Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

FIELD OF THE INVENTION

[0001] The present invention relates to a sorting system including a conveyor comprising a plurality of carts for carrying articles, in particular for sorting articles such as parcels and baggage. The conveyor has an electric linear synchronous motor drive system.

BACKGROUND OF THE INVENTION

[0002] Automatic sorting of articles, such as baggage, packets and parcels and the like has in recent years become increasingly advantageous. Most national and international parcel delivery services and mail services today operate large distribution centres wherein automatic or semiautomatic sorting of parcels according to their destination is performed. Similarly, many baggage handling systems, such as for example for airports, use automatic sorting systems. An important part of such baggage handling or parcel sorting centres is a conveyor for automatically moving the articles to the desired location in the distribution centre appropriate for the given destination.

[0003] Sorting systems typically have a number of carts/article supporting units driven by a transport mechanism. An article in the form of e.g. a parcel or baggage is placed on a cart and driven round a track by the transport mechanism. When the article reaches the appropriate location for the given destination, the article is loaded off the track. Typically, the loading of the article on and off the cart is automatic, for example by moving an article supporting surface in a direction perpendicular to the conveying direction or by a tipping motion by the platform/article supporting surface supporting the article.

[0004] One such sorting system is known from WO 2004/011351, which has a number of carts moving along a track. A propulsion system for the conveyor comprises a stationary stator which has a coil assembly. In addition the carts have a reaction element comprising a plurality of permanent magnets mounted on a ferromagnetic carrier plate thereby providing magnetic fields. A controller controls the supply of electrical power to the coil assembly such that a travelling-wave magnetic field is generated which interacts with those of the permanent magnets to provide a driving force.

[0005] Another known system having a magnetic drive system is shown in US 4,792,036. It relates to a transporting device of the conveyor belt type in which a transporting belt, on which the material to be transported can be supported, is capable of being moved along a transport path by a driving mechanism and carried using rolling bodies. The transport path is equipped with an electrical travelling-wave stator. Permanent magnets are arranged in series which interact with the transporting belt in a power-transmitting fashion and form a linear motor with the travelling-wave stator with an air-gap between the pole faces of the attracting permanent magnets and the travelling-wave stator.

[0006] Other magnetic drive systems are shown in US 5,947,361 and EP 957 051.

SUMMARY

[0007] It is an object of the present invention to provide an improved sorting system. A second object is to provide a sorting system with improved energy utilisation and efficiency having the benefit of reduced energy consumption. Other objects appear from the description and the appended figures.

[0008] One aspect of the invention involves a sorting system including a conveyor comprising a plurality of carts for carrying articles, a track along which the carts may be driven, a propulsion system for providing a driving force to the carts for moving the carts along the track, said propulsion system comprising at least one stationary stator having a plurality of coils arranged to generate magnetic fields when electrical power is applied, and one or more reaction elements mounted on each of the carts, said reaction elements each comprising a plurality of permanent magnets connected to at least one plate-like carrier, and said reaction elements being arranged on the carts in order to interact with the magnetic fields generated by the coils of the stator, as well as a controller for controlling a supply of electrical power to the stator in order to provide a driving force via the reaction elements to the carts when power is applied, where the reaction elements each comprises an uneven number of permanent magnets arranged with alternating polarity and with an equal pitch from magnet to magnet, and where the coils of the stator are arranged with a pitch from coil to coil equal to the pitch from magnet to magnet on the reaction element, and where each cart is linked to an adjacent cart, and where the magnets on reaction elements of two adjacent carts are arranged to form a row of magnets with constant pitch and alternating polarity, said row having an only interruption where one magnet is absent, said interruption being located by a transition between said two adjacent carts.

[0009] The reaction elements on adjacent carts are hence arranged as one almost continuous reaction element with a row of magnets with alternating polarity, which is interrupted only by a single magnet being absent or missing by the transition between the carts. Therefore, a maximum number of magnets are available on each cart, and in total, to interact with the travelling-wave magnetic fields. Moreover, use of the stationary stator or stators is optimised, because the travelling-wave magnetic fields may have a maximum number of coils interacting with the magnets. When controlling the travelling-wave magnetic field the controller only has to take the absent magnets at the transitions between the carts into account, or may even ignore the absent magnets. The travelling-wave magnetic fields may include alternating fields generated by all the coils of the stator.
and 2000 millimetres, which covers typical articles which are sorted, such as parcels and luggage. With a magnet to magnet pitch different from 50 millimetres may a different cart to cart pitch be selected accordingly.

[0016] The carts may preferably form an endless chain of carts. For an endless chain, the driving forces can be applied to any suitable carts and there is no need for special consideration of the beginning or end of a succession of carts. Stators may be arranged in suitable positions along the track. When the carts form an endless chain, it is possible to make the sorter system with only one stator. However, in order to enable a more smooth and constant propulsion, it is preferred to use a plurality of stators arranged along the track.

[0017] In a further embodiment of the system the controller may comprise an encoder for determining a position and a speed of one or more carts, or one of a train of carts, or one of an endless chain of carts. The controller may control the electrical power applied to the cell assembly in response to the determined position and/or speed. Preferably, the encoder is placed in connection with a stator such that when a position and/or a speed of a cart is detected, this is used to synchronise the travelling-wave magnetic field of the stator with the magnetic fields of the permanent magnets. Specifically, the location determination can be used to set a phase of the frequency of the electrical supply creating the travelling-wave magnetic field, and the speed can be used to set the frequency of the electrical supply creating the travelling-wave magnetic field.

[0018] When in accordance with a further embodiment, the reaction elements of the system each comprises a number of permanent magnets arranged with alternating polarity, and where the magnets on reaction elements of two adjacent carts are arranged to form a longitudinal row of magnets as seen in a transport direction of the carts, said row having two neighbouring magnets and at least one of said two magnets is having, in the transport direction, a reduced dimension compared to other magnets of the reaction element, said two neighbouring magnets being located at each side of the transition between said two adjacent carts, a possible advantage is that the reaction elements on adjacent carts are arranged as one almost continuous reaction element with a row of magnets with alternating polarity. This row is interrupted only by at least one of two neighbouring magnets having a reduced dimension in the transport direction at each side of the transition between the carts and by the absent magnet. Another aspect of the invention involves a cart for a sorting system, the cart comprising a frame structure, at least one magnetic reaction element comprising an uneven and plural number of permanent magnets mounted equidistantly on a at least one plate-like carrier, where the cart comprises linking means for connection to another cart, and when the cart is connected to an identical cart to form two adjacent carts, the magnets on the reaction elements of said two adjacent carts are forming a row of magnets with constant pitch and alternating
polarity, said row having an only interruption where one magnet is absent, said interruption being located by a transition between said two adjacent carts.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019]

Fig. 1 shows a generalised depiction of a sorter system,
Fig. 2 shows a magnetic reaction element according to the invention,
Fig. 3a shows a simplified representation of reaction elements on adjacent carts seen in a side view,
Fig. 3b shows a simplified representation of reaction elements on adjacent carts seen from below,
Figs. 4-7 shows different embodiments of reaction elements,
Figs. 8a-12b shows different embodiments of the magnets.

DETAILED DESCRIPTION

[0020] The figures are merely included as information given as examples to a skilled person of how the invention may be carried out.

[0021] FIG. 1 displays a sorter system 1 which is suitable for carrying loads. The sorter system 1 comprises a track 3 along which the carts 2 move. The track 3 is shown as an oval track in FIG. 1, but in various embodiments it will be laid out to suit the local conditions and requirements. It may be kilometres long and include a number of turns, which may be both sideways as well as upwards and downwards. Along the track 3 is placed not shown induction stations for loading articles onto the carts as well as not shown discharge stations where loaded articles are discharged. A number of carts 2 move along the track for transporting articles from the not shown induction stations to the discharge stations. Each of the carts 2 has a load bearing platform on which an article to be transported is placed. The load bearing platform may be of any of the known types, such as crossbelt or tilt tray, or any other type.

[0022] The carts 2 are interconnected by linking means 18 shown in FIGS. 3a and 3b, which is maintaining a fixed distance between the carts 2, and ensuring that the movement of a cart 2 is transferred to an adjacent cart by a pulling or pushing action. The carts 2 may form a train including two, three, four or five carts, or dozens of carts, or any number of carts. Or, as shown in FIG. 1, the carts 2 may form an endless chain covering the entire length of the track 3.

[0023] The sorting system according to the invention may be used as a parcel sorting system for a parcel distribution centre, and the loads carried by the conveyor are parcels of different sizes and weights. In another embodiment it may be used in a baggage handling system, and the loads carried are baggage, such as suitcases. Also, the sorting system may be used for distribution of articles in a warehouse. The articles, baggage or parcels are automatically loaded to the load bearing platforms of the carts by e.g. a suitable conveyor belt or lifting apparatus. They are then transported to the appropriate location along the track where the article, baggage or parcel is automatically unloaded from the load bearing platform of the cart 2.

[0024] FIG. 2 illustrates a view of a reaction element 4 in accordance with an embodiment of the invention. The reaction element 4 comprises a plate-like carrier 6 on which is fixed a plurality of permanent magnets 5. The plate 6 may be divided into sections for easier handling, or so as to divide the reaction element into modules. The permanent magnets 5 are arranged with alternating polarity. In FIG. 2 the permanent magnet 7 has in one end of the reaction element, and the permanent magnet 8 in the opposite end, a magnetic north pole facing upwards. The number of magnets 5 is uneven, such as 3, 5, 7, 9, 11, etc. The uneven number of permanent magnets of a reaction element from one end of said reaction element starts and ends with a magnetic north pole, but may as well start and end with a magnetic south pole. However, reaction elements on two adjacent carts must start and end with magnets having identical polarity.

[0025] FIGS. 3a and 3b display three consecutive magnetic reaction elements 4, 16 and 17 belonging to three consecutive carts. Linking means 18 are indicated just to illustrate that the carts are connected. The linking means 18 would normally not connect the carts by connecting the reaction elements, but instead connect one end of a cart with an end of an adjacent cart. The magnets 5 are arranged with a pitch 11 from magnet to magnet.

[0026] In a preferred embodiment of the system the magnets on the reaction elements are arranged with a pitch 11 from magnet to magnet of 50 millimetres. This pitch is particularly suitable for use with a sorter system, because the pitch of the carts is usually a plurality of hundreds of millimetres which is conveniently divided by 50 and results in a natural number. Another preferred embodiment involves that a surface of the permanent magnets, which is facing the stators, is substantially quadratic. The surface of the permanent magnets has an extent 12 of from 40 to less than 50 millimetres in a longitudinal direction of the cart.

[0027] The reaction elements 4, 16, 17 are attached to the carts. The plate-like carrier 6 may be arranged in a horizontal position on the carts and at least one not shown stationary stator may be arranged to interact with the reaction elements from a position below the reaction elements when the stator and reaction elements are interfering to propel the carts. Alternatively, the carrier 6 may be arranged in a vertical position on the carts. One or more not shown stationary stators may be arranged to interact with the reaction elements from positions situated sideways to said reaction elements when the sta-
tors and the reaction elements are interacting. Preferably, the stators are arranged in pairs acting from opposite side in order to counterbalance forces induced on the reaction elements.

[0028] The uneven number of permanent magnets 5 on the reaction element 4 is in FIG. 3b illustrated as starting with a magnetic north pole at the first magnet 7 and ending with a magnetic north pole at the last magnet 8. The first magnet 19 on an adjacent reaction element 16 belonging to a not shown adjacent cart has the same polarity as the last magnet 8 on the reaction element 4. The distance 15 is chosen as twice the magnet to magnet pitch 11 in order that the magnets 5 of the adjacent reaction elements 4, 16 form a row with alternating polarity and constant pitch from magnet to magnet. A magnet is absent in the row at the transition between the carts by the position indicated in dotted lines and designated reference number 10, where a magnetic south pole could have been present. A maximum number of coils in the not shown stator may thereby be active at the same time to interact with the magnets 5.

[0029] A cart to cart pitch 14 is indicated in FIG. 3a. The cart to cart pitch of consecutive carts is preferably a natural number of hundreds of millimetres, such as 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900 and/or 2000 millimetres. When the magnet to magnet pitch 11 is selected as 50 millimetres and the cart to cart pitch 14 is chosen as a natural number of hundreds of millimetres this combination may always result in an uneven number of permanent magnets on each reaction element, which suits the entire length of the cart whereby two adjacent carts can have reaction elements with magnets 5 forming a row of magnets with alternating polarity and constant pitch from magnet to magnet, where the row has an interruption only at the transition between the adjacent carts.

[0030] When the magnets 5 on reaction elements on adjacent or consecutive carts have identically alternating polarities, i.e. either starting and ending with a magnetic north pole or starting and ending with a magnetic south pole, the magnets may be arranged to form a continuing row of alternating polarities, said row having an interruption where a magnet 10 is absent. The result is that the carts may be identical or even have a different cart to cart pitch 14, because the number of magnets on the reaction element is uneven whereby the row may be interrupted by only one absent magnet. Any other uneven number of magnets could also be chosen, e.g. three, but this would result in decreased energy efficiency since the travelling-wave magnetic fields generated by a stator would then have three coils at a time not interacting with a magnet.

[0031] FIGS. 4-7 display different embodiments of reaction elements 4 including a carrier 6 and permanent magnets 5 arranged with alternating polarity.

[0032] FIG. 4 displays a variant where the magnets 5 are embedded in the carrier 6. The carrier 6 may be of plastic and the magnets embedded by casting the plastic around the magnets. Or the carrier 6 may be of aluminium where suitable recesses have been provided for receiving the magnets 5, which may be fastened with glue, or with mechanic fastening means.

[0033] FIG. 5 displays a variant where the magnets 5 are fastened with glue between two thin plates of non-ferromagnetic material, e.g. aluminium.

[0034] FIG. 6 displays a variant corresponding to FIG. 2 where the magnets 5 are attached to a carrier 6, where the carrier is a ferromagnetic plate.

[0035] FIG. 7 displays a variant where the carrier 6 is a ferromagnetic plate which has magnets 5 attached on both sides.

[0036] The reaction elements shown in FIGS. 4-6 may be used in more ways. One way involves that the reaction elements are arranged with the plate-like carrier in a horizontal position on the carts, i.e. that the figures are regarded as the reaction elements are viewed from the side and a not shown stationary stator is arranged to interact with the reaction elements from a position below the reaction elements. A plane going through the not shown stator and a reaction element 4 will then be essentially vertical. Another way involves that the plate-like carrier 6 is arranged in a vertical position on the carts, i.e. that the figures are regarded as the reaction elements 4 are viewed from above and a not shown stationary stator is arranged to interact with the reaction elements from a position at one side of the reaction elements. A plane through the not shown stator and a reaction element will in that situation be essentially horizontal. In this situation may the reaction elements 4 shown in FIGS. 4 and 5 also be interacting with two not shown stators which are placed on opposite sides of the reaction elements 4, i.e. such that both stators and a reaction element will lie in a same horizontal plane.

[0037] The embodiment of a reaction element 4 shown in FIG. 7 is to be viewed as the plate-like carrier 6 is arranged in a vertical position on the carts, i.e. that the figure is regarded as the reaction element 4 is viewed from above and that two not shown stationary stators will be arranged to interact with the reaction element from positions on each side of the reaction element. A plane through the not shown stators and the reaction element will in that situation be essentially horizontal.

[0038] FIG. 8a shows an embodiment of a magnet 5 having an oval curvature along at least part of the entire surface of the magnet. FIG. 8b shows another embodiment of a magnet 5 having an oval curvature along at least part of the circumference of the magnet.

[0039] FIG. 9a shows another embodiment of a magnet 5 having an at least partly circular curvature along at least part of the entire surface of the magnet. FIG. 9b shows another embodiment of a magnet 5 having an at least partly circular, such as a semi-circular curvature, along at least part of the circumference of the magnet.

[0040] FIG. 10a shows another embodiment of a magnet 5 having a tapering shape along at least part of the
entire surface of the magnet. Fig. 10b shows another embodiment of a magnet 5 having a tapering shape along at least part of the circumference of the magnet.

[0041] Fig. 11a shows another embodiment of a magnet 5 having a wedge-like shape along at least part of the entire surface of the magnet 5. Fig. 11b shows another embodiment of a magnet 5 having a wedge-like shape along at least part of a circumference of the magnet.

[0042] Fig. 12a shows another embodiment of a magnet 5 having a point-like shape along at least part of the entire surface of the magnet. Fig. 12b shows another embodiment of a magnet having a point-like shape along at least part of a circumference of the magnet.

[0043] The various shapes of the magnets described for Fig. 8a to Fig. 12b may be used for three or more of the magnets on each reaction element, but the magnets could in particular be useful for providing magnets with a reduced dimension compared to other magnets of the reaction element, and especially for providing two neighboring magnets located at each side of the transition between two adjacent carts.

[0044] Furthermore, by providing the magnets with the above described shapes provides magnets with reduced dimensions in some directions or planes, compared to e.g. a cubic magnet having the same unreduced dimension in one or more directions. A magnet with such reduced dimensions, and e.g. provided in one of the above described shapes will normally provide a reduced magnetic flux or magnetic field when compared to a cubic magnet having non-reduced dimension and being magnified to the same extend and having the same material characteristics as the magnet with the reduced dimensions.

[0045] It is to be understood that the invention as disclosed in the description and in the figures may be modified and changed and still be within the scope of the invention as claimed hereinafter.

Claims

1. A sorting system (1) including a conveyor comprising a plurality of carts (2) for carrying articles, a track (3) along which the carts may be driven, a propulsion system for providing a driving force to the carts (2) for moving the carts (2) along the track (3), said propulsion system comprising at least one stationary stator having a plurality of coils arranged to generate magnetic fields when electrical power is applied, and one or more reaction elements (4) mounted on each of the carts (2), said reaction elements each comprising a plurality of permanent magnets (5, 7, 8) connected to at least one plate-like carrier (6), and said reaction elements being arranged on the carts (2) in order to interact with the magnetic fields generated by the coils of the stator, as well as a controller for controlling a supply of electrical power to the stator in order to provide a driving force via the reaction elements to the carts (2) when power is applied, where the reaction elements (4) each comprises an uneven number of permanent magnets (5, 7, 8) arranged with alternating polarity and with an equal pitch from magnet to magnet, and where the coils of the stator are arranged with a pitch from coil to coil equal to the pitch from magnet to magnet on the reaction element (4), and where each cart (2) is linked to adjacent cart (2), and characterized in that the magnets (7, 8) on reaction elements (4) of two adjacent carts (2) are arranged to form a row of magnets (5, 7, 8) with constant pitch and alternating polarity, said row having an only interruption where one magnet (10) is absent, said interruption (10) being located by a transition between said two adjacent carts (2).

2. System according to any preceding claim, where a plate-like carrier (6) is arranged in a horizontal position on the carts (2) and at least one stationary stator is arranged to interact with the reaction elements (4) from a position below said reaction elements (4) when the stator and reaction elements are interacting.

3. System according to any preceding claim, where each plate-like carrier (6) is arranged in a vertical position on the carts (2) and at least one stationary stator is arranged to interact with the reaction elements (4) from a position situated sideways to said reaction elements (4) when the stator and the reaction elements (4) are interacting.

4. System according to any preceding claim, where each plate-like carrier (6) is arranged in a vertical position on the carts (2) and at least two stationary stators are arranged to interact with the reaction elements (4) from opposite positions situated sideways to said reaction elements (4) when the stators and the reaction elements (4) are interacting.

5. System according to any preceding claim, where the plate-like carrier (6) comprises ferromagnetic material which is arranged to lead a magnetic field from at least one permanent magnet (5) to another permanent magnet (5).

6. System according to any preceding claim, where the surface of the permanent magnets (5) has an extent of from 40 to less than 50 millimetres in a longitudinal direction of the cart (2).

7. System according to any preceding claim, where a cart to cart pitch of consecutive carts (2) is selected
from a group comprising 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900 and 2000 millimetres.

9. System according to any preceding claim, where the carts (2) form an endless chain of carts (2).

10. System according to any preceding claim, where a plurality of stators are arranged along the track (3).

11. System according to any preceding claim, where the controller further comprises an encoder for determining a position and a speed of one or more carts (2), and the controller is operable to control the electrical power applied to the stator in response to the determined position and speed.

12. System according to any preceding claim where the reaction elements (4) each comprises a number of permanent magnets (5, 7, 8) arranged with alternating polarity, and where the magnets (7, 8) on reaction elements (4) of two adjacent carts (2) are arranged to form a longitudinal row of magnets (5, 7, 8) as seen in a transport direction of the carts (2), said row having two neighbouring magnets (7, 8), at least one of said two magnets (7, 8) having, in the transport direction, a reduced dimension (12) compared to other magnets (5) of the reaction element (4), said two neighbouring magnets (7, 8) being located at each side of the transition between said two adjacent carts (7).

13. A cart for a sorting system (1) according to any of claims 1-12, the cart (2) comprising a frame structure, at least one magnetic reaction element (4) comprising an uneven and plural number of permanent magnets (5) mounted equidistantly on a plate-like carrier (6), where the cart (2), comprises linking means (18) for connection to another cart (2), and characterized in that, when the cart (2) is connected to an identical cart (2) to form two adjacent carts (2), the magnets (5) on the reaction elements of said two adjacent carts (2) form a row of magnets (5) with constant pitch and alternating polarity, said row having an only interruption where one magnet (5) is absent, said interruption being located by a transition (10) between said two adjacent carts (2).

14. A cart according to claim 13, where the uneven number of permanent magnets (5) of the reaction element (4) from one end of said reaction element (4) starts and ends with a magnetic north pole or starts and ends with a magnetic south pole.

15. A cart according to any of claim 13 or 14 where reaction elements (4) on two adjacent carts (2) start and end with magnets (7, 8) having identical polarity.

Patentansprüche

1. Sortiersystem (1) mit einer Fördereinrichtung, umfassend eine Mehrzahl von Wagen (2) zum Beför dern von Gegenständen, eine Bahn (3), entlang der die Wagen geführt werden können, ein Antriebsystem zum Bereitstellen einer Antriebskraft für die Wagen (2) zum Bewegen der Wagen (2) entlang der Bahn (3), wobei das Antriebsystem mindestens einen ortsfesten Stator mit einer Mehrzahl von Spulen aufweist, welche so angeordnet sind, dass sie beim Anlegen von elektrischem Strom Magnetfelder aufbauen, und an jedem Wagen (2) angebrachte ein oder mehrere Reaktionselemente (4), wobei die Reaktionselemente jeweils eine Mehrzahl von Permanentmagneten (5, 7, 8) umfassen, die mit mindestens einem plattenförmigen Träger (6) verbunden sind, und wobei die Reaktionselemente derart an den Wagen (2) angeordnet sind, dass sie mit den von den Spulen des Stators aufgebauten Magnetfeldern in Wechselwirkung treten, sowie eine Steuerung zum Steuern einer Versorgung des Stators mit elektrischem Strom zur Bereitstellung einer Antriebskraft an den Wagen (2) über die Reaktionselemente beim Anliegen von Strom, wobei die Reaktionselemente (4) jeweils eine ungerade Anzahl Permanentmagneten umfassen (5, 7, 8), die mit alternierender Polarität und gleichem Abstand von Magnet zu Magnet angeordnet sind, und wobei die Spulen des Stators mit einem Abstand von Spule zu Spule angeordnet sind, der gleich dem Abstand von Magnet zu Magnet des Reaktionselements (4) ist, und wobei jeder Wagen (2) mit einem benachbarten Wagen (2) verbunden ist, und dadurch gekennzeichnet, dass die Magneten (7, 8) auf Reaktionselementen (4) von zwei benachbarten Wagen (2) zur Bildung einer Reihe Magneten (5, 7, 8) mit gleichbleibendem Abstand und alternierender Polarität angeordnet sind, wobei die Reihe eine einzige Unterbrechung aufweist, an der ein Magnet (10) fehlt, wobei die sich Unterbrechung (10) an einem Übergang zwischen zwei benachbarten Wagen (2) befindet.

2. System nach Anspruch 1, wobei jeder plattenförmige Träger (6) in einer horizontalen Position auf dem Wagen (2) angeordnet ist und der mindestens eine ortsfeste Stator derart angeordnet ist, dass er mit den Reaktionselementen (4) von einer Position unterhalb der Reaktionselemente aus in Wechselwirkung ist, wenn der Stator und die Reaktionselemente (4) in Wechselwirkung sind.

3. System nach Anspruch 1, wobei jeder plattenförmige Träger (6) in einer vertikalen Position auf den Wagen (2) angeordnet ist und mindestens ein ortsfester Stator derart angeordnet ist, dass er mit den Reaktionselementen (4) von einer Position seitlich zu den Reaktionselementen in Wechselwirkung ist, wenn...
der Stator und die Reaktionselemente (4) in Wechselwirkung sind.

4. System nach Anspruch 1, wobei jeder plattenförmige Träger (6) in einer vertikalen Position auf den Wagen (2) angeordnet ist und mindestens zwei ortsfeste Statoren derart angeordnet sind, dass sie mit den Reaktionselementen (4) von gegenüberliegenden Positionen seitlich zu den Reaktionselementen in Wechselwirkung sind, wenn die Statoren und die Reaktionselemente (4) in Wechselwirkung sind.

5. System nach einem der vorhergehenden Ansprüche, wobei der plattenförmige Träger (6) ferromagnetisches Material umfasst, das so angeordnet ist, dass es ein Magnetfeld von mindestens einem Permanentmagnet (5) zu einem anderen Permanentmagnet (5) leitet.

6. System nach einem der vorhergehenden Ansprüche, wobei die Fläche der Permanentmagneten (5) eine Abmessung von 40 bis weniger als 50 Millimeter in einer Längsrichtung des Wagens (2) aufweist.


8. System nach einem der vorhergehenden Ansprüche, wobei ein Abstand von Wagen zu Wagen von aufeinanderfolgenden Wagen (2) ausgewählt ist aus der Gruppe, umfassend 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900 und 2000 Millimeter.

9. System nach einem der vorhergehenden Ansprüche, wobei die Wagen (2) eine Endloskette von Wagen (2) bilden.

10. System nach einem der vorhergehenden Ansprüche, wobei eine Mehrzahl von Statoren entlang der Bahn (3) angeordnet ist.

11. System nach einem der vorhergehenden Ansprüche, wobei die Steuerung weiterhin eine Codiereinrichtung zur Bestimmung einer Position und einer Geschwindigkeit von einem oder mehreren Wagen (2) umfasst und die Codiereinrichtung zur Steuerung des an den Stator angelegten elektrischen Stroms als Reaktion auf die bestimmte Position und Geschwindigkeit bedienbar ist.

12. System nach einem der vorhergehenden Ansprüche, wobei die Reaktionselemente (4) jeweils eine Anzahl an Permanentmagneten (5, 7, 8) umfassen, die mit alternierender Polarität angeordnet sind, und wobei die Magneten (7, 8) auf Reaktionselementen (4) von zwei benachbarten Wagen (2) zur Bildung einer Längsreihe Magneten (5, 7, 8) in einer Förderrichtung der Wagen (2) gesehen angeordnet sind, wobei die Reihe zwei benachbarte Magnete (7, 8) aufweist, wobei mindestens einer der beiden Magneten (7, 8) in der Förderrichtung eine im Vergleich zu den anderen Magneten (15) des Reaktionselements (4) kleinere Abmessung (12) aufweist, wobei sich die zwei benachbarten Magneten (7, 8) auf jeder Seite des Übergangs zwischen zwei benachbarten Wagen (2) befinden.

13. Wagen für ein Sortiersystem (1) nach einem der Ansprüche 1-12, wobei der Wagen (2) eine Rahmenstruktur, mindestens ein magnetisches Reaktionselement (4), umfassend eine ungerade und mehrfache Anzahl Permanentmagneten (5), die in gleichem Abstand auf mindestens einem plattenförmigen Träger (6) angeordnet sind, aufweist, wobei der Wagen (2) Verbindungsmittel (18) zum Verbinden mit einem anderen Wagen (2) aufweist und dadurch gekennzeichnet, dass, wenn der Wagen (2) unter Bildung von zwei benachbarten Wagen (2) mit einem identischen Wagen (2) verbunden wird, die Magneten (5) an den Reaktionselementen der zwei benachbarten Wagen (2) eine Reihe Magneten (5) mit gleichbleibendem Abstand und alternierender Polarität bilden, wobei die Reihe eine einzige Unterbrechung aufweist, an der ein Magnet (5) fehlt, wobei die sich Unterbrechung an einem Übergang (10) zwischen den zwei benachbarten Wagen (2) befindet.

14. Wagen nach Anspruch 13, wobei die ungerade Anzahl Permanentmagneten (5) des Reaktionselements (4) an einem Ende des Reaktionselements (4) mit einem magnetischen Nordpol beginnt und endet oder mit einem magnetischen Südpol beginnt und endet.

15. Wagen nach einem der Ansprüche 13 oder 14, wobei die Reaktionselemente (4) an zwei benachbarten Wagen (2) mit Magneten (7, 8) mit identischer Polarität beginnen und enden.

Revendications

1. Système de tri (1) comprenant un convoyeur comprenant plusieurs chariots (2) pour transporter des articles, une voie (3) le long de laquelle les chariots peuvent être entraînés, un système de propulsion destiné à appliquer aux chariots (2) une force d’entraînement pour déplacer les chariots (2) le long de la voie (3), ledit système de propulsion comprenant au moins un stator fixe muni de plusieurs bobines disposées pour générer des champs magnétiques quand une puissance électrique est appliquée, et un ou plusieurs éléments de réaction (4) montés sur
chacun des chariots (2), lesdits éléments de réaction comprenant chacun plusieurs aimants permanents (5, 7, 8) raccordés à au moins un support en forme de plaque (6), et lesdits éléments de réaction étant disposés sur les chariots (2) de manière à interagir avec les champs magnétiques générés par les bobines du stator, ainsi qu’un dispositif de commande pour commander une alimentation électrique du stator afin d’appliquer une force d’entraînement aux chariots (2) via les éléments de réaction quand une puissance est appliquée, dans lequel les éléments de réaction (4) comprennent chacun un nombre impair d’aimants permanents (5, 7, 8) disposés avec des polarités alternées et avec un écartement entre aimants égal, et dans lequel les bobines du stator sont disposées avec un écartement entre bobines égal à l’écartement entre aimants sur l’élément de réaction (4), et dans lequel chaque chariot (2) est relié à un chariot (2) adjacent, et caractérisé en ce que les aimants (7, 8) situés sur les éléments de réaction (4) de deux chariots (2) adjacents sont disposés de manière à former une rangée d’aimants (5, 7, 8) avec un écartement constant et des polarités alternées, ladite rangée présentant une seule interruption où un aimant (10) est absent, ladite interruption (10) étant localisée au niveau d’une transition entre lesdits deux chariots (2) adjacents.

2. Système selon la revendication 1, dans lequel chaque support en forme de plaque (6) est disposé en position horizonale sur les chariots (2) et l’au moins un stator fixe est disposé pour interagir avec les éléments de réaction (4) depuis une position située au-dessous desdits éléments de réaction (4) quand le stator et les éléments de réaction interagissent.

3. Système selon la revendication 1, dans lequel chaque support en forme de plaque est disposé en position verticale sur les chariots (2) et au moins un stator fixe est disposé pour interagir avec les éléments de réaction (4) depuis une position située latéralement par rapport auxdits éléments de réaction (4) quand le stator et les éléments de réaction (4) interagissent.

4. Système selon la revendication 1, dans lequel chaque support en forme de plaque (6) est disposé en position verticale sur les chariots (2) et au moins deux stators fixes sont disposés pour interagir avec les éléments de réaction (4) depuis des positions opposées situées latéralement par rapport auxdits éléments de réaction (4) quand les stators et les éléments de réaction (4) interagissent.

5. Système selon l’une quelconque des revendications précédentes, dans lequel le support en forme de plaque (6) comprend un matériau ferromagnétique qui est disposé pour conduire un champ magnétique de-

puis au moins un aimant permanent (5) vers un autre aimant permanent (5).

6. Système selon l’une quelconque des revendications précédentes, dans lequel la surface des aimants permanents (5) s’étend sur 40 à moins de 50 millimètres dans une direction longitudinale du chariot (2).

7. Système selon l’une quelconque des revendications précédentes, dans lequel un écartement entre chariots de chariots (2) consécutifs est un nombre naturel de quelques centaines de millimètres.

8. Système selon l’une quelconque des revendications précédentes, dans lequel un écartement entre chariots de chariots consécutifs (2) est choisi dans un groupe comprenant 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900 et 2000 millimètres.

9. Système selon l’une quelconque des revendications précédentes, dans lequel les chariots (2) forment une chaîne de chariots (2) sans fin.

10. Système selon l’une quelconque des revendications précédentes, dans lequel plusieurs stators sont disposés le long de la voie (3).

11. Système selon l’une quelconque des revendications précédentes, dans lequel le dispositif de commande comprend en outre un encodeur pour déterminer une position et une vitesse d’un ou plusieurs chariots (2), et le dispositif de commande est manœuvrable pour commander la puissance électrique appliquée au stator en réponse à la position et à la vitesse déterminées.

12. Système selon l’une quelconque des revendications précédentes, dans lequel les éléments de réaction (4) comprennent chacun plusieurs aimants permanents (5, 7, 8) disposés avec des polarités alternées, et dans lequel les aimants (7, 8) situés sur les éléments de réaction (4) de deux chariots (2) adjacents sont disposés de manière à former une rangée longitudinale d’aimants (5, 7, 8) dans une direction de transport des chariots (2), ladite rangée possédant deux aimants (7, 8) voisins, au moins un desdits deux aimants (7, 8) possédant, dans la direction de transport, une dimension (12) réduite par rapport aux autres aimants (5) de l’élément de réaction (4), lesdits deux aimants (7, 8) voisins étant situés de chaque côté de la transition entre lesdits deux chariots (2) adjacents.

13. Chariot pour un système de tri (1) selon l’une quelconque des revendications 1 à 12, le chariot (2) comprenant une structure d’ossature, au moins un élément de réaction (4) magnétique comprenant un
nombre impair et plural d’aimants permanents (5) montés à égale distance sur au moins un support en forme de plaque (6), dans lequel le chariot (2) comprend un moyen de liaison (18) pour le raccordement à un autre chariot (2), et caractérisé en ce que, quand le chariot (2) est raccordé à un chariot identique (2) pour former deux chariots (2) adjacents, les aimants (5) situés sur les éléments de réaction des dits deux chariots (2) adjacents forment une rangée d’aimants (5) avec un écartement constant et des polarités alternées, ladite rangée présentant une seule interruption où un aimant (5) est absent, ladite interruption étant localisée au niveau d’une transition (10) entre lesdits deux chariots (2) adjacents.

14. Chariot selon la revendication 13, dans lequel le nombre impair d’aimants permanents (5) de l’élément de réaction (4) en partant d’une extrémité dudit élément de réaction (4) commence et se termine par un pôle nord magnétique ou commence et se termine par un pôle sud magnétique.

15. Chariot selon l’une quelconque des revendications 13 ou 14, dans lequel des éléments de réaction (4) situés sur deux chariots (2) adjacents commencent et se terminent par des aimants (7, 8) possédant une polarité identique.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 2004011351 A [0004]
- US 4792036 A [0005]
- US 5947361 A [0006]
- EP 957051 A [0006]