DEVICE FOR DETECTING AND CLASSIFYING RESIDUAL OXIDE IN METAL SHEET PRODUCTION LINES

The invention is especially designed for totally automatic detection of residual oxide stains (residual scale) and classification thereof in sheet metal production lines without need to stop the line; the invention consists in a framework or box (4), equipped with means for movement (8) on the surface of the metal sheet (2) to be examined, and containing a high-resolution CCD camera (1), a high-power lighting unit (6-7) and a diffuse light generator; the video signal of the camera is sent to a PC (3) equipped with software for processing the images obtained, so that the residual oxide stains may be detected and classified. The movement of the said box or framework (4) is controlled by a programmable automaton (14), also connected to said PC (3).
OBJECT OF THE INVENTION

[0001] The present invention relates to an optical device specially designed for the fully automated detection of residual oxide stains (residual scale) as well as for the classification thereof in metal sheet production lines.

[0002] The object of the invention is to provide a device that makes it possible to monitor the quality of this kind of surfaces by using an automatic optical system that moves over the material in order to detect and classify said oxide stains, which are difficult to see at first glance in the production line.

[0003] Therefore, the invention falls within the sphere of the iron and steel industry and the manufacture of steels and metal materials with rough and highly reflective surfaces, and can be installed at the end of the surface stripping or cleaning process in order to carry out said surface inspection with no need to stop the line.

DESCRIPTION OF THE INVENTION

[0004] In the domain of practical application of the invention, the surface quality control of metal sheets for the detection of small oxide stains on said surfaces, the operator normally uses a magnifying glass to thoroughly inspect the surface of each sheet, momentarily stopping the production line with the obvious ensuing problems and drawbacks.

[0005] This task, on being carried out by an operator, may not be as efficient as it should, as the highly reflective nature and roughness of the surface complicates inspection thereof due to the fact that the shine can hide the residual oxide or that the shade of the superficial granulation itself can be mistaken for oxide.

[0006] Due to the time required to carry out this process, the quality of said surfaces is verified in a random manner, with scarce sampling, due to the fact that, as mentioned earlier, the production line must be stopped during inspection.

[0007] With the object of obviating this problem, Patent US 6.259.109 is known to use a camera to acquire and process a web moving along a production line. However, this system has been envisaged to fully acquire the band to be inspected using a linear camera, i.e. it does not move sideways but rather is synchronised using an encoder that indicates line speed, in such a manner that shooting speed is synchronised therewith.

[0008] Additionally, the lighting system must be constant.

[0009] Although this device perfectly fulfils the function for which it has been envisaged, it has a series of considerable limitations when the volume of sheets to be inspected is high, as in the case of this invention, wherein the image processing and storage capacity required to install such a system would be economically unfeasible. In this regard, around 44 GB of storage space per day would be required and storage during one month would require 1.2 TB.

[0010] Devices with similar characteristics are disclosed in patent JP 63106265, which differs substantially from the present invention in that it is intended to store an image, for representation on a screen, wherein said defect has previously been detected, i.e. its purpose is not the detection of defects through image capturing, but rather that of enabling analysis thereof once captured.

[0011] The applicant is unaware of the existence of any system that allows an automatic statistical inspection to be carried out on the surface of a metal sheet, for the purpose of detecting and classifying the existence of residual oxide on highly reflective metal surfaces, and which can be installed in a production line without stopping it.

BACKGROUND OF THE INVENTION

[0012] The Device for the detection and classification of residual oxide in metal sheet production lines proposed by the invention satisfactorily solves the previously described problems in the different mentioned aspects, allowing the automatic detection of oxide stains around 50 μm in size, by means of statistical sampling.

[0013] To this end, the invention consists of an optical system that incorporates at least one high-resolution camera, aided by strobe light sources and a light-diffusing screen, all of which are hermetically assembled in a box attached to a support carriage movable over the surface whereon the metal sheets pass in the production line, in addition to vertically, wherein the movement of said carriage is monitored by a programmable automaton (PLC).

[0014] Therefore, the programmable automaton is in charge of moving the camera over a zone of the sheet surface to be examined which, given the nature of the oxide stains to be examined, which appear distributed with certain intensity, examination of 100% of the sheet is not required, a statistical sampling being sufficient, in such a manner that, on the basis of sheet movement speed and the synchronised sideways movement of the slide bar, a zigzag sampling of the sheet surface is achieved, which is sufficient for determining the number of stains per unit area of surface.

[0015] The camera video signal is transferred to a PC via an image acquisition card, in such a manner that every image obtained is processed and the residual scale found is detected, quantified and classified in said PC, using specific programming software. Consequently, acquisition or line speed is not monitored by the video camera, but rather by the processing software, once it has finished processing the previous image.

[0016] Likewise, lighting intensity is not constant over time but rather is generated by strobe lights, as mentioned earlier, which are triggered by the end of processing of the preceding image.

[0017] Therefore, the system alerts of the inadequacy
of the surface stripping or cleaning system, on the basis of the level of residual scale detected.

DESCRIPTION OF THE DRAWINGS

[0018] For the purpose of complementing this description and helping to better understand the characteristics of the invention, in accordance with a preferred example of practical embodiment thereof, a set of drawings has been included as an integral part of this description, wherein the following figures have been represented in an illustrative but non-limiting manner:

Figure 1.- Shows a perspective view of a device for the detection and classification of residual oxide in metal sheet production lines, manufactured in accordance with the object of the invention, where it appears duly installed in the production line.

Figure 2.- Shows a profile view of the device in figure 1.

Figure 3 - Shows a perspective view of the box, wherein the optical and lighting elements that participate in the device of the invention are included.

Figure 4.- Shows a profile view of the box of figure 3 without its sealing panels.

Figures 5 and 6.- Show respective perspective views of the slide bars for the horizontal and vertical movement of the box of figures 3 and 4.

Figure 7.- Finally shows a wiring diagram wherein the relationship between the different electronic components that participate in the device of the invention can be seen.

PREFERRED EMBODIMENT OF THE INVENTION

[0019] In light of the described figures, it can be seen how a CCD camera (1), with a resolution in the plane of the object or steel sheet (2) of at least 40 pixels/mm, participates in the proposed device for the detection and classification of residual oxide in metal sheet production lines, so that every pixel has an object size of 25 μm in a manner that, using programming software installed on a PC (3) related to said camera (1) as will be seen later, it is capable of detecting stains with a minimum size of 50 μm, i.e. that occupy at least 2x2 pixels, in order to ensure a sufficiently reliable detection algorithm.

[0020] Said CCD camera (1) is arranged inside a box or framework (4), hermetically sealed, the interior of which can be accessed through practicable panels (5). In the chosen example of embodiment the box has a quadrangular prismatic configuration, the upper base of which extends along a truncated cone-shaped surface, although this configuration is merely illustrative, as said box may adopt different configurations without affecting the essentiality of the invention.

A pair of high-power strobe lights (6) are also arranged inside said box or framework (4), in addition to a diffusion surface (7) for diffusing the light generated by said lights (6), in order to avoid the formation of shadows on the surface to be examined. A window wherein a glass is arranged whereby the camera (1) captures the images of the metal sheet (2) surface to be examined is established on the base of said framework (4).

[0021] Said box will preferably be hermetically sealed, as mentioned earlier, to prevent dust and dirt from entering it, and will have an exit (4') for the cables of the different electrical and electronic elements included therein.

[0022] The framework or box (4) is fixed to a slide bar (8), as shown in figure 5, equipped with a motor that allows it to move horizontally, sideways to the forward movement of the steel sheets (2), in addition to a carriage (9) capable of moving said box (4) in a vertical direction.

[0023] The sideways movement of the box (4), and therefore of the camera associated thereto, together with the movement in the advance direction of the steel sheets (2), allow the device to capture a sufficiently random sampling surface so as to ensure the high quality of the measurements made.

[0024] Optionally, if a larger sampling surface is desired, two or more boxes (4) may be arranged on each slide bar (8).

[0025] Said carriage (9) is complemented by an ultrasound sensor (10) which allows the device to distinguish between different steel sheet thicknesses, in order to modify the vertical distance of the box (4) and therefore of the camera (1) with respect to the sheet surface to be examined, in such a manner that the camera is at the same distance from said surface at all times, and therefore at the same focal distance, avoiding the need for arranging self-focusing systems which, while being an equivalent solution that could be adopted, require a longer response time.

[0026] Therefore, as can be seen in figure 7, the camera (1) and strobe lights (6) are monitored by a PC (3), through an image acquisition card (22) and, optionally, through a serial port (11), while the horizontal and vertical movements of the slide bars (8) and (9) by means of respective electric motors (12) and (13) are monitored by a programmable micro-controller or automaton (14) arranged in a control cabinet (15), related through the respective serial ports (16-16'), LAN or similar to said PC, and to the motors (12-13), end of path sensors (17), the ultrasound sensor (10) and anomaly or emergency sensors (18), through the corresponding entrances (19).

[0027] Therefore, each image is processed by applying different thresholding procedures and calculation of the statistics of the proportion of oxide stains found is based on the different sizes thereof within a certain band section of configurable length (typically between one and ten metres). This system does not require storage of all the images but only some (normally one) for every section.
for monitoring purposes and by way of example. The result of the system is the calculation of the proportion of oxide stains found in terms of size in every longitudinal band section.

[0028] Finally, we must point out that the computer (3) may be connected to a local data network (20) through a LAN port (21) in order to transmit the processed information to other PCs.

[0029] Although the present description has been made on the basis of the fact that spacing between the camera (1) and the surface to be examined is carried out by moving the carriage (9) associated to the box (4), said carriage may optionally not be externally attached to the box (4) but rather internally, in such a manner that it only affects the vertical movement of said camera (1), maintaining the box (4) vertically immovable.

Claims

1. Device for the detection and classification of the residual oxide in metal sheet production lines which, being designed for the statistical detection of residual oxide stains (residual scale), in addition to classification thereof in metal sheet production lines in a totally automated manner and without the need to stop said production line during the detection and classification process, characterised in that it consists of a framework or box (4) equipped with means for sideways movement (8) and a synchronised movement allowing zigzag sampling on the surface of the metal sheet (2) to be examined, wherein a high-resolution CCD camera (1) is arranged, in addition to a high-power lighting unit (6-7) and diffuse light generator on the surface whereon said camera (1) focuses, the video signal of which is transmitted to a PC (3) equipped with internal software for processing each image obtained to detect and classify residual oxide stains, having envisaged that the movement of said framework (4) is monitored by a programmable micro-controller or automaton (14), also associated to said PC (3) through communication ports (16-16'), wherein said PC (3) also monitors the strobe lighting and the acquisition of each image by the CCD camera (1).

2. Device for the detection and classification of residual oxide in metal sheet production lines, according to claim 1, characterised in that the camera (1) has means for vertical (9) movement within the framework or box (4), electrically monitored by the programmable automaton (14), which is regulated by an ultrasound sensor (10) arranged on said framework (4) configured to detect the distance between the framework (4) and the surface being inspected.

3. Device for the detection and classification of residual oxide in metal sheet production lines, according to claim 1, characterised in that the camera (1) has means for vertical (9) movement within the framework or box (4), electrically monitored by the programmable automaton (14), which is regulated by an ultrasound sensor (10) arranged on said framework (4) configured to detect the distance between the framework (4) and the surface being inspected.

4. Device for the detection and classification of residual oxide in metal sheet production lines, according to claim 1, characterised in that said means for sideways movement (8) of the framework (4) is materialised in a horizontal slide bar, equipped with a carriage wherein an electric motor (12) is arranged for monitoring the movement thereof.

5. Device for the detection and classification of residual oxide in metal sheet production lines, according to claim 1, characterised in that said means for horizontal movement (8) of the framework (4) may optionally be arranged on the carriage (9) associated to the box (4), said carriage may optionally not be externally attached to the box (4) but rather internally, in such a manner that it only affects the vertical movement of said camera (1), maintaining the box (4) vertically immovable.

6. Device for the detection and classification of residual oxide in metal sheet production lines, according to claim 1, characterised in that the framework (4) is materialised in a pair of strobe lights (6) and a light diffuser (7).

7. Device for the detection and classification of residual oxide in metal sheet production lines, according to claim 1, characterised in that the framework (4) is hermetically sealed by means of practicable panels (5), in order to prevent dust from entering therein, having on the lower base thereof a window equipped with a glass opposite the camera lens (1).
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

see extra sheet
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C01N+;B65H+;B07C+

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CIBEPA,D,EPDOC,WPI,PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X A</td>
<td>JP 63106265 A (KANZAKI PAPER MFG CO LTD) 11.05.1988, abstract; figure, Extráida de la base de datos PAJ in EPDOC</td>
<td>1,2,6 3-5,7</td>
</tr>
<tr>
<td>X</td>
<td>US 6259109 B1 (DATA-CUBE INC) 10.07.2001, the whole document.</td>
<td>1,3,6</td>
</tr>
<tr>
<td>A</td>
<td>FR 2809642 A1 (INIV LA ROCHELLE) 07.12.2001, page 10, line 14- page 14, line 3; figures.</td>
<td>1-4,6,7</td>
</tr>
<tr>
<td>A</td>
<td>JP 8271440 A (NIPPON STEEL CORP) 18.10.1996, abstract; figure, Extráida de la base de datos PAJ in EPDOC</td>
<td>1,6</td>
</tr>
</tbody>
</table>

Date of the actual completion of the international search 09.May.2008 (09.05.2008)

Date of mailing of the international search report (30/05/2008)

Authorized officer P. Pérez Fernández
Telephone No. +34 91 349 54 96

Form PCT/ISA/210 (second sheet) (April 2007)
INTERNATIONAL SEARCH REPORT

<table>
<thead>
<tr>
<th>Patent document cited in the search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP 63106265 A</td>
<td>11.05.1988</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 6259109 B</td>
<td>10.07.2001</td>
<td>WO 9910833 A</td>
<td>04.03.1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 8916498 A</td>
<td>16.03.1999</td>
</tr>
<tr>
<td>FR 2809642 A B</td>
<td>07.12.2001</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>07.01.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>07.01.2002</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (April 2007)
CLASSIFICATION OF SUBJECT MATTER

G01N 21/88 (2006.01)
B65H 26/00 (2006.01)
B07C 5/10 (2006.01)
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 6259109 B [0007]