EUROPEAN PATENT SPECIFICATION

PROCESS FOR PRODUCING AND PURIFYING FACTOR VIII AND ITS DERIVATIVES

VERFAHREN ZUR HERSTELLUNG UND REINIGUNG VON FAKTOR VIII UND DESSEN DERIVATEN

MÉTHODE DE PRODUCTION ET DE PURIFICATION DU FACTEUR VIII ET DE SES DÉRIVÉS

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

Date of publication and mention of the grant of the patent:
06.09.2017 Bulletin 2017/36

Application number: 07709081.9

Date of filing: 23.02.2007

Int Cl.:
C12P 21/00(2006.01) C07K 14/755(2006.01)

International application number:
PCT/KR2007/000947

International publication number:

Proprietor:
SK CHEMICALS CO., LTD.
Gyeonggi-do 440-300 (KR)

Inventors:
• SONG, In-Young
 Seoul 152-053 (KR)
• KIM, Hun-Taek
 Seoul 137-796 (KR)
• KIM, Jong-Wan
 Seoul 136-779 (KR)
• KIM, Yong-Kook
 Yongin-si
 Gyeonggi-do 446-753 (KR)
• RYU, Jong-II
 Yangju-si
 Gyeonggi-do 482-719 (KR)
• KIM, Dae-Kee
 Seoul 156-768 (KR)

Representative: Kalhammer, Georg Lederer & Keller Patentanwälte Partnerschaft mbB Unsöldstrasse 2 80538 München (DE)

References cited:
EP-A2 0 127 603 US-A 5 707 832
WO-A1 99/46299 US-B1 6 300 100

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Factor VIII is a plasma glycoprotein involved in blood coagulation. Deficiency or abnormality in its function results in severe hereditary disease called hemophilia A (Eaton, D. et al., 1986, Biochemistry 25: 505-512; Toole, J. J. et al., 1984, Nature 312: 342-347; Vehar, G. A. et al., 1984, Nature 312: 337-342). Up to now, the only treatment for hemophilia A has been intravenous administration of factor VIII prepared from human blood or a recombinant source. Due to the safety reason, recombinant factor VIII has been preferred to plasma derived factor VIII. However, since expression level of factor VIII is 2-3 order magnitudes lower than other molecules in the same expression system (Lynch C. M., 1993, Human Gene Therapy 4: 259-272), recombinant factor VIII production has not met its demand.

Reduced viability and stressful conditions seem to increase the production of secreted or released proteases from dead cells which can attack the therapeutic proteins and cause heterogeneity. Heterogeneity caused by internal cleavages of therapeutic protein might be the major problem because cleaved proteins can be inactive and make it difficult to maintain "lot to lot" consistency during the production and purification processes. Therefore, it is important to maintain a relatively low level of protease or to prevent protease activity during production.

A few successful efforts to prevent this proteolysis caused by released proteases from CHO cell line during culture have been reported, even though universal inhibitor(s) which could apply to all therapeutic proteins produced in CHO cell line has not yet been found. Satoh et al. reported the presence of cystein and serine proteases released from CHO cell. Chotteau et al. (Chotteau, V., et al., 2001, in Animal cell technology: from target to market, Kluwer Academic publishers, pp. 287-292) found that an unidentified, extracellular metal-dependent protease from CHO cell culture medium was responsible for the proteolysis of truncated factor VIII. In WO-A-90/02175, it is disclosed that some serine or cysteine proteases from CHO cell culture can be blocked by the inhibitor peptides, which increase factor VIII productivity. EP A 0 306 968 discloses addition of aprotinin to culture medium increased expression of factor VIII in CHO cell medium by three times.

In U. S. Pat. No. 5,851,800, inventors claimed the inhibitors of metalloproteases and chymotrypsins could reduce detrimental effect on factor VIII production in cell culture. Sandberg H. et al. characterized two types of proteolytic activities released by CHO cells in a cell culture. One was originated from metalloproteinases, and the other from serine protease. Only metalloprotei-nases was found to have a strongly negative effect in the factor VIII activity. However, even though inhibitor of metalloproteases such as EDTA and 1,10 o-phenantroline could block the factor VIII cleavage as described by Sandberg H., et al., these inhibitors cannot be directly added into the CHO cell culture medium due to its toxic effect on cells, judged from our experiments.

All the above-mentioned protease inhibitors and commercially available protease cocktail which contain inhibitors against serine, cystein, aspartic and ami-nopeptidases such as aprotinin, bestatin, leupeptin, E-64 and pepstatin A have been applied to our single chain factor VIII derivative (described in U. S. Pat. No. 7,041,635) culture, but we found that none of them were effective in protecting our factor VIII derivative from cleavage by released protease(s) from CHO cell culture during the culture.

U. S. Pat. No. 6,300,100 discloses sulfated polysaccharide such as heparin protected an intact Tissue Factor Pathway Inhibitor (TFPI) from cleavage by proteases present in the culture medium. In addition, U. S. Pat. No. 5,112,950 discloses sulfated dextran to substitute the stabilizing effect of Von Willebrand factor on...
factor VIII in serum free media. However, to our knowledge, there has been no report on the inhibitory effect of dextran sulfate against proteases in connection with factor VIII molecules. WO 99/46299 A1 describes methods for purification of factor VIII polypeptides by immunoaffinity chromatography and ion exchange chromatography, in which the eluate from the immunoaffinity column was diluted with a solution comprising higher salt concentration, or lower non-polar agent concentration than that of the elution solution, prior to passing the diluted solution through the ion-exchange column. KR 2006 0038210 A describes a certain monoclonal anti-factor VIII antibody for purification of human blood coagulation factor VIII. US 5,707,832 discloses a process for the preparation of Factor VIII by culture, in a culture medium, of cells which produce said factor VIII and the separation of Factor VIII, wherein the culture medium contains at least one derivative of a polycationic and/or polyanionic polymer. EP 0 127 603 A2 describes a process for purification of the factor VIII containing preparation, comprising precipitation of undesired proteins by using a sulphated polysaccharide at the pH of 6 to 7.

The present invention aims to demonstrate the inhibitory effect at the pH of 6 to 7.

In the previous patent U.S. Pat. No. 6,300,100, there was a description about the protective effects of sulfated polysaccharides on a target protein against certain proteases, in which a target protein was Tissue Factor Pathway Inhibitor (TFPI). Therefore, we tested whether those sulfated polysaccharides could protect our target molecule-factor VIII. This invention showed that only dextran sulfate possesses a very strong protective effect on factor VIII cleavage when added to culture medium during cultivation process.

Dextran sulfate can be obtained from bacterial fermentation or chemical synthesis. The molecular weights of dextran sulfate can vary from 20 to 5,000 kDa in molecular weight, and is preferably 50 to 2,000 kDa.

Sulfur content of dextran sulfate can also vary depending on its source material. Regardless of the sulfur content of dextran sulfate, it can be employed to this invention only if the dextran sulfate can protect factor VIII from cleavage by protease(s) released from a cell cultivation process. The sulfur content of dextran sulfate is preferably in the range of 5 to 20 wt% of sulfated saccharide, more preferably more than 17 wt%.

Depending on the expression level of factor VIII and its host cell line, the amount of dextran sulfate added to a growing media can be adjusted and not limited to those showed in preferred embodiments of this invention.

In one preferred embodiment of this invention, factor VIII molecule is one of the factor VIII derivatives, named dBN(64-53) (hereafter called I2GdBN), which is disclosed in U.S. PAT. NO. 7,041,635. This factor VIII derivative has internal deletion in part of B-domain and N-terminal part of A3 and was designed to have a new N-glycosylation recognition sequence in its fusion site. As the method described in example 6 in U.S. PAT. NO. 7,041,635, a CHO cell line stably expressing the I2GdBN was prepared and adapted to commercially available serum-free media. Hereinafter this clone is designated as

"#39 clone" and all cells mentioned in examples are referred to this CHO cell line (#39).

The use of the present invention may comprise a process for purifying the factor VIII expressed in mammalian host cell line from culture media supplemented with dextran sulfate using an affinity chromatography. The affinity chromatography includes affinity column which contains affinity molecules coupled to solid support such as agarose or sepharose. The affinity molecules can be anti-factor VIII antibodies which can be monoclona l or polyclonal and can be peptides with high affinity to factor VIII.

Description of Drawings

Figure 1 shows the comparative effects of different sulfated polysaccharides on protecting the cleavage of intact factor VIII.

Figure 2 shows the effects of the molecular weight and concentration of dextran sulfate on the fragmentation of a B-domain deleted factor VIII, I2GdBN.

Figure 3 shows the effects of sulfate, dextran, and dextran sulfate on the fragmentation of I2GdBN.

Figure 4 shows the effect of dextran sulfate on the fragmentation of I2GdBN in perfusion culture in ac-
cordance with an embodiment of the present invention.

Figure 5 shows a Coomassie Brilliant blue R250-stained SDS-PAGE gel of the elution fractions from an immunoaffinity chromatography in accordance with an embodiment of the present invention.

Best Mode

[0020] This invention is further illustrated with reference to the following Examples, but can be applied to other factor VIII molecules and other cell lines as it will be understood by the skilled person in the art. Therefore, the following examples should not be construed as limiting the scope of this invention.

[0021] Heparin, Low molecular weight of heparins (~3 kDa and 4-6 kDa), Dermatan sulfate, dextran (500 kDa), sodium sulfate, dextran sulfate (500 kDa, 10 kDa, 8 kDa) were purchased from Sigma. Dextrans were derived from Leuconostoc mesenteroides, strain B 512. Different molecular weights of dextran sulfate were produced by limited hydrolysis and fractionation. Sulfate groups were added by esterification with sulfuric acid under mild conditions. This dextran sulfate contained approximately 17% of sulfur. (http://www.sigmaaldrich.com/sigmaaldrich/product_information_sheet/d6001pis.pdf)

Plating #39 CHO cell line

[0022] The above-described #39 clone, which is harboring DNA fragment encoding I2GdBN, was cultured in serum free media (ProCHO5 media purchased from Cambrex). At two passages of subculture after thawing, 4 × 10^5 cells were seeded in each well of a 6-well plate.

Western blot assay

[0023] The culture medium containing expressed factor VIII was subjected to 7.5% SDS-PAGE gel and blotted to PVDF membrane. Blotted membrane was probed with an A2 domain-specific antibody called #26-1 which was generated by the inventors of this invention. Secondary mouse IgG coupled with horse-radish peroxidase was used to visualize the factor VIII-anti factor VIII antibody complex on the blot.

Example 1

Comparison of protective effect of various sulfated polysaccharides on fragmentation of I2GdBN

[0024] High molecular weight of dextran sulfate (about 500 kDa), heparin, two kinds of low molecular weight heparin (~3 kDa and 4-6 kDa), and derrmatan sulfate were purchased from Sigma Co., Ltd. and resuspended in water and filter sterilized. Cells were plated as mentioned above. Twenty-four hours after seeding, the medium was replaced with a fresh one and five kinds of sulfated polysaccharides were added in each well at a final concentration of 25 mg/L, 50mg/L, 100mg/L, or 200mg/L, respectively. After 48 hours incubation, culture supernatants were collected and analyzed through Western blot assay. As shown in figure 1, there was little protection effect of three kinds of heparin which were effectively protecting TFPI described in other patents. However, dextran sulfate can provide efficient protection of cleavage and in a concentration-dependent manner. More than 92% of Factor VIII in the culture supernatant (lane 2 in figure 1-(D)) remained intact compared to the factor VIIIs in a culture medium with no additives (41%; lane 1 in figure 1-(D)) and the factor VIIIs in a culture medium with heparins or dermatan sulfate (52%~67%; lane 3-6 in figure 1-(D)). This shows that not all sulfated polysaccharides can protect all the target proteins and the protective effect of a certain sulfated polysaccharide is very specific to a target protein.

Example 2

Effect of molecular weight of Dextran sulfate on cleavage of I2GdBN

[0025] If dextran sulfate with a lower molecular weight can be applied to protect the cleavage, a lower molecular weight of dextran sulfate may be easily separated from factor VIII more based on its difference in size. So, to see if lower molecular weight of dextran sulfate can protect the cleavage of expressed I2GdBN during cell cultivation, 8 kDa, 10 kDa and 500 kDa dextran sulfate, which have the same content of sulfur and originated from the same source, were added to the medium at varying concentrations of 100 mg/L, 200 mg/L, 400 mg/L and 1000 mg/L. At 72 hours after addition of dextran sulfate, culture medium was harvested and analyzed by Western blotting assay. As shown in figure 2, although an increasing amount of dextran sulfate with low molecular weight (lane 1 to lane 8 in figure 2) was added into the cell culture medium, there was not observed any efficient protective effect on I2GdBN cleavage. Only 500 kDa dextran sulfate (lane 9 to lane 12) was shown to protect the fragmentation of single chain I2GdBN.

Example 3

Only sulfated dextran can protect the cleavage.

[0026] To see if a separate functional group of dextran sulfate has the inhibitory effect of cleavage, equimolar amounts of dextran (500 kDa), sodium sulfate, and dextran sulfate (500 kDa) were added in the culture medium. Cells were seeded as described in experiments. At 24 hours after seeding, several concentrations ranging from 250 mg/L to 1000 mg/L of dextran sulfate (500 kDa) and dextran (500 kDa) or several concentrations ranging from 71 g/L to 384 g/L of sodium sulfate were added to the medium. At 48 hours after addition, medium was collect-
ed from each well and analyzed by Western blot assay. As shown in figure 3, only 500 kDa dextran sulfate (lane 5 to lane 7) showed protective effect on cleavage of I2GdBN as depicted in figure 3. Neither dextran only (lane 2 to lane 4) nor sodium sulfate (lane 8 to lane 10) was shown to inhibit the protease activities of released protease(s) during CHO cultivation. Fragmentation pattern of culture medium with either dextran or sodium sulfate only was similar to that of the culture medium with no additives (control, lane 1).

Example 4

Application of dextran sulfate to suspension culture

[0027] Dextran sulfate (500 kDa) was applied to a perfusion culture system. One vial of cell was thawed and expanded in T75 flask and further expanded in T125 flask. Cells in T125 flask were transferred into 250 ml, 1 L and 3 L spinner flasks serially and maintained as suspension culture on a magnetic stirrer plate at 37°C in 5% of CO2/air mixture with a rotation speed of 100 rpm. Exponentially growing cells in 3 L spinner flask were collected and inoculated into 7.5 L bioreactor with a working volume of 5 L. Dextran sulfate (500 kDa) was added at the concentration of 200 mg/L in the serum free medium in the bioreactor. From the fourth day after inoculation, the culture medium was collected every second day for 20 days. Cell viability was maintained above 92.7% during culture perfusion, and factor VIII fragment was detected less than 5% judged by densitometric analysis of each band in Western blot during fermentation process. Exemplary Western blots of culture media collected on day 6, day 12 and day 18 were included in figure 4.

Example 5

Purification of I2GdBN from culture media by immunoaffinity chromatography

[0028] Due to the highly negative characteristic of dextran sulfate, ionic exchange chromatography cannot be applied to purify secreted factor VIII in culture media supplemented with dextran sulfate. Therefore, culture media produced in example 4 were concentrated by the tangential flow ultrafiltration and subjected to an immunoaffinity column pre-equilibrated with equilibration buffer (20 mM of Tris-HCl [pH 7.0], 400 mM NaCl, 5 mM CaCl2, 3 mM EDTA). Immunoaffinity column was prepared by coupling monoclonal anti-factor VIII that recognizes A2 region of factor VIII heavy chain, to CNBr-activated sepharose resins. Factor VIII-bound immunoaffinity column was washed with 2.5 bed volume of equilibration buffer and 2.5 bed volume of washing buffer(20 mM of Tris-HCl [pH 7.0], 400 mM NaCl, 5 mM CaCl2, 3 mM EDTA, 10% ethylene glycol). Elution was performed in a stepwise gradient elution with elution buffers containing ethylene glycol at the concentration ranging from 40-60%. Nine of 12 elution fractions (elution fraction number 1 to 9 corresponded to E1 to E9 in figure 5) were sampled and subjected to 7.5% of SDS-PAGE and stained with Coomassie brilliant blue R 250 dye. Only one-step purification of the culture medium gave more than 95% of highly pure single-chain factor VIII as illustrated in figure 5.

Claims

1. The use of dextran sulfate for reducing or blocking Factor VIII-cleaving activities of certain protease(s) originated from CHO cell culture media and for increasing homogeneity of Factor VIII molecules produced in a process for the production of Factor VIII in CHO cells adapted to serum-free media which is supplemented with dextran sulfate, wherein the average molecular weight of said dextran sulfate is 20 to 5,000 kDa.

2. The use according to claim 1, wherein said Factor VIII is named dBN(64-53) described in US patent No. 7,041,635.

3. The use according to any one of the preceding claims, wherein the average molecular weight of said dextran sulfate is 50 to 2,000 kDa.

4. The use according to any one of the preceding claims, wherein said use comprises a process for purifying the Factor VIII expressed in CHO cells from culture media supplemented with the dextran sulfate using an affinity chromatography using anti-Factor VIII antibodies.

5. The use according to any one of the preceding claims, wherein said use comprises a method for producing recombinant Factor VIII from CHO cells transformed with the expression DNA vector containing cDNA coding for FVIII in a culture medium and purifying said factor VIII using factor VIII specific affinity molecules linked to the solid support, comprising

(a) culturing said CHO cells in a culture medium, which is supplemented with dextran sulfate;
(b) concentrating said culture medium containing factor VIII through ultrafiltration; and
(c) purifying said factor VIII from the concentrat ed culture medium by affinity chromatography using anti-Factor VIII antibodies.

6. The use according to claim 5, wherein the amount of said dextran sulfate in said culture medium is 10 mg/L to 2 g/L.

7. The use according to claim 5, wherein said culture medium is a medium free of an animal protein.
8. The use according to claim 5, wherein said chromatography comprises:

(a) a column packed with anti-factor VIII specific antibody coupled solid support including agarose and sepharose, and
(b) an elution buffer containing buffering agents, salts, calcium chloride, detergent and ethylene glycol for Factor VIII molecules bound to said antibody coupled solid support.

Patentansprüche

1. Verwendung von Dextransulfat zum Verringern oder Blockieren von Faktor VIII-Spaltungsaktivitäten bestimmter Protease(n), die ihren Ursprung in CHO-Zellkulturmedien haben, und zum Erhöhen der Homogenität von Faktor VIII-Molekülen, erzeugt in einem Verfahren zur Erzeugung von Faktor VIII in CHO-Zellen, angepasst an Serum-freie Medien, ergänzt mit Dextransulfat, wobei das durchschnittliche Molekulargewicht des Dextransulfats 20 bis 5.000 kDa beträgt.

2. Verwendung nach Anspruch 1, wobei der Faktor VIII als dBN(64-53) bezeichnet wird, wie in US-Patent Nr. 7,041,635 beschrieben.

3. Verwendung nach einem der vorstehenden Ansprüche, wobei das durchschnittliche Molekulargewicht des Dextransulfats 50 bis 2.000 kDa beträgt.

5. Verwendung nach einem der vorstehenden Ansprüche, wobei die Verwendung ein Verfahren zum Erzeugen von rekombinantem Faktor VIII aus CHO-Zellen, transformiert mit dem Expressions-DNA-Vektor, enthaltend cDNA, die für FVIII codiert, in einem Kulturmedium und Reinigen des Faktors VIII unter Verwendung von Faktor VIII-spezifischen Affinitätsmolekülen, die an den festen Träger gebunden sind, umfasst, umfassend

(a) das Kultivieren der CHO-Zellen in einem Kulturmedium, das mit Dextransulfat ergänzt ist;
(b) das Konzentrieren des Kulturmediums, enthaltend Faktor VIII, mittels Ultrafiltration; und
(c) das Reinigen des Faktors VIII aus dem konzentrierten Kulturmedium mittels Affinitätschromatographie unter Verwendung von Anti-Faktor VIII-Antikörpern.

6. Verwendung nach Anspruch 5, wobei die Menge des Dextransulfats in dem Kulturfmedium 10 mg/l bis 2 g/l beträgt.

7. Verwendung nach Anspruch 5, wobei das Kulturmedium ein Medium ist, das frei von tierischem Protein ist.

8. Verwendung nach Anspruch 5, wobei die Chromatographie umfasst:

(a) eine Säule, gepackt mit Anti-Faktor VIII-spezifischem Antikörper-gekoppeltem festem Träger, umfassend Agarose und Sepharose, und
(b) einen Elutionspuffer, enthaltend Puffermittel, Salze, Calciumchlorid, ein oberflächenaktives Mittel und Ethylenglycol, für Faktor VIII-Moleküle, die an diesen Antikörpergekoppelten festen Träger gebunden sind.

Revendications

1. Utilisation de sulfate de dextran pour réduire ou bloquer les activités de clivage du facteur VIII d’une/de certaine(s) protéase(s) provenant d’un milieu de culture de cellules CHO et pour augmenter l’homogénéité de molécules du facteur VIII produites dans un procédé pour la production du facteur VIII dans une cellule CHO adaptée à un milieu sans sérum qui est supplémenté avec du sulfate de dextran, dans laquelle le poids moléculaire moyen dudit sulfate de dextran est de 20 à 5000 kDa.

2. Utilisation selon la revendication 1, dans laquelle le dit facteur VIII est nommé dBN(64-53) décrit dans le brevet US n° 7 041 635.

3. Utilisation selon l’une quelconque des revendications précédentes, dans laquelle le poids moléculaire moyen dudit sulfate de dextran est de 50 à 2000 kDa.

4. Utilisation selon l’une quelconque des revendications précédentes, dans laquelle ladite utilisation comprend un procédé pour purifier le facteur VIII exprimé dans des cellules CHO à partir de milieux de culture supplantés avec le sulfate de dextran en utilisant une chromatographie d’affinité utilisant des anticorps anti-facteur VIII.

5. Utilisation selon l’une quelconque des revendications précédentes, dans laquelle ladite utilisation comprend une méthode de production du facteur VIII recombinant à partir de cellules CHO transformées avec le vecteur d’expression d’ADN contenant un
ADNc codant pour le facteur FVIII dans un milieu de culture et de purification dudit facteur VIII en utilisant des molécules d'affinité spécifiques du facteur VIII liées au support solide, comprenant

(a) la culture desdites cellules CHO dans un milieu de culture, qui est supplémenté avec du sulfate de dextran ;
(b) la concentration dudit milieu de culture contenant le facteur VIII par ultrafiltration ; et
(c) la purification dudit facteur VIII à partir du milieu de culture concentré par chromatographie d'affinité en utilisant des anticorps anti-facteur VIII.

6. Utilisation selon la revendication 5, dans laquelle la quantité dudit sulfate de dextran dans ledit milieu de culture est de 10 mg/l à 2 g/l.

7. Utilisation selon la revendication 5, dans laquelle ledit milieu de culture est un milieu dépourvu de protéine animale.

8. Utilisation selon la revendication 5, dans laquelle ladite chromatographie comprend :

(a) une colonne chargée d'un anticorps spécifique anti-facteur VIII couplé au support solide comprenant l'agarose et le sépharose, et
(b) un tampon d'élution contenant des agents de tamponnement, des sels, du chlorure de calcium, un détergent et l'éthylène glycol pour des molécules de facteur VIII liées audit anticorps couplé au support solide.
Figure 1.

(A) 25 mg/L

(B) 50 mg/L

(C) 100 mg/L

(D) 200 mg/L

1. No additive
2. Dextran sulfate
3. Heparin
4. Heparin (∼3 kDa)
5. Heparin (4–6 kDa)
6. Dermatan sulfate
Figure 3.

<table>
<thead>
<tr>
<th>Conc. (mg/L)</th>
<th>C*</th>
<th>Dextran oligy</th>
<th>Dextran Sulfate</th>
<th>Sodium Sulfate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Image of gel electrophoresis with bands at 180k, 130k, 95k, 73k, 55k, and 43k]
Figure 4.

Viability Cell numbers (x 10^5 cells/ml)

Cell Viability (%)
Figure 5.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 5661008 A [0002]
- WO 9109122 A [0002]
- US 5112950 A [0002] [0008]
- US 7041635 B [0002] [0007] [0011] [0017]
- WO 9002175 A [0005]
- EP 0306968 A [0005]
- US 5851800 A [0006]
- US 6300100 B [0008] [0013]
- WO 9946299 A1 [0008]
- KR 20060038210 A [0008]
- US 5707832 A [0008]
- EP 0127603 A2 [0008]

Non-patent literature cited in the description