to rotate inside the cylindrical cavity 11 to which it is constrained by a rib 14 formed on the outer surface of the basket 6,
- a C-shaped race 10, formed in the inside wall of the cylindrical cavity 11 of the hook body 2 and delimited by two plane surfaces parallel with each other (one of which is partially formed by the gib 110) and by a cylindrical surface perpendicular to the plane ones, in which the rib 14 of the basket 6 engages with a small amount of play (from about 0.01 mm to about 0.1 mm) to prevent an axial and a radial translation of the basket 6 in the cylindrical cavity 11;
- a bobbin 4, carried by the basket 6 or possibly by a bobbin case 5 set inside the basket 6.

[0030] Figure 2 shows diagrammatically the rotary hook 1 of Figure 1 assembled and sectioned through a plane passing through its axis of rotation; visible in figure 2 are the hook body 2 comprising the cylindrical cavity 11, the rib 14 of the basket 6, the race 10 of the hook body in which the rib 14 of the basket 6 is engaged, the bottom wall 15 of the basket 6 and the central hole 17 of the cylindrical cavity 11 able to accommodate a shaft (omitted for the sake of simplicity of the graphic representation) from which the hook 1 receives motion; in a different embodiment, on the other hand, the shaft is integral with the hook 1 (see Figures 3 and 10).

[0031] The rotary hook 1 according to the present invention comprises means suitable to apply an axial pressure on the basket 6 such as to cause the rib 14 of the basket 6 to lean against one of the plane surfaces delimiting the race 10 present in the cylindrical cavity 11 of the hook body 2.

[0032] The axial pressure is preferably created by applying to the basket 6 a force of not more than 50 grams (0.49 N).
In a preferred embodiment of a rotary hook 1 according to the invention, schematically described in Figures 3-16, the means able to apply said axial pressure to the basket 6 comprise at least one magnetic element, which can:

A) be fixed with respect to the hook body 2, attract the basket 6 (which is metal and therefore ferromagnetic) and consist of:

A.1) a disk-shaped magnet 23, set in a blind recess 24 provided on the bottom of the cylindrical cavity 11 of the hook body 2, as shown in Figure 3, where the shaft 9 is fixed with respect to the hook body 2, or else of

A.2) a disk-shaped magnet 25, set in a recess 26 provided on the bottom of the cylindrical cavity 11 of the hook body 2 to close a central hole 17 in which the shaft 9 is housed (Figure 4), or, in a different embodiment of the rotary hook 1, to close the central hole of the lubrication system (represented, for example, in Figure 10) or else of

A.3) a ring-shaped magnet 27, set in a circular recess 28 provided on the bottom of the cylindrical cavity 11 of the hook body 2 and concentric to the axis of rotation of the hook body 2 (Figures 5, 6), the circular recess 28 not modifying the central hole 17, if any, of the hook body 2, or else of

A.4) a series of cylindrical magnets 29, set in a series of blind recesses 30 or through holes set at regular intervals on the bottom of the cylindrical cavity 11 of the hook body 2 and suitable to develop a constant force having axial symmetry with respect to the rotation axis of the hook body (Figure 7), the blind recesses 30 or the through holes not modifying the central hole 17, if any, of the hook body 2;

B) be fixed with respect to the basket 6, attract the basket 6 towards the hook body 2 or the shaft 9 (which are metal and therefore ferromagnetic) and consist of:

B.1) a disk-shaped magnet 32 set in a blind recess 33 provided in the bottom wall 15 of the basket 6 and aligned with the axis of the basket 6 (Figure 8), or else of

B.2) a magnetic post 35 set aligned with the basket 6 (Figure 9), the post 35 also serving for braking the bobbin 4 to prevent undesired rotations thereof, or else of

B.3) a magnetic extractor 36 (if the basket 6 has an extractor) set aligned with the axis of the basket 6 (Figure 10), the magnetic extractor 36 also serving for braking the bobbin 4 to prevent undesired rotations thereof, or else of

B.4) a ring-shaped magnet 37, set in a circular recess 38 formed in the bottom wall 15 of the basket 6 and aligned with the axis of the basket 6 (Figures 11, 12), or else of

B.5) a series of cylindrical magnets 39, set in a series of blind recesses or through holes 41 set at regular intervals on the bottom wall 15 of the basket 6 and able to develop a constant force having axial symmetry with respect to the axis of the basket 6 (Figure 13), the cylindrical magnets 39 also serving for braking the bobbin 4 to prevent undesired rotations thereof;

C) be fixed with respect to the shaft 9 and consist of a disk-shaped magnet 31, set on top of said shaft and aligned or slightly sunk with respect to the surface of the cylindrical cavity 11 of the hook body 2, which attracts the basket 6 (Figure 14);

D) be set in the lockstitch sewing machine near the basket 6 or near the bobbin case 5 contained therein and consist of:

D.1) a magnet 42, which attracts the basket 6 or the bobbin case 5 contained therein (Figure 15), or else of

D.2) a first magnet 43, which interacts with a second magnet 44, mounted on the basket 6 or on the bobbin case 5 contained therein, which has a polarity of the same sign towards the first magnet 43 to repel the basket 6 from the first magnet 43 (Figure 16).

In other embodiments of a rotary hook 1 according to the invention, diagrammatically illustrated in Figures 17-19, the means suitable to apply to the axial pressure on the basket 6 are able to create a depressurisation between the bottom wall 15 of the basket 6 and the cylindrical cavity 11 of the hook body 2.

This “vacuum” effect sucks the basket 6 towards the hook body 2 and can be obtained by means of:

- a nozzle 21, set on the end of the shaft 9 and in communication with the cylindrical cavity 11 of the hook body 2, connected to a vacuum pump 20 by means of an axial hole 9’ formed in the shaft 9 (Figure 17); or else

- a fan 16, mounted in the central hole 17 of the hook body 2 (Figures 18 and 19) or on the end of the shaft 9, which is in communication with the cylindrical cavity 11 of the hook body 2 through said central hole 17 to suck the air from the cylindrical cavity 11.

The air sucked by the fan 16 can exit through the axial hole 9’ of the shaft 9 (Figure 18) or through radial holes 19 which connect the central hole 17 of the hook body 2 to the outer surface 18 of the hook body 2, also obtaining a centrifugal effect (Figure 19).

In order to improve the “vacuum” effect, the ap-
Rotary hook (1) as per Claim 1, characterized in that said means (23; 25; 27; 29) comprises at least one magnetic element.

3. Rotary hook (1) as per Claim 2, characterized in that said at least one magnetic element (23, 25, 27, 29) is fixed with respect to the hook body (2), the basket (6) comprises at least one magnetic element.

- a disk-shaped magnet (23) set in a recess (24) provided on the bottom of the cylindrical cavity (11) of the hook body (2) (Figure 3); or else of
- a disk-shaped magnet (25), set in a recess (26) provided on the bottom of the cylindrical cavity (11) of the hook body (2) to close a central hole (17) in which the shaft (9) is housed (Figure 4) or a central hole of the lubrication system; or else of
- a ring-shaped magnet (27) set in a circular recess (28) provided on the bottom of the cylindrical cavity (11) of the hook body (2) and centred on the rotation axis of the hook body (2) (Figures 5, 6); or else of
- a plurality of cylindrical magnets (29) set in a plurality of recesses or of through holes (30) or of through holes set at regular intervals on the bottom of the cylindrical cavity (11) of the hook body (2) and suitable to develop a constant force having axial symmetry with respect to the rotation axis of the hook body (2) (Figure 7).

4. Rotary hook (1) as per Claim 2, characterized in that said at least one magnetic element (32, 35, 36, 37, 39) is fixed with respect to the basket (6), the basket (6) comprises at least one magnetic element.

- a disk-shaped magnet (32), set in a recess (33) provided on the bottom wall (15) of the basket (6) and aligned with the axis of the basket (6) (Figure 8); or else of
- a magnetic post (35), set aligned with the axis of the basket (6), said magnetic post (35) being also suitable to brake the bobbin (4) to prevent undesired rotations thereof (Figure 9); or else of
- a magnetic extractor (36), set aligned with the axis of the basket (6), said magnetic extractor (36) being also suitable to brake the bobbin (4) to prevent undesired rotations thereof (Figure 10); or else of
- a ring-shaped magnet (37), set in a circular recess (38) made in the bottom wall (15) of the basket (6) and aligned with the axis of the basket (6) (Figures 11, 12); or else of
- a plurality of cylindrical magnets (39), set in a plurality of recesses or of through holes (41), which are set at regular intervals in the bottom wall (15) of the basket (6) and which are able to develop a constant force having axial symmetry with respect to the axis of the basket (6), said
cylindrical magnets (39) being also suitable to brake the bobbin (4) to prevent undesired rotations thereof (Figure 13).

5. Rotary hook (1) as per Claim 2, characterized in that said at least one magnetic element consists of a magnet (31), fixed with respect to the shaft (9) of the hook body (2) and set on top of said shaft, which attracts the basket (6) (Figure 14).

6. Rotary hook (1) as per Claim 1, characterized in that the means (16, 20; 21) suitable to apply an axial pressure on the basket (6), are means suitable to create a depressurisation between the bottom wall (15) of the basket (6) and the cylindrical cavity (11) of the hook body (2).

7. Rotary hook (1) as per Claim 6, characterized in that the means suitable to create the depressurisation between the bottom wall (15) of the basket (6) and the cylindrical cavity (11) consist of a nozzle (21), set on the end of the shaft (9) and in communication with the cylindrical cavity (11) of the hook body (2), connected to a vacuum pump (20) through the axial hole (9') of the shaft (9) (Figure 17).

8. Rotary hook (1) as per Claim 6, characterized in that said means suitable to create a depressurisation between the bottom wall (15) of the basket (6) and the cylindrical cavity (11) consist of a fan (16) suitable to suck in air from the cylindrical cavity (11) of the hook body (2), the air sucked in by the fan (16) exiting through an axial hole (9') made in the shaft (9) or through radial holes (19) that connect a central hole (17) of the hook body (2) to the outer surface (18) of the hook body (2) (Figures 18, 19).

9. Rotary hook (1) as per Claim 1, characterized in that the means (121; 200; 221) suitable to apply an axial pressure on the basket (6) or onto the bobbin case (5) contained therein, a jet of compressed air in axial direction with respect to the basket (6), and consist of:

- a nozzle (121), connected to a compressor (200), which sends a jet of compressed air onto the basket (6) in axial direction (Figure 20); or else of
- a nozzle (221), set at the end of the shaft (9) in communication with the cylindrical cavity (11) of the hook body (2) and connected to a compressor (200) by means of an axial hole (9') provided in the shaft (9) (Figure 21).

10. Lockstitch sewing machine comprising means for reducing the noise of a rotary hook (1) as per at least one of the preceding claims.

11. Lockstitch sewing machine comprising magnetic means for reducing the noise of a rotary hook (1) by applying an axial pressure on the basket (6) of the rotary hook (1) to cause a rib (14) of the basket (6) to lean against one of two plane surfaces, parallel each other, delimiting a C-shaped race (10) provided in the inner wall of the rotary hook body (2), said magnetic means consisting of:

- a magnet (42) set in the lockstitch sewing machine, which attracts the basket (6) or the bobbin case (5) contained therein (Figure 15); or else of
- a first magnet (43) set in the lockstitch sewing machine, which interacts with a second magnet (44) mounted on the basket (6) or on the bobbin case (5) contained therein, the second magnet (44) having a polarity of the same sign towards said first magnet (43) (Figure 16).

12. Method for reducing the noise of a rotary hook (1) as per Claim 1, characterized in that applied on the basket (6) of the rotary hook (1) is an axial pressure suitable to cause the rib (14) of the basket (6) to lean against one of the plane surfaces delimiting the race (10) of the hook body (2).
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 7171914 B [0010] [0020] [0021]
- US 4429649 A [0011] [0021]
- EP 0489980 A [0013] [0022]
- US 4577572 A [0014] [0023]
- US 32809 A [0015] [0023]