A METHOD FOR TRANSMITTING CHANNEL QUALITY INFORMATION IN A MULTIPLE INPUT MULTIPLE OUTPUT SYSTEM

VERFAHREN ZUM ÜBERTRAGEN VON KANALQUALITÄTIS INFORMATIONEN IN EINEM SYSTEM MIT MEHREREN EINGÄNGEN UND MEHREREN AUSGÄNGEN

PROCÉDÉ DE TRANSMISSION D’INFORMATIONS DE QUALITÉ DE CANAL DANS UN SYSTÈME À ENTRÉES MULTIPLES ET SORTIES MULTIPLES

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LT LU LV MC MT NL NO PL PT RO SE SI SK TR

Priority: 16.08.2007 US 956382 P 01.02.2008 KR 20080010672

Date of publication of application: 26.05.2010 Bulletin 2010/21

Divisional application: 12001359.4

Proprietor: LG Electronics Inc. Seoul 150-721 (KR)

Inventors:
- SEO, Dong Youn
 Anyang-si
 Gyeonggi-do 431-080 (KR)
- KIM, Bong Hoe
 Anyang-si
 Gyeonggi-do 431-080 (KR)
- KIM, Ki Jun
 Anyang-si
 Gyeonggi-do 431-080 (KR)
- KIM, Hak Seong
 Anyang-si
 Gyeonggi-do 431-080 (KR)
- ROH, Dong Wook
 Anyang-si
 Gyeonggi-do 431-080 (KR)

Representative: Katérle, Axel et al Wuesthoff & Wuesthoff Patent- und Rechtsanwälte Schweizerstraße 2 81541 München (DE)

References cited:
EP-A2- 1 175 022
WO-A2-01/76110
WO-A2-2004/049613

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[Technical Field]

[0001] The present invention relates to a Multiple Input Multiple Output (MIMO) system, and more particularly to a method for transmitting a channel quality information (CQI) in a Multiple Input Multiple Output (MIMO) system.

[Background Art]

[0002] A Multiple Input Multiple Output (MIMO) technology will hereinafter be described in detail. In brief, the MIMO technology is an abbreviation of the Multi-Input Multi-Output technology. The MIMO technology uses multiple transmission (Tx) antennas and multiple reception (Rx) antennas to improve the efficiency of Tx/Rx data, whereas a conventional art has generally used a single transmission (Tx) antenna and a single reception (Rx) antenna. In other words, the MIMO technology allows a transmitting end or receiving end of a wireless communication system to use multiple antennas (hereinafter referred to as a multi-antenna), so that the capacity or performance can be improved. For the convenience of description, the term "MIMO" can also be considered to be a multi-antenna technology.

[0003] In more detail, the MIMO technology is not dependent on a single antenna path to receive a single total message, collects a plurality of data pieces received via several antennas, and completes total data. As a result, the MIMO technology can increase a data transfer rate within a specific coverage, or can increase system coverage at a specific transfer rate. In other words, the MIMO technology is the next-generation mobile communication technology capable of being applied to mobile communication terminals or relays.

[0004] The MIMO technology from among a variety of technologies can greatly increase an amount of communication capacity and Tx/Rx performances without allocating additional frequencies or increasing an additional power. Due to these technical advantages, most companies or developers are intensively paying attention to this MIMO technology. The next-generation mobile communication technology requires a data transfer rate higher than that of a conventional mobile communication technology, so that it is expected that the effective MIMO technology is requisite for the next-generation mobile communication technology. Under this situation, the MIMO communication technology is the next-generation mobile communication technology capable of being applied to mobile communication terminals or relays, and can extend the range of a data communication range, so that it can overcome the limited amount of transfer data of other mobile communication systems due to a variety of limited situations.

[0005] The above-mentioned MIMO technology can be classified into a spatial diversity scheme and a spatial multiplexing scheme. The spatial diversity scheme increases transmission reliability using symbols passing various channel paths. The spatial multiplexing scheme simultaneously transmits a plurality of data symbols via a plurality of Tx antennas, so that it increases a transfer rate of data. Detailed descriptions of the spatial diversity scheme, the spatial multiplexing scheme, and the combination thereof will hereinafter be described in detail.

[0006] Firstly, the spatial diversity scheme will hereinafter be described. The spatial diversity scheme is classified into a space-time block code scheme and a space-time Trellis code scheme which simultaneously uses a diversity gain and a coding gain. Generally, a bit error ratio (BER) improvement performance and a code-generation degree of freedom of the space-time Trellis code scheme are superior to those of the space-time block code scheme, whereas the calculation complexity of the space-time block code scheme is superior to that of the space-time Trellis code scheme. The above-mentioned spatial diversity gain corresponds to the product or multiplication of the number (NT) of Tx antennas and the number (NR) of Rx antennas, as denoted by NT x NR.

[0007] Secondly, the spatial multiplexing scheme will hereinafter be described. The spatial multiplexing scheme is adapted to transmit different data streams via individual Tx antennas. In this case, a receiver may unavoidably generate mutual interference between data pieces simultaneously transmitted from a transmitter. The receiver removes this mutual interference from the received data using a proper signal processing technique, so that it can receive the resultant data having no interference. In order to remove noise or interference from the received data, a maximum likelihood receiver, a ZF receiver, a MMSE receiver, a D-BLAST, or a V-BLAST may be used. Specifically, if a transmitting end can recognize channel information, a Singular Value Decomposition (SVD) scheme may be used to remove the noise or interference.

[0008] Thirdly, the combination of the spatial diversity scheme and the spatial multiplexing scheme will hereinafter be described. Provided that only a spatial diversity gain is acquired, the performance-improvement gain is gradually saturated in proportion to an increasing diversity order. Otherwise, provided that only the spatial multiplexing gain is acquired, a transmission reliability of a RF channel is gradually deteriorated. As a result, a variety of schemes capable of acquiring all the above-mentioned two gains simultaneously while solving the above-mentioned problems have been intensively researched by many companies or developers, for example, a double-STTD scheme and a space-time BICM (STBICM) scheme.

[0009] US 2006/023745 A1 discloses a method and an apparatus for optimizing the system capacity of an Orthogonal Frequency Division Multiplexing (OFDM) system that uses with Multiple-Input Multiple-Output (MIMO) antennas. In a
receiver, a target quality of service (QoS) metric and reference data rate are set. The target QoS metric may be set to a predetermined value and/or may be adjusted dynamically with respect to packet error rate (PER) by a slow outer-loop control processor. The QoS of received signals are measured and compared to the target QoS. Depending on the comparison, the receiver generates a channel quality indicator (CQI) which is sent back to the transmitting transmitter. The CQI is a one or two bit indicator which indicates to the transmitter to disable, adjust or maintain data transmission rates of particular sub-carriers, groups of sub-carriers per transmit antenna, or groups of sub-carriers across all transmit antennas. At the transmitter, the transmitted data rate is disabled, adjusted or maintained. At the receiver, the target QoS metric and reference data rate are adjusted accordingly. This process is repeated for each data frame of each sub-carrier group.

[0010] In "Novel Multi-User MIMO Scheme Based on Successive Interference Cancellation" CONSUMER ELECTRONICS, 2007. ISCE2007. IEEE INTERNATIONAL SYMPOSIUM ON, IEEE, PI, 1 June 2007 (2007-06-01), Heesoo Lee et. A1. discuss the multi-user MIMO schemes named Successive Interference Cancellation (SIC) based Per User and Stream Rate Control (S-PUSRC), and modified S-PUSRC, which can make full use of SIC gain to increase transmission rate and also multi-user diversity gain. The multi-user MIMO schemes are characterized by SIC based multiple stream reception and the feedback of decoding order for efficient multi-user scheduling. In the S-PUSRC, the receiver is assumed to perform SIC based on decoding symbols, and the feedback information consists of the decoding order and the post-detection SINRs for each data stream estimated under the assumption of perfect cancellation of preceding streams in SIC. The user equipment (UE) is required to feedback the decoding order in addition to SINRs for a pre-determined data streams. The base station (BS) decides on which data stream is to be allocated to which user by taking into account the feedback information collected from all active users.

[0011] US 2007/0011550 A1 discloses systems and methodologies that facilitate reducing rank (e.g. of a user device) as a number of transmissions there from increases. Such rank step-down can improve interference resistance and facilitate maintaining code rate despite transmission propagation. Additionally, rank step-down information can be encoded along with CQI information to generate a 5-bit CQI signal that can facilitate updating a user's rank upon each CQI transmission (e.g. approximately every 5 ms). The rank step-down sequence is a function of the packet format of the transmission signal (e.g., the terminal automatically knows what rank to use in which transmission) in which case an explicit signal is not necessary, and alternatively the base station may provide a rank indicator signal for each transmission to inform the terminal of the rank to be used when decoding the transmission signal. The described systems and/or methods can be employed in a single code word (SCW) wireless communication environment with a hybrid automatic request (HARQ) protocol.

[0012] The above documents do not disclose how to efficiently change the number of codewords on a whole and/or a part of frequency band without increasing transmission overhead. It is necessary that efficient methods are provided for increasing system performance.

[Disclosure]

[Technical Problem]

[0013] Accordingly, the present invention is directed to a method for transmitting a channel quality information (CQI) in a Multiple Input Multiple Output (MIMO) system that substantially obviates one or more problems due to limitations and disadvantages of the related art and to a method according to claim 2.

[0014] An object of the present invention is to provide a method for transmitting CQI in a Multiple Input Multiple Output (MIMO) system.

[0015] Another object of the present invention is to provide a method for indicating some codewords in transmission restriction status using CQI, on the condition that several codewords of a MIMO system have been transmitted from a transmitter to a receiver and the CQI measured by the receiver in association with each codeword has been transmitted from the receiver to the transmitter in response to the transmitted several codewords. In other words, the receiver informs that CQI of some codewords cannot be measured.

[0016] In brief, the present invention aims to allow the receiver to indicate that a channel quality of a corresponding codeword has an unavailable reception status.

[Technical Solution]

[0017] To achieve these objects and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, a method for allowing a user equipment to feedback a CQI value to a transmitter in a Multiple Input Multiple Output (MIMO) system is provided according to claim 1.

[0018] Preferably, the first and second CQI values are indicative of CQI of some parts of a total band.

[0019] Preferably, the first and second CQI values are transmitted via at least one of quantized channel status infor-
mation, a SINR (Signal to Interference plus Noise Ratio), and a MCS (Modulation and Coding Selection) level index.

Preferably, the specific information indicating the transmission disallowance information is any one of a SINR (Signal to Interference plus Noise Ratio) of \(-\infty\)dB, a coding rate of 0', a modulation order of '0', and a predetermined MCS level index.

Preferably, the predetermined MCS level index is predetermined to indicate either of the coding rate of '0' or the modulation order of '0'.

Preferably, the second CQI value includes a relative channel information value associated with the first CQI value.

Preferably, provided that the second CQI value is reconstructed by the first CQI value and its associated relative value, if the reconstructed value is a non-existing value or is in a transmission restriction status based on the first CQI value, the second CQI value indicates the transmission restriction status.

Preferably, it is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.

[Advantageous Effects]

The MIMO system according to the present invention can transmit a CQI.

According to the following embodiments of the present invention, if the MIMO system transmits several code-words and the CQI of each codeword, it can indicate that some codewords is in transmission restriction status using the CQI.

[Description of Drawings]

The accompanying drawings, which are included to provide a further understanding of the invention, illustrate embodiments of the invention and together with the description serve to explain the principle of the invention.

In the drawings:

- FIG 1 is a block diagram illustrating a transmission structure of a MIMO system including the (2x2) - antenna structure;
- FIG 2 is a conceptual diagram illustrating a method for transmitting CQI from a UE to a Node-B;
- FIG 3 shows the CQI result measured by a receiving end according;
- FIG 4 is a flow chart illustrating a method for transmitting the CQI according to the present invention; and
- FIG 5 is a conceptual diagram illustrating a Multiple Input Multiple Output (MIMO) system according to the present invention.

[Mode for Invention]

Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.

Prior to describing the present invention, it should be noted that most terms disclosed in the present invention correspond to general terms well known in the art, but some terms have been selected by the applicant as necessary and will hereinafter be disclosed in the following description of the present invention. Therefore, it is preferable that the terms defined by the applicant be understood on the basis of their meanings in the present invention.

For the convenience of description and better understanding of the present invention, general structures and devices well known in the art will be omitted or be denoted by a block diagram or a flow chart. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.

In the meantime, if several transmission information units are overlapped and then received, the present invention can expect performance improvement using an interference-cancellation receiver. A brief description of the interference-cancellation structure will be as follows.

According to the interference-cancellation structure, after the first information is demodulated/decoded from a total reception signal in which some information is overlapped, information associated with the first information is removed from the total reception signal. A second signal is demodulated/decoded by the resultant signal having no first information removed from the reception signal. A third signal is demodulated/decoded by the resultant signal having no first- and second- information removed from the first reception signal. A fourth signal or other signal after the fourth signal repeats the above-mentioned processes, so that the fourth or other signal is demodulated/decoded. In order to use the above-mentioned interference cancellation method, the demodulated/decoded signal removed from the reception signal must have no error. If any error occurs in the demodulated/decoded signal, error propagation occurs so that a negative
transmission. In order to effectively allocate resources, the user (i.e., the UE) transmits CQI of a total frequency band to the Node-B to perform the link adaptation process. The UE may be able to perform a link adaptation process, such that it can use a maximum amount of channel capacity status. The UE transmits a channel status measurement result as the CQI back to the Node-B. Specifically, the Node-B may be able to perform a link adaptation process, such that it can use a maximum amount of channel capacity.

Referring to FIG. 2, the UE receives a downlink signal from the Node-B, and measures a downlink channel detail. For example, CQI may be used as the above-mentioned control information transmitted from the MIMO system. In the meantime, in multi-carrier system, channel qualities are different per each of frequency bands for data transmission. In order to effectively allocate resources, the user (i.e., the UE) transmits CQI of a total frequency band.
Therefore, the total frequency band is divided into several units of frequency bands, and the CQI can be transmitted via each unit of frequency bands.

This CQI may be generated in various ways, for example, a method of simply quantizing a channel status without any change, a method of calculating a SINR (Signal to Interference + Noise Ratio), and a method of using MCS (Modulation and Coding Selection) level information to indicate the status of a channel in real condition.

A method of generating CQI based on MCS among various CQI generation methods will be explained herein-after. An example for this method is a CQI generation method for a High Speed Downlink Packet Access (HSDPA) transmission scheme under the 3GPP. In case that the CQI is generated on the basis of MCS, MCS consists of a modulation scheme, a coding scheme, and the resultant coding rate. Hence, it is preferable that at least one CQI be transmitted per each codeword which is considered as a modulation/coding unit, because the CQI is to be changed according to the change of the modulation scheme and the coding scheme.

In addition, different channel measurement scheme and/or different reporting scheme may be applied to CQI according to the type of a signal or a channel. For example, a communication channel between the Node-B and the UE can be generally classified into a data traffic channel and a control channel for controlling the data traffic channel. If the data traffic channel and the control channel have different frequency/spatial bands, the data traffic channel and the control channel may also have different CQI values.

Generally, for a control channel in the multiple-carrier system, frequency diversity and spatial diversity are used throughout the whole band. Therefore, the CQI for a control channel is measured and fed back for the whole band.

To the contrary, in case of the data traffic channel, scheduling and spatial multiplexing is performed for each frequency band. Therefore, it is preferable to divide the frequency band into sub-frequency bands and measure CQI value for each sub-frequency band, and then feed back the measured CQI.

Control information transmitted from the MIMO system may be exemplified by rank information. The rank information is a control information that indicates how many independent data streams can be transmitted at a current transmission time, when the MIMO system transmits several independent data streams. That is, rank is defined as the number of maximum data streams that can be transmitted at a certain transmission time. Rank may also be called as a spatial multiplexing rate. Rank might be decided in consideration of the combination of antennas of a transceiver. For example, the system including M number of Tx antennas and N number of Rx antennas has a maximum rank of min(M,N).

For another example, Tx control information of the MIMO system may be precoding matrix index information. A MIMO system using a precoding scheme can transmit control information associated with either a precoding vector or a precoding matrix which is the most appropriate for a current channel status.

The precoding vector or the precoding matrix can be directly delivered by transmitting control information including configuration information of a vector or a matrix. Otherwise, on the condition that a plurality of precoding matrix are predefined beforehand with a form of codebook, the precoding vector or the precoding matrix can be directly delivered by transmitting index information in corresponding codebook. In this case, the codebook may be predetermined and stored in the transmission/receiving ends for each rank, or may also be configured in the form capable of being applied to several ranks and be then stored in the transmission/receiving ends for each rank. In this way, in the case of using the above-mentioned codebook, only index information of the predetermined precoding vector or precoding matrix may be transmitted to the transmission/receiving ends, such that the transmission load of the control information can be reduced.

The control information including the CQI can be transmitted to an upper layer signal or a physical layer control signal. In the case of transmitting the control signal to the physical layer control signal, if a downlink shared channel (DL-SCH) exists for a UE, then the control signal can puncture data symbols or bits of the DL-SCH to be transmitted. Otherwise, the control signal can be transmitted via a dedicated control channel such as Physical Uplink Control Channel (PUCCH).

In order to reduce an uplink feedback load, time period and measurement frequency band may be differently configured for control information such as rank information and precoding information. For example, considering a feedback period from the receiver to the transmitter, rank is insensitive to a time variation whereas CQI is sensitive to a time variation, such that a transmission period of rank information may be set relatively longer than that of CQI.

A method of generating CQI based on MCS among various CQI generation methods will be explained herein-after. An example for this method is a CQI generation method for a High Speed Downlink Packet Access (HSDPA) transmission scheme under the 3GPP. In case that the CQI is generated on the basis of MCS, MCS consists of a modulation scheme, a coding scheme, and the resultant coding rate. Hence, it is preferable that at least one CQI be transmitted per each codeword which is considered as a modulation/coding unit, because the CQI is to be changed according to the change of the modulation scheme and the coding scheme.

In addition, different channel measurement scheme and/or different reporting scheme may be applied to CQI according to the type of a signal or a channel. For example, a communication channel between the Node-B and the UE can be generally classified into a data traffic channel and a control channel for controlling the data traffic channel. If the data traffic channel and the control channel have different frequency/spatial bands, the data traffic channel and the control channel may also have different CQI values.

Generally, for a control channel in the multiple-carrier system, frequency diversity and spatial diversity are used throughout the whole band. Therefore, the CQI for a control channel is measured and fed back for the whole band.

To the contrary, in case of the data traffic channel, scheduling and spatial multiplexing is performed for each frequency band. Therefore, it is preferable to divide the frequency band into sub-frequency bands and measure CQI value for each sub-frequency band, and then feed back the measured CQI.

Control information transmitted from the MIMO system may be exemplified by rank information. The rank information is a control information that indicates how many independent data streams can be transmitted at a current transmission time, when the MIMO system transmits several independent data streams. That is, rank is defined as the number of maximum data streams that can be transmitted at a certain transmission time. Rank may also be called as a spatial multiplexing rate. Rank might be decided in consideration of the combination of antennas of a transceiver. For example, the system including M number of Tx antennas and N number of Rx antennas has a maximum rank of min(M,N).

For another example, Tx control information of the MIMO system may be precoding matrix index information. A MIMO system using a precoding scheme can transmit control information associated with either a precoding vector or a precoding matrix which is the most appropriate for a current channel status.

The precoding vector or the precoding matrix can be directly delivered by transmitting control information including configuration information of a vector or a matrix. Otherwise, on the condition that a plurality of precoding matrix are predefined beforehand with a form of codebook, the precoding vector or the precoding matrix can be directly delivered by transmitting index information in corresponding codebook. In this case, the codebook may be predetermined and stored in the transmission/receiving ends for each rank, or may also be configured in the form capable of being applied to several ranks and be then stored in the transmission/receiving ends for each rank. In this way, in the case of using the above-mentioned codebook, only index information of the predetermined precoding vector or precoding matrix may be transmitted to the transmission/receiving ends, such that the transmission load of the control information can be reduced.
physical channels. As a result, the SINR received at a receiving end may be different to each other as shown in FIG 3. In addition, the SINR for the data traffic channel received at a receiving end may be different according to rank. For example, for rank 2, two codewords (i.e., a CW1 32 and CW2 33) is transmitted, such that SINR1 and SINR2 might decrease due to unexpected interference between CW1 32 and CW2 33. Furthermore, provided that at least one CQI is transmitted for each codeword, the CQI amount fed back may be changed according to whether the rank is 1 or 2, and signaling structure may have different format according to the rank.

[0061] In the meantime, rank information is generally measured with a unit of bandwidth greater than the total band or CQI sub-band. However, if channel status fluctuates drastically with frequency bands, the rank information measured as above may not be fit for some sub-bands. That is, provided that a rank value is set to 2 for a whole bandwidth, the channel status of CW1 32 or CW2 33 in a certain band 34 may be poor as shown in FIG. 3, and thus transmitting only one stream may be more effective than transmitting both of two streams.

[0062] In the meantime, when feeding back from a receiver to a transmitter, it is effective to transmit rank information with relatively longer period compared to the transmitting period for CQI, in consideration of a sensitivity to time variation. If the transmission period of the rank information is longer than that of the CQI, a pre-reported rank information may not match to the rank status at a CQI report time due to time variation. That is, even though it was reported that a rank was 2, a channel status may be changed to a poor channel status, such that it is more preferable that single-codeword transmission be better than two-codeword transmission.

[0063] Under the above-mentioned two situations, the Node-B may expect receiving a report on CQI with rank 2 from UE. In other words, the Node-B may expect that two CQI values (CW1 32 and CW2 33) will be reported, and then the Node-B may recognize control information according to the signaling format associated with the expectation. However, if there is a CQI sub-band 34 in which only one stream is to be transmitted, a method for indicating this situation is required.

[0064] In the present embodiment according to the present invention, CQI includes transmission restriction status information which is capable of indicating not to use a specified codeword for transmitting data. In addition, a request information indicating that only one of the two codewords (CW1 and CW2) can be transmitted may be transmitted as CQI.

[0065] Based on the control information according to the present embodiment, the transmitting end may select one of following schemes. First, only one codeword may be transmitted. Second, for a codeword requested to restrict for transmission with the transmission restrictions status information, the codeword may still be transmitted enduring a higher error rate than a target error rate. Third, for a codeword requested to restrict for transmission with the transmission restrictions status information, the codeword may be transmitted with increased transmission power.

[0066] FIG 4 is a flow chart illustrating a method for transmitting the CQI according to the present invention.

[0067] Referring to FIG. 4, it is provided that rank is set to 2, the whole of a data traffic channel is divided to a plurality of CQI sub-bands, and CQI reports are performed for each of the CQI sub-bands.

[0068] Referring to FIG 4, the Node-B transmits a pilot signal to each Tx antenna at step S40. The UE receives the pilot signal channel transmitted through according to link adaptation scheme etc., and measures Tx channel qualities of two codewords (i.e., CW1 and CW2) on the basis of the received pilot signal according to a channel estimation scheme. In this case, if channel quality of a specific CQI sub-band is equal to or less than a reference value, CQI including information that is capable of reporting transmission restriction status is transmitted at S42 so as to report the above situation to the base station.

[0069] In the case of transmitting the CQI, the UE is able to transmit CQI values of two codewords as described above. In this case, information indicating transmission restriction status might be included in the CQI for the total band or in the CQI for some sub-bands, and then the CQI for the total band or in the CQI for some sub-bands might be transmitted. For example, provided that a current rank is set to 2 to transmit two codewords (i.e., CW1 and CW2), transmit status information indicating that only one of the two codewords (CW1 and CW2) can be transmitted may be transmitted as CQI.

[0070] So as to selectively limit transmission of codewords capable of being transmitted at a current rank, transmission restriction status might be included in the CQI for all codewords, otherwise, the transmission restriction status might be included in the CQI for specific codewords in order to restrict a transmission for part of codewords.

[0071] In the case of including the transmission restriction status into the CQI for specific codewords, a low-performance codeword might be determined as a codeword capable of transmitting the above transmission restriction status information in consideration of a statistical channel status. In this case, if the low-performance codeword is changed to another codeword according to a channel-status variation, the codeword capable of transmitting the transmission restriction status information can also be adaptively changed.

[0072] Some codewords may also be determined as a dedicated codeword for use of transmitting transmission restriction status information. Although some codewords are dedicated in this way, interference that may be caused between above codewords can be prevented, therefore, the effects anticipated by the present invention can be obtained.

[0073] Transmission restriction status may be represented in various ways according to transmitted CQI value. For example, if a SINR value is transmitted as the CQI, the value of "SINR = 0 dB" may represent the transmission restriction status. If a code rate or a modulation scheme is transmitted as the CQI value, "code rate = 0" or "modulation order = 0" may represent the transmission restriction status. Specifically, if a MCS index is transmitted as the CQI, a specific index
may be transmitted to represent the transmission restriction status. According to the above-mentioned methods, the MIMO system matches the combination of bits transmitted as the CQI with a single logical status, and transmits the matched result.

[0074] The table 1 shows a MCS table including transmission restriction status in a case that MCS index is transmitted as CQI.

<table>
<thead>
<tr>
<th>CQI value (state) for CW</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Transmission restriction status(Tx off)</td>
</tr>
<tr>
<td>1</td>
<td>Modulation: QPSK, code rate: 1/3</td>
</tr>
<tr>
<td>2</td>
<td>Modulation: QPSK, code rate: 1/2</td>
</tr>
<tr>
<td>3</td>
<td>Modulation: QPSK, code rate: 2/3</td>
</tr>
<tr>
<td>4</td>
<td>Modulation: 16QAM, code rate: 1/3</td>
</tr>
<tr>
<td>5</td>
<td>Modulation: 16QAM, code rate: 2/3</td>
</tr>
<tr>
<td>6</td>
<td>Modulation: 64QPSK, code rate: 1/3</td>
</tr>
<tr>
<td>7</td>
<td>Modulation: 64QPSK, code rate: 2/3</td>
</tr>
</tbody>
</table>

[0075] As can be seen from Table 1, when the MCS index is transmitted as CQI, index information of the MCS table may be transmitted as a CQI value of each codeword. Table 1 exemplarily shows that the index 0 represents a transmission restriction status. Namely, if the receiving end (e.g., the UE) transmits the index of 0 as the CQI, this situation may be recognized as a transmission restriction status according to an agreement engaged between the transmission/receiving ends.

[0076] If the CQI is transmitted as the MCS index, the following table 2 shows another MCS table including a transmission restriction status according to this embodiment.

<table>
<thead>
<tr>
<th>CQI value (state) for CW</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Modulation: 0 and/or code rate: 0</td>
</tr>
<tr>
<td>1</td>
<td>Modulation: QPSK, code rate: 1/3</td>
</tr>
<tr>
<td>2</td>
<td>Modulation: QPSK, code rate: 1/2</td>
</tr>
<tr>
<td>3</td>
<td>Modulation: QPSK, code rate: 2/3</td>
</tr>
<tr>
<td>4</td>
<td>Modulation: 16QAM, code rate: 1/3</td>
</tr>
<tr>
<td>5</td>
<td>Modulation: 16QAM, code rate: 2/3</td>
</tr>
<tr>
<td>6</td>
<td>Modulation: 64QPSK, code rate: 1/3</td>
</tr>
<tr>
<td>7</td>
<td>Modulation: 64QPSK, code rate: 2/3</td>
</tr>
</tbody>
</table>

[0077] The above-mentioned embodiment of Table 2 is similar to that of Table 1. However, in this case, a modulation order 0 and/or a coding rate 0 represents a transmission restriction status.

[0078] Table 3 is another example of MCS table including a transmission restriction status according to this embodiment when a MCS index is transmitted as CQI.

<table>
<thead>
<tr>
<th>CQI value (state) for CW1</th>
<th>Function</th>
<th>CQI value (state) for CW2</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Modulation: QPSK, code rate: 1/3</td>
<td>0</td>
<td>Tx off</td>
</tr>
<tr>
<td>1</td>
<td>Modulation: QPSK, code rate: 1/2</td>
<td>1</td>
<td>Modulation: QPSK, code rate: 1/3</td>
</tr>
</tbody>
</table>
In Table 3, it is configured so that the transmission restriction status information can be transmitted by only CQI values of some codewords. According to the embodiments of Tables 1 and 2, the Table 1 and Table 2 might be applied identically to all codewords, such that the transmission restriction status information can be transmitted to all codewords. However, according to the embodiment of Table 3, in the case of transmitting several codewords (e.g., 2 codewords), different tables are applied to two codewords. As a result, the transmission restriction status can be transmitted only for part of codewords, e.g. only for CW2.

Although index 0 represents the transmission restriction status in Table 1 to Table 3, it should be understood that other indexes may also be used to indicate the transmission restriction status. In addition, although MCS index is transmitted as CQI in Table 1 to Table 3, it should be understood that other information may also be used as CQI.

In the meantime, when CQI is transmitted, more specifically, when CQI of several codewords are transmitted, the MIMO system selects some of the several codewords, a specific CQI among all CQIs may be selected as a reference. In this case, for other CQIs except the specific CQI, a difference value \(\delta \) to the reference value might be transmitted.

For example, if the Node-B transmits two codewords, CQI of CW1 may be used as a reference. In this case, for the CW2, a relative value to the reference value may be transmitted. Provided that a MCS index is transmitted as a CQI and the MCS table of Table 1 is used, when measured CQI\(_{CW1}=6\) for CW1 and measured CQI\(_{CW2}=5\) for CW2, a value of '6' which represents a index value according to the CQI\(_{CW1}=6\) may be transmitted for CW1, and a value of '1' which represents a index value difference between the CW1's CQI index and the CW2's CQI index, i.e., \(-\delta\) may be transmitted for CW2.

According to the above-mentioned CQI transmission scheme, if several codewords have similar CQI values and there is a little difference between the CQI values, transmission of differential CQI can reduce many more bits than in transmission of the actual value on the basis of the reference value, resulting in the reduction of Tx overhead of uplink control information.

For example, in Table 1, 3 bits are required to transmit the CQI index. Therefore, if there are two codewords, 6 bits are consumed. However, provided that the range of the differential value is established and transmitted in four steps, for a codeword for transmitting the CQI index with the differential, only 2 bits are required. Therefore, a total of 4 bits are consumed to transmit two CQI bits, such that 1 bit can be reduced.

The transmission method above using the CQI-differential value may be applied into the method for transmitting the CQI including transmission restriction status information. For example, as previously presumed, provided that the range of the differential value has 4 steps, differential values of the four steps are set to \(-\delta\) and one of the differential values is transmitted as a CQI signal for CW2, the CQI-index of CW2 may be determined one of 0 indicating a transmission restriction status or a non-existing value which is not defined in the original MCS table. For example, the CQI index of CW2 may indicate 0 indicating a transmission restriction status of Table 1, or may indicate an index value of -1.

<table>
<thead>
<tr>
<th>CQI value (state) for CW1</th>
<th>Function</th>
<th>CQI value (state) for CW2</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Modulation: QPSK, code rate: 2/3</td>
<td>2</td>
<td>Modulation: QPSK, code rate: 1/2</td>
</tr>
<tr>
<td>3</td>
<td>Modulation: 16QAM, code rate: 1/3</td>
<td>3</td>
<td>Modulation: QPSK, code rate: 2/3</td>
</tr>
<tr>
<td>4</td>
<td>Modulation: 16QAM, code rate: 1/2</td>
<td>4</td>
<td>Modulation: 16QAM, code rate: 1/3</td>
</tr>
<tr>
<td>5</td>
<td>Modulation: 16QAM, code rate: 2/3</td>
<td>5</td>
<td>Modulation: 16QAM, code rate: 2/3</td>
</tr>
<tr>
<td>6</td>
<td>Modulation: 64QPSK, code rate: 1/3</td>
<td>6</td>
<td>Modulation: 64QPSK, code rate: 1/3</td>
</tr>
<tr>
<td>7</td>
<td>Modulation: 64QPSK, code rate: 2/3</td>
<td>7</td>
<td>Modulation: 64QPSK, code rate: 2/3</td>
</tr>
</tbody>
</table>
which is not defined in the index range. If the CQI of CW2 backtracked using this scheme indicates a index value defined as transmission restriction status or a non-existing value which is not defined in the original MCS table, a Node-B may interpret it as transmission restriction status occurred. That means, even when using the scheme of using the CQI-differential value, transmission restriction status can be delivered to the Node-B.

[0089] The CQI value for transmitting the CW2 codeword is not limited to any one of {-1, 0, 1, 2}, but may be defined by various values {-2, -1, 0, 1} and {0, 1, 2, 3}. The range of the differential value may be reduced by 1 bit, such that the CQI value may be transmitted with {0, 1}, or {-1, 0}. The transmission value or range of the differential value, i.e., the number of bits of the differential value, can be adaptively changed according to channel status.

[0090] FIG 5 is a conceptual diagram illustrating a Multiple Input Multiple Output (MIMO) system according to the present invention.

[0091] Referring to FIG. 5, a transmission (Tx) signal 50 is coded, modulated, weighted, precoded, and mapped by the signal processor 51 of the transmitting end, and than the resultant Tx signal is transmitted via several antennas. In this case, the Tx signal is composed of several codewords according to a predetermined rank, such that it can be differently processed according to the individual codewords. A reception (Rx) signal is processed at a signal processor 52 by inversely processing the process of the transmitting end.

[0092] A downlink CQI is measured with the received signal and then transmitted to the transmitting end. In this case, the channel quality may be composed of various-formatted CQI values, and be then transmitted to the transmitting end. If several codewords are transmitted according to this embodiment of the present invention, CQI of each codeword may be transmitted with containing transmission restriction status if necessary. A detailed description thereof is similar to those explained in above.

[0093] The transmitting end receives the CQI, processes the Tx signal according to the received CQI, and transmits the processed result to the receiving end, such that it can adapt to varying channel condition. In this case, if the transmitting end receives specific information from the receiving end indicating that some codewords are in transmission restriction status, it may transmit only some transmittable codewords irrespective of the receiver’s feedback rank. Also, the Node-B may change a current rank to another rank, and may transmit signals via the changed rank.

[0094] The above-mentioned CQI may be referred to as channel information indicator or channel status information, etc. The above-mentioned CQI is not limited to the above-mentioned terms, but it can also be called other terms as necessary.

[0095] The following embodiments of the present invention will be disclosed on the basis of a data communication relationship between the Node-B and the user equipment (UE).

[0096] In this case, the Node-B is used as a terminal node of a network via which the Node-B can directly communicate with the user equipment (UE). Specific operations to be conducted by the user equipment (UE) in the present invention may also be conducted by an upper node of the Node-B as necessary. In other words, it will be obvious to those skilled in the art that various operations for enabling the Node-B to communicate with the user equipment (UE) in a network composed of several network nodes including the Node-B will be conducted by the Node-B or other network nodes other than the Node-B. The term "Node-B" may be replaced with a fixed station, base station (BS), eNode-B (eNB), or an access point as necessary. The term "user equipment (UE)" may be replaced with a mobile station (MS) or a mobile subscriber station (MSS) as necessary.

[0097] It should be noted that most terminology disclosed in the present invention is defined in consideration of functions of the present invention, and can be differently determined according to intention of those skilled in the art or usual practices.

[0098] Therefore, it is preferable that the above-mentioned terminology be understood on the basis of all contents disclosed in the present invention.

Claims

1. A method for user equipment’s (21) feeding back channel quality information CQI to a base station in a multiple input multiple output MIMO system, the method comprising:

 receiving pilot signal from the base station (20), the pilot signal being transmitted per transmission antenna;

 and the method characterized by:

 measuring a first channel quality for a first codeword on a frequency band and a second channel quality for a second codeword on the frequency band on the basis of the pilot signal, where each of the first codeword and the second codeword is a single transmission information unit coded by a cyclic redundancy check CRC code and a forward error correction code; and

 transmitting a first CQI indicating the first channel quality of the first codeword and a second CQI indicating
the second channel quality of the second codeword to the base station (20),
wherein at least one of the first CQI and the second CQI includes information indicating a transmission
restriction status of a corresponding codeword when channel quality of the frequency band is equal to or
less than a reference value.

2. A method for transmitting data to a user equipment (21) based on channel quality information CQI at a base station
(20) in a multiple input multiple output MIMO system, the method comprising:

 transmitting a first codeword and a second codeword, each of which is a single transmission information unit
coded by a cyclic redundancy check CRC code and a forward error correction code, to the user equipment (21),
 and the method characterized by:

 receiving a first CQI and a second CQI from the user equipment (21), the first CQI indicating a first channel
goodness for the first codeword on a frequency band and the second CQI indicating a second channel quality
for the second codeword on the frequency band; and

 when one of the first CQI and the second CQI includes information indicating a transmission restriction
status of a corresponding codeword, transmitting the other codeword to the user equipment (21) without
transmitting the corresponding codeword.

3. The method according to claim 1 or 2, wherein the information indicating the transmission restriction status is one
of a signal to Interference plus noise ratio SINR of \(-\infty\) dB; a coding rate of '0', a modulation order of '0', and a
predetermined modulation and coding selection MCS level index.

4. The method according to claim 3, wherein the predetermined MCS level index is predetermined to indicate either
of the coding rate of '0' or the modulation order of '0'.

5. The method according to any one of claims 1 to 4, wherein the second CQI indicates the second channel goodness
by using a relative value which is relatively determined compared to a value of the first CQI.

6. The method according to claim 5, wherein:

 provided that the second CQI is reconstructed by the value of the first CQI and the relative value,
 if a value of the reconstructed second CQI is indicative of a non-existing value or the transmission restriction
status based on the first CQI, the second CQI indicates the transmission restriction status.

Patentansprüche

1. Verfahren für das Feedback von Kanalqualitätsinformation CQI (Channel Quality Information) von einer Benutzer-
einrichtung (21) zu einer Basisstation in einem MIMO-System mit mehreren Eingängen und mehreren Ausgängen,
wobei das Verfahren umfasst:

 Empfangen eines Pilotsignals von der Basisstation (20), wobei das Pilotsignal über eine Übertragungsantenne
übertragen wird; und das Verfahren gekennzeichnet ist durch:

 Messen einer ersten Kanalqualität für ein erstes Codewort auf einem Frequenzband und einer zweiten
Kanalqualität für ein zweites Codewort auf dem Frequenzband auf der Basis des Pilotsignals, wobei das
erste Codewort und das zweite Codewort jeweils eine einzelne Übertragungs-Informationseinheit ist, die
durch einen zyklischen Redundanzprüfc ode CRC und einen Vorwärtsfehlerkorrektur-Code codiert ist; und
Übertragen einer ersten CQI, welche die erste Kanalqualität des ersten Codeworts angibt, und einer zweiten
CQI, welche die zweite Kanalqualität des zweiten Codeworts angibt, zu der Basisstation (20),
wobei die erste CQI und/oder die zweite CQI Information enthält, die einen Übertragungs-Einschränkungs-
status eines entsprechenden Codeworts angibt, wenn eine Kanalqualität des Frequenzbands gleich oder
geringer ist als ein Bezugswert.

2. Verfahren zum Übertragen von Daten an eine Benutzereinrichtung (21) basierend auf Kanalqualitätsinformation
CQI an einer Basisstation (20) in einem MIMO-System mit mehreren Eingängen und mehreren Ausgängen, wobei
das Verfahren umfasst:
Übertragen eines ersten Codeworts und eines zweiten Codeworts, von denen jedes eine einzelne Übertragungs-
Informationseinheit ist, die durch einen zyklischen Redundanzprüfcode CRC und einen Vorwärtsfehlerkorrektur-
Code codiert ist, an die Benutzereinrichtung (21), und das Verfahren gekennzeichnet ist durch:

Empfangen einer ersten CQI und einer zweiten CQI von der Benutzereinrichtung (21), wobei die erste CQI
eine erste Kanalqualität für das erste Codewort auf einem Frequenzband angibt, und die zweite CQI eine
zweite Kanalqualität für das zweite Codewort auf dem Frequenzband angibt; und
wenn die erste CQI oder die zweite CQI Information enthält, die einen Übertragungs-Einschränkungsstatus
eines entsprechenden Codeworts angibt, Übertragen des anderen Codeworts an die Benutzereinrichtung
(21), ohne das entsprechende Codewort zu übertragen.

3. Verfahren nach Anspruch 1 oder 2, wobei die Information, die den Übertragungs-Einschränkungsstatus angibt,
entweder ein Signal-zu-Interferenz-plus-Rauschverhältnis SINR von ’∞ dB’, oder eine Codierungsrate von ’0’, oder
eine Modulationsordnung von ’0’, oder ein vorbestimmter Modulations- und Codierungsanswahl-MCS-Ebenen-
Index ist.

4. Verfahren nach Anspruch 3, wobei der vorbestimmte MCS-Ebenen-Index vorbestimmt wird, um entweder die Co-
dierungsrate von ’0’ oder die Modulationsordnung von ’0’ anzugeben.

5. Verfahren nach einem der Ansprüche 1 bis 4, wobei die zweite CQI die zweite Kanalqualität mittels eines Relativwerts
angibt, der im Vergleich zu einem Wert der ersten CQI relativ bestimmt wird.

6. Verfahren nach Anspruch 5, wobei:

vorausgesetzt, dass die zweite CQI durch den Wert der ersten CQI und den Relativwert rekonstruiert ist,
falls ein Wert der rekonstruierten zweiten CQI einen nicht existierenden Wert oder den auf der ersten CQI
basierenden Übertragungs-Einschränkungsstatus angibt, die zweite CQI den Übertragungs-Einschränkungs-
status angibt.

Revendications

1. Procédé pour un renvoi par un équipement d’utilisateur (21) d’une information de qualité de canal CQI à une station
de base dans un système à entrées multiples et sorties multiples MIMO, le procédé comprenant :

la réception d’un signal pilote de la station de base (20), le signal pilote étant transmis par une antenne de
transmission ; et le procédé caractérisé par :

la mesure d’une qualité de premier canal pour un premier mot de code sur une bande de fréquences et
d’une qualité de deuxième canal pour un deuxième mot de code sur la bande de fréquences sur la base
du signal pilote, où chacun du premier mot de code et du deuxième mot de code est une unité d’information
de transmission unique codée par un code de contrôle de redondance cyclique CRC et un code de correction
d’erreurs sans retour ; et
la transmission d’une première CQI indiquant la qualité de premier canal du premier mot de code et d’une
deuxième CQI indiquant la qualité de deuxième canal du deuxième mot de code à la station de base (20),
dans lequel au moins une de la première CQI et de la deuxième CQI inclut une information indiquant un
statut de restriction de transmission d’un mot de code correspondant lorsqu’une qualité de canal de la
bande de fréquences est égale ou inférieure à une valeur de référence.

2. Procédé de transmission de données à un équipement d’utilisateur (21) sur la base d’une information de qualité de
canal CQI au niveau d’une station de base (20) dans un système à entrées multiples et sorties multiples MIMO, le
procédé comprenant :

la transmission d’un premier mot de code et d’un deuxième mot de code, chacun desquels est une unité
d’information de transmission unique codée par un code de contrôle de redondance cyclique CRC et un code
de correction d’erreurs sans retour, à l’équipement d’utilisateur (21), et le procédé caractérisé par :

la réception d’une première CQI et d’une deuxième CQI provenant de l’équipement d’utilisateur (21), la
première CQI indiquant une qualité de premier canal pour le premier mot de code sur une bande de fréquences et la deuxième CQI indiquant une qualité de deuxième canal pour le deuxième mot de code sur la bande de fréquences ; et
lorsque l'une de la première CQI et de la deuxième CQI inclut une information indiquant un statut de restriction de transmission d'un mot de code correspondant, la transmission de l'autre mot de code à l'équipement d'utilisateur (21) sans transmettre le mot de code correspondant.

3. Procédé selon la revendication 1 ou 2, dans lequel l'information indiquant le statut de restriction de transmission est l'un d'un rapport de signal sur interférence plus bruit SINR de « ∞ dB », d'un taux de codage de « 0 », d'un ordre de modulation de « 0 », et d'un indice de niveau MCS prédéterminé de sélection de modulation et de codage.

4. Procédé selon la revendication 3, dans lequel l'indice de niveau MCS prédéterminé est prédéterminé pour indiquer l'un ou l'autre du taux de codage de « 0 » ou de l'ordre de modulation de « 0 ».

5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel la deuxième CQI indique la qualité de deuxième canal en utilisant une valeur relative qui est déterminée relativement en comparaison à une valeur de la première CQI.

6. Procédé selon la revendication 5, dans lequel :

- en considérant que la deuxième CQI est reconstruite par la valeur de la première CQI et la valeur relative, si une valeur de la deuxième CQI reconstruite est indicatrice d'une valeur non existante ou du statut de restriction de transmission sur la base de la première CQI, la deuxième CQI indique le statut de restriction de transmission.
FIG. 2

Node-B --20

CQI reporting

Downlink Measurement

UE --21
FIG. 4

Node-B

S40

Pilot for each antenna

UE

CQI1, CQI2 (Including transmission restriction)

S41

Measure CQI

S42

FIG. 5

50

Transmitting signal

51

Tx

Coding
Mudulation
Weighting
Mapping

52

Rx

Weighting
Demapping
Demudulation
Decoding

53

Receiving signal

\[\text{\textbackslash newpage} \]
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 2006023745 A1 [0009]

Non-patent literature cited in the description