EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 05.12.2012 Bulletin 2012/49

(21) Application number: 08704588.6

(22) Date of filing: 04.01.2008

(54) OPTICAL FILMS RESIN COMPOSITION COMPRISING POLYARYLATE RESIN AND AMINO RESIN HAVING TRIAZINE STRUCTURE, AND OPTICAL FILMS PREPARED BY USING THE SAME

HARZZUSAMMENSETZUNGEN FÜR OPTISCHE FOLIEN MIT POLYARYLTHARZ, AMINOHARZ UND EINER TRIAZINSTRUKTUR SOWIE AUS IHNEN HERGESTELLTE OPTISCHE FOLIEN

COMPOSITION DE RÉSINE POUR FILMS OPTIQUES COMPORTANT UNE RÉSINE POLYARYLATE ET UNE RÉSINE AMINÉE AYANT UNE STRUCTURE DE TRIAZINE, ET FILMS OPTIQUES PREPARÉS À L’AIDE D’UNE TELLE COMPOSITION

(84) Designated Contracting States: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU MC MT NL NO PL PT RO SE SI SK TR

(30) Priority: 05.01.2007 KR 20070001549

(43) Date of publication of application: 11.11.2009 Bulletin 2009/46

(72) Inventors:
• RYU, Sang-Uk
 Daejeon Metropolitan City 305-308 (KR)
• KIM, Dong-Ryul
 Daejeon Metropolitan City 305-721 (KR)

(73) Proprietor: LG Chem, Ltd.
 Youngdungpo-gu, Seoul 150-721 (KR)

(74) Representative: Goddar, Heinz J. et al
 Boehmert & Boehmert
 Pettenkoferstrasse 20-22
 80336 München (DE)

(56) References cited:
 KR-A- 20060 051 545
 US-B2- 7 109 274

• DATABASE WPI Week 199338 Thomson Scientific, London, GB; AN 1993-299727
 XP000202659519, -& JP 5 214136 A (MITSUBISHI RAYON CO LTD) 24 August 1993 (1993-08-24)

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The present invention relates to a resin composition for an optical film, comprising a polyarylate resin and an amino resin having a triazine structure, and to an optical film prepared by using the same.

Recently, flat panel display devices such as a liquid crystal display device and an organic light emitting device have been actively developed due to their low energy consumption and light weight, and as their substrate material, glass has been generally used. However, glass is easily breakable and heavy, and difficult to produce as a thin film. In order to solve the problems, if a polymer film is used instead of glass, a flat panel display being light, thin, and flexible can be produced.

For example, US patent No. 2005/0203239A1 discloses that the glass substrate is replaced with composite compositions, that is, cured glass fiber/epoxy resin or cured glass fiber/acryl resin. Further, US patent No. 2005/0209404A1 discloses that the glass substrate is replaced with a polymer film using resins with a high glass transition temperature. However, in order to apply it to the general liquid crystal display device, a retardation film is needed in addition to the polymer film.

Generally, in a liquid crystal display, liquid crystal is injected between two substrates on which electrodes are formed, and the intensity of voltage that is applied to the electrodes is controlled to adjust the amount of transmitted light. The liquid crystal molecules have the anisotropy, and the anisotropy of liquid cells or films that include the molecules depends on how the liquid crystal molecules are distributed and an inclination angle of the molecules in respect to the substrate. Accordingly, in the case of the liquid crystal display, the amount and the color of light depends on the viewing angle.

It is required that the retardation film which has almost the same birefringence as the liquid crystal and the negative retardation is used to compensate the viewing angle.

In order to produce the retardation film that has the negative retardation in the thickness direction, a process of stretching a film, and a process of casting a substance having the birefringence are used. Currently, most retardation film is produced using the stretching process. However, since a stretching ratio is mechanically controlled, it is not easy to desirably control the angle, and the polarizing plates must be attached one by one while rolls are not used during the attachment by means of the polarizing plates. Accordingly, efficiency of the process is poor and it is difficult to control impurities.

Korean Patent Application No. 10-2005-0004439 discloses a process of casting liquid crystal having the birefringence. However, since the birefringence of the liquid crystal is very high and sensitive to the casting thickness, it is difficult to obtain a clear color display in the wide area.

On the other hand, in order to produce a retardation film having the thickness direction retardation, polyarylate has been used. If it is processed to a film type, the retardation becomes very high. Actually, its application to the liquid crystal display is impossible. Therefore, technologies capable of controlling the thickness direction retardation are needed.

For example, in US patent No. 5,580,950, polyarylate is used. In the case of a film having a thickness of 50 μm, the thickness direction retardation becomes to be several hundred to several thousand nm. Therefore, it is hard to use as a retardation film of the liquid crystal display. However, an in-plane retardation can be easily controlled by the stretching process.

Further, Japanese patent application No. 2001-19749 discloses that the composition of monomers is changed to decrease the birefringence, however, which deteriorates high heat resistance that is an advantage of polyarylate.

Further, PCT/KR2005/003057 discloses that polyarylate has excellent light transmittance and heat resistance to increase gas barrier property, and it can be also applied as the polymer substrate material instead of glass to the flat panel display such as liquid crystal display. However, there is no report on a polymer film having a function of retardation film as a substitute of glass in the liquid crystal display.

Accordingly, in order to solve the problems in the prior art, it is an object of the present invention to provide a resin composition for an optical film, in which during a film fabrication step, a polyarylate resin and an amino resin having a triazine structure are mixed to control a thickness direction retardation, while having a negative value and to control in-plane retardation.

Further, it is another object of the present invention to provide an optical film, in which in connection with transparency and high heat resistance of polyarylate, the optical film is used as a substrate of a display instead of a glass substrate without an additional retardation film, and also used as a retardation film, and a display comprising the
Technical Solution

[0014] The present invention provides a resin composition for an optical film, comprising an amino resin having a triazine structure and a polyarylate resin.

[0015] The present invention provides an optical film, prepared by using the resin composition for an optical film comprising an amino resin having a triazine structure and a polyarylate resin.

[0016] The present invention provides a display comprising the optical film as a substrate.

[0017] The present invention provides a display comprising the optical film as a retardation film.

Advantageous Effects

[0018] According to the present invention, a resin composition for an optical film, comprising an amino resin having a triazine structure and a polyarylate resin, can be used as a substrate of a display instead of a glass substrate without an additional retardation film, in connection with transparency and high heat resistance of polyarylate. By using the composition, a thickness direction retardation of an optical film can be controlled, while having a negative value, according to the content of the amino resin having a triazine structure during a step of fabricating the optical film, and the prepared film is stretched to control an in-plane retardation.

Best Mode for Carrying Out the Invention

[0019] Hereinafter, the present invention will be described in detail.

[0020] The resin composition for an optical film of the present invention is characterized in that a polyarylate resin and an amino resin having a triazine structure are mixed. In connection with the resin composition for an optical film, a thickness direction retardation of a film can be controlled according to the content of the amino resin having a triazine structure, and the prepared film is stretched to control an in-plane retardation.

[0021] When the polyarylate resin and the amino resin having a triazine structure are mixed with each other, a catalyst may be added thereto. As the catalyst, acid that is generally used as a curing catalyst of the amino resin is preferable, and examples thereof include C1 to C10 organic acids such as acetic acid, benzoic acid, oxalic acid, toluenesulfonic acid, and methanesulfonic acid; and inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid. Further, tin compounds such as dibutyltin dilaurate (CAS No. 77-58-7) may be used.

[0022] It is preferable that the amino resin having a triazine structure contained in the resin composition for an optical film of the present invention comprises a monomer or oligomer, represented by the following Formula 1, but is not limited thereto.

[0023] where x and y are an integer, satisfying the following conditions: x + y = 3, 1 ≤ x ≤ 3, and 0 ≤ y ≤ 2, and

[0024] R3, R4 and R5 are each independently selected from hydrogen, halogen, alkyl having C - C carbon atoms, arylalkyl having C7 - C carbon atoms, aryl having C - C12 carbon atoms, and acyl having C1 - C12 carbon atoms.

[0025] Specifically, examples of the amino resin having a triazine structure include hexamethoxymethylenemelamine, hexaethoxymethylenemelamine, hexahydroxymethylenemelamine, hexabutoxymethylenemelamine, tetrahydroxydioxymethylenebenzoguanamine, tetramethoxymethylenebenzoguanamine, tetraethoxybenzoguanamine, and tetrahydroxydioxymethylenebenzoguanamine, and may be in combination of one or more kinds, but are not limited thereto.

[0026] The amino resin having a triazine structure may be used in an amount of 0.1 to 100 parts by weight corresponding to a desired retardation, based on 100 parts by weight of the polyarylate resin. In this connection, in the case where the used amount is less than 0.1 parts by weight, the effect of reducing the retardation is poor. In the case where the used
amount is more than 100 parts by weight, the effect of reducing the retardation is saturated, whereby the effect becomes poor.

[0027] The polyarylate resin contained in the resin composition for an optical film of the present invention refers to an aromatic polyester resin prepared by condensation of aromatic dicarboxylic acid and aromatic diol. The polyarylate resin can have various structural formulæ depending on the used raw materials, but it is preferably prepared by condensation of bisphenol A as divalent phenol and terephthalic acid or isophthalic acid as aromatic dicarboxylic acid. The polyarylate resin may include a repeating unit of the following Formula 2.

\[
\begin{align*}
\text{[Formula 2]} & \\
\begin{align*}
(\text{R}1)_a & \quad (\text{R}2)_b \\
\end{align*}
\end{align*}
\]

[0028] wherein \(a\) and \(b\) are each independently an integer of 0 to 4,

[0029] \(R1\) and \(R2\) are each independently selected from halogen, alkyl, alkenyl, or alkynyl having \(C_1 - C\) carbon atoms, arylalkyl having \(C_7 - C\) carbon atoms, aryl having \(C_6 - C_{13}\) carbon atoms, nitrile having \(C_1 - C_{12}\) carbon atoms, alkoxy having \(C_1 - C_{12}\) carbon atoms, and acyl having \(C_1 - C_{12}\) carbon atoms, with the proviso that \(a\) is 2 or more, two or more of \(R1\) may be the same or different from each other, with the proviso that \(b\) is 2 or more, two or more of \(R2\) may be the same or different from each other, and

[0030] \(W\) is one selected from alkylidene having \(C_1 - C_{30}\) carbon atoms, alkyne having \(C_2 - C_{30}\) carbon atoms, cycloalkylidene having \(C_3 - C_{30}\) carbon atoms, cycloalkylene having \(C_3 - C_{30}\) carbon atoms, phenyl-substituted alkyne having \(C_2 - C_{30}\) carbon atoms, nitrogen derivatives such as NH or NR (wherein, \(R\) is defined as in \(R1\) and \(R2\)), phosphorus derivatives, phosphorus oxide, oxygen, sulfate, sulfide and sulfone.

[0031] The phosphorus derivatives are a compound containing phosphorus, and may be represented by \(PH\) or \(PR\) (wherein, \(R\) is defined as in \(R1\) and \(R2\)).

[0032] Examples of the aromatic dicarboxylic acid used for the preparation of the polyarylate resin of the present invention include, but are not limited to terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid, 4,4'-methylene-bis(benzoic acid), 1,2-bis(4-hydroxybenzophenone)ethane, 2,2-bis(4-hydroxybenzophenone)propane, 4,4'-oxy-bis(benzoic acid), bis(4-hydroxybenzophenone)sulfide, bis(4-hydroxybenzophenone)sulfone, and aromatic dicarboxylic acid in which aromatic groups thereof are substituted with a \(C_1\) to \(C_2\) alkyl group or a halogen group, and these examples may be used alone or in combination of two or more kinds. In particular, among total aromatic dicarboxylic acids, a mixture of 10 to 90 mol% of terephthalic acid halide and 90 to 10 mol% of isophthalic acid halide is preferably used.

[0033] Examples of the aromatic diol compound used for the preparation of the polyarylate resin of the present invention may include bis(4-hydroxyaryl)alkane, bis(hydroxyaryl)cycloalkane, dihydroxy diarylether, dihydroxy diarylsulfide, dihydroxy diarylsulfoxide, and dihydroxy diarylsulfone, and these examples may be used alone or in combination of two or more kinds. Further, examples of bis(4-hydroxyaryl)alkane include bis(4-hydroxyphenyl)methane, 2,2-bis(4-hydroxyphenyl)propane (BPA), 2,2-bis(4-hydroxyphenyl)ethane, 2,2-bis(4-hydroxy-3-methylphenyl)propane, 2,2-bis(4-hydroxy-3,5-dichlorophenyl)propane, 2,2-bis(4-hydroxy-3,5-dichlorophenyl)propane, 2,2-bis(4-hydroxy-3,5-dibromophenyl)propane, 4,4'-methylene-bis(phenylmethane), 4,4'-dihydroxy phenyl-1,1-m-diisopropylbenzene, 4,4'-dihydroxyphenyl-9,9-fluorene, 2,2-bis(4-hydroxyphenyl)fluorene, 9,9-bis(3,5-dimethyl-4-hydroxyphenyl)fluorene, and 9,9-bis(3,5-dibromo-4-hydroxyphenyl)fluorene. These examples may be used alone or in combination of two or more kinds, but are not limited thereto.

[0034] Further, examples of bis(hydroxyaryl)cycloalkane include 1,1-bis(4,4'-hydroxyphenyl)cyclohexane, 1,1-bis(4,4'-hydroxyphenyl)cyclohexane, 1-methyl-1-(4-hydroxyphenyl)-4-(4-hydroxy-4'-methylphenyl)cyclohexane, 4-[1-[3-(4-hydroxyphenyl)-4-methylcyclohexyl]-1-methylethy]lphenol, 4,4-[1-methyl-4-(1-methylethyl)-1,3-cyclohexylidene]bисphenol, and 2,2,2,2-tetrahydro-3,3,3,3-tetramethyl-1,1-spiribis-[1H]-indene-6,6-diol. These examples may be used alone or in combination of two or more kinds, but are not limited thereto.

[0035] Further, examples of dihydroxy diarylether include bis(4-hydroxyphenyl)ether, bis(4-hydroxy-3,5-dichlorophenyl)ether, bis(4-hydroxy-3,3-dimethylphenylether); examples of dihydroxy diarylsulfide include 4,4-dihydroxy diphenylsulfide and 4,4-dihydroxy-3,3-dimethylphenylsulfide; examples of dihydroxy diarylsulfoxide include 4,4-dihydroxy diphenylsulfoxide and 4,4-dihydroxy-3,3-dimethylphenylsulfoxide; examples of dihydroxy diarylsulfone include 4,4-dihydroxy diphenylsulfone(BPS) and 4,4-dihydroxy-3,3-dimethylphenylsulfone. These examples may be used alone
A weight average molecular weight of the polyarylate resin is preferably 10,000 to 500,000, or in combination of two or more kinds, but are not limited thereto.

The polyarylate resin of the present invention may be prepared by a known method in the related art, for example, interfacial polymerization, melt polymerization, solution polymerization or the like, and preferably interfacial polymerization in terms of reaction rate and isolation/purification of polymer after polymerization.

In the above polymerization method, a polymerization temperature is 0 to 40°C, and preferably 0 to 30°C, since hydrolysis of aromatic dicarboxylic acid halide and polyarylate resin is inhibited in the above temperature range. After completing the polymerization according to the above method, an excessive amount of base is neutralized with acid, and the stirring is stopped. Then, the aqueous layer is discarded, and the resultant is repeatedly washed to remove salts, resulting in a polyarylate resin.

Further, one or more of a molecular weight regulator, a base, an organic solvent and a phase transfer catalyst can be added to the polymerization of the polyarylate resin.

The molecular weight regulator can be used to regulate a molecular weight of the polymer. Examples of the suitable molecular weight regulator may include a monovalent hydroxy compound such as phenol, o-cresol, m-cresol, p-cresol, o-ethyl phenol, m-ethyl phenol, p-ethyl phenol, o-propyl phenol, m-propyl phenol, p-propyl phenol, o-tert-butyl phenol, m-tert-butyl phenol, and p-tert-butyl phenol; a monovalent alcohol such as methanol, ethanol, n-propanol, iso-propanol, n-butanol, pentanol, hexanol, dodecyl alcohol, stearyl alcohol, benzyl alcohol, and phenethyl alcohol; an aromatic carboxylic acid halide such as benzyol chloride, acetic acid halide, propionic acid halide, octanoic acid halide, cyclohexyloxycarboxylic acid halide, toluc acid halide, p-tert-butylbenzoic acid halide, p-methoxyphenylacetic acid halide; and sulfonyl chloride such as benzenesulfonyl chloride, tosyl chloride, and methanesulfonyl chloride.

Examples of the base may include alkal metal hydroxide such as sodium hydroxide and potassium hydroxide. It is preferable that the amount of base is 1.01 to 2 times as much as the mole number of the phenolic hydroxyl group contained in divalent phenol and monovalent phenol compounds. If the amount is less than 1.01 times, it is impossible to completely dissolve the divalent phenol compound. If the amount is more than 2 times, an excessive amount of acid is needed for neutralization. Additionally, in consideration of hydrolysis of aromatic dicarboxylic acid halide that occurs during the polymerization process, the amount of base is preferably set to be 1.01 to 2 times as much as the mole number of the phenolic hydroxyl group.

It is preferable that an organic solvent is capable of dissolving polyarylate while the organic solvent is not mixed with water. Examples of the organic solvent include methylene chloride, 1,2-dichloroethane, chloroform, carbon tetrachloride, chlorobenzene, 1,1,2,2-tetrachloroethane, and these examples may be used alone or in combination of two or more kinds.

A phase transfer catalyst may be used in order to improve a polymerization rate of an interfacial polymerization, and examples thereof include a tetraalkylammonium ion, a tetraalkylphosphonium ion, and a nonionic surfactant.

The polyarylate resin prepared by the above-described method is an engineering plastic resin having excellent physical properties, and it is transparent and has a high birefringence, thereby being used as a retardation film of a display. Further, the polyarylate resin has high heat resistance, thereby being used as a polymer film, which is a substrate of flat panel display, instead of a glass substrate. In order to use the polyarylate resin as the polymer film that is a substrate of flat panel display or retardation film, the polyarylate resin may be prepared in a film type by using a melt extrusion method, a casting method or the like. Of them, the casting method is preferable in that upon casting, a film thickness is easily controlled to precisely regulate the thickness direction retardation, the in-plane retardation occurred upon melt extrusion is minimized, and a film having a uniform composition can be obtained. When the polyarylate resin is produced in a film type by casting, its thickness is 10 μm or more, and preferably 20 μm or more in order to maintain the film type itself. In the case of forming the film using the polyarylate resin only, as in the prior arts, the thickness direction retardation of the film has 200 nm or more, which is an absolute value. Thus, it is not suitable for the retardation film of a liquid crystal display. Therefore, the thickness direction retardation should be controlled, however, which is not easy. However, in the present invention, the polyarylate resin and amino resin having a triazine structure are mixed to produce the film by the method for controlling the thickness direction retardation without inhibiting the transparency and high heat resistance of polyarylate, thereby controlling the thickness direction retardation without inhibiting the transparency and high heat resistance of the polyarylate resin.

The present invention provides an optical film, prepared by using the resin composition for an optical film comprising an amino resin having a triazine structure and a polyarylate resin. In this connection, a thickness direction retardation of the optical film can be controlled according to the content of the amino resin having a triazine structure, and the prepared film is stretched to control an in-plane retardation.

First of all, in order to produce the in-plane retardation, the optical film is preferably stretched. The stretching process may be performed, when the film is not dried, or after drying the film. The stretching process may be performed either during fabricating the film, or in an unwind film after winding the film. The stretching process is preferably performed at 80 to 250°C, and the stretching ratio is preferably 1% to 500%, depending on the amount of the residual solvent in the film.
Refractive indexes n_x, n_y, and n_z are measured in respect to axes at 590 nm while the axis having the highest refractive index in the surface direction of the optical film is set to an x-axis, the axis being perpendicular to the x-axis in the surface direction is set to an y-axis, and the axis being perpendicular to the x-y plane is set to a z-axis. The thickness of the film may be measured to calculate the thickness direction retardation and in-plane retardation of the optical film using the following Equations 1 and 2.

\[R_{th} = (n_z - \frac{n_x + n_y}{2}) \times d \]

\[\text{[Equation 1]} \]

\[R_{in} = (n_x - n_y) \times d \]

\[\text{[Equation 2]} \]

wherein n is a refractive index of the direction having the highest refractive index x in a film surface, n_y is the refractive index of the direction perpendicular to the direction of n_x in the film surface, n_z is the refractive index of the direction perpendicular to a plane of the film, d is a thickness of the film, and R_{th} is a thickness direction retardation.

In the optical film according to the present invention, its thickness direction retardation is a negative value, in which its absolute value is in the range of 0 to 1000 nm, and its in-plane retardation is in the range of 0 to 1000 nm. The values may be controlled within the above range according to the desired purpose.

The optical film of the present invention preferably has a thickness of 10 to 200 μm. If the thickness is 10 μm or less, it is hard to treat the film due to static electricity or the like. If the thickness is 200 μm or more, much time is required to dry the solvents without the improvement of the physical properties, which is not economical.

The optical film according to the present invention can be prepared by the following method.

Polyarylate resin, used for the optical film, is prepared as follows: dissolving the polyarylate resin, which was isolated from the polyarylate resin solution according to the method for synthesizing the polyarylate resin, in a solvent; or removing water from the polyarylate resin solution after the solution is washed, and adding an appropriate solvent; or concentrating the polyarylate resin solution after the solution is washed.

The resin composition for an optical film comprising a polyarylate resin and an amino resin having a triazine structure of the present invention can be prepared in a film form using a casting method. In the polymer solution containing a polyarylate resin and an amino resin, the polymer concentration is not limited. However, the quantity of the solvent is preferably 100 to 3300 parts by weight, and more preferably 100 to 2000 parts by weight, based on 100 parts by weight of the polyarylate resin in order to obtain the viscosity required during the casting.

As a solvent used in the preparation of a polymer solution containing the polyarylate resin and amino resin, any solvent can be used as long as it can dissolve the polyarylate resin. Examples of the solvent include, but are not limited to halogenated hydrocarbons such as methylene chloride, chloroform, carbon tetrachloride, dichloromethane, tetrachloroethane, and trichloroethane; ketones such as acetone, methyl ethylketone, methylisobutylketone, cyclohexanone, and cyclopentanone; esters such as ethyl acetate and methyl acetate; cyclic ethers such as tetrahydrofuran, dioxane, and dioxolane; aromatic hydrocarbons such as benzene, toluene, xylene, and methoxybenzene; alcohols such as methanol, ethanol, and ethylene glycol; an amide solvent such as dimethylformamide and dimethylacetamide; and ethers such as diethyl ether and dibutyl ether. These solvents may be used alone or in combination of two or more kinds.

The polymer solution containing the polyarylate resin and amino resin may be mixed with various types of
additives such as a UV stabilizer, a heat stabilizer, a plasticizer, a mat agent, an adhesion promoter, and a filler, if necessary. These additives may be used alone or in combination of two or more kinds.

[0059] The optical film according to the present invention can be prepared using the polymer solution containing the polyarylate resin and the amino resin having a triazine structure by a casting process such as a spin casting process, a roll casting process, a flow casting process, a print process or the like, a dip coat process, a gravure casting process, and a bar casting process. In this connection, when the polymer solution containing the polyarylate resin and the amino resin having a triazine structure is subjected to the casting process and the solvent is subjected to drying, it is preferable that the temperature is gradually increased or the solvent is subjected to drying at a predetermined temperature.

[0060] The optical film of the present invention is an unstretched or stretched film, and the optical film may be used alone as the retardation film of a display. Further, in connection with transparency and high heat resistance of the polyarylate resin, the optical film may be used as a substrate of a flat panel display instead of a glass substrate.

[0061] Further, the optical film of the present invention may have a gas barrier layer, a moisture barrier layer such as SiOₓ (x is 1 to 2), SiON, AlOₓ (x is 1 to 3), AlON, AlON, ITO, IZO, an oxygen barrier layer or a transparent conductive layer such as ITO and IZO on at least one side of the film. They may be generally produced by sputtering, chemical vapor deposition (CVD) or plasma-enhanced chemical vapor deposition (PECVD).

[0062] The optical film of the present invention may be additionally subjected to a treatment such as hard coating treatment, anti-reflection treatment, anti-sticking treatment, diffusion treatment, and anti-glare treatment, if necessary.

[0063] The hard coating treatment is applied, for example, to prevent scratches on the surfaces of the optical film. A surface of the optical film can be applied with a coating film of a cured resin with excellent hardness and activity. Examples of the cured resin include ultraviolet-cure type resins such silicone-based, urethane-based, acrylic-based, and epoxy-based, and the treatment may be performed by a known method.

[0064] The anti-sticking treatment may be performed by a known method for the purpose of preventing adherence of adjacent layers.

[0065] The anti-reflection treatment may be performed by forming an anti-reflection layer or the like known in the art for the purpose of preventing the reflection of outdoor daylight on the surface of the optical film.

[0066] The anti-glare treatment may be performed by a known method for the purpose of preventing visibility of transmitted light from being hindered by outdoor daylight reflected on the surface of the optical film.

[0067] The optical film of the present invention may be single layered structure or laminated structure with two or more layers.

[0068] The present invention provides a display comprising the optical film of the present invention as a substrate. Specifically, the optical film can be used as a substrate of liquid crystal cells in the liquid crystal display, and also used as a substrate in an organic light emitting device. Therefore, an electrode and organic semiconductor layer are formed thereon to produce a device.

[0069] Further, the present invention provides a display comprising the optical film of the present invention as a retardation film. Specifically, in the liquid crystal display provided with liquid crystal cells and a polarizing plate on both sides of the liquid crystal cells, a liquid crystal display comprising the optical film of the present invention between the liquid crystal cells and the polarizing plate can be produced.

[0070] Hereinafter, the present invention will be described in detail with reference to Examples. However, Examples of the present invention may be modified in many different forms and should not be construed as being limited to Examples set forth herein. Rather, Examples of the present invention are provided so that this disclosure will be thorough and complete and will fully convey the concept of the present invention to those skilled in the art.

[0071] <Preparation Example> Synthesis of polyarylate

[0072] 600 g of distilled water, 20.6 g of NaOH, 47.6 g of 2,2-bis(4-hydroxyphenyl)propane, 9.2 g of bis(4-hydroxy-phenyl)sulfone, and 2.5 g of benzyltriethylammonium chloride were added to a reactor that is provided with a stirrer, and the temperature of the reactor was maintained at 25°C. Separately, 49.8 g of aromatic dicarboxylic acid chloride mixture, in which the same amounts of isophthalic acid chloride and terephthalic acid chloride were mixed with each other, was dissolved in 600 g of methylene chloride. The mixture solution was added to the reactor containing the alkaline aqueous solution under stirring. After the stirring was performed for 1 hour, a hydrochloric acid was added and the washing was performed with distilled water. The washing was repeated until the conductivity of the water layer was 20 μS/cm or less, the resulting solution was poured onto methanol to perform phase separation of polymers, the polymers were filtered, and the drying was performed in a vacuum oven at 120°C for 12 hours. The weight average molecular weight and the glass transition temperature of the prepared polymer were evaluated using the following method.

[0073] (1) After the polymerization was finished, the polymerization solution was diluted with tetrahydrofuran for chromatography to have the content of 0.1 wt%, the measurement was performed by means of gel permeation chromatography using tetrahydrofuran for chromatography as an eluant, and the weight average molecular weight was measured using a standard polystyrene calibration curve.

[0074] (2) The glass transition temperature (Tg) was measured using DSC (differential scanning calorimeter). The thermal record of the sample was removed by increasing the temperature up to 300°C at a rate of 10°C/min under a
nitrogen atmosphere. Then, the temperature was reduced to room temperature and then increased to 300°C at a rate of 10°C/min in order to measure the glass transition temperature Tg.

[0075] The weight average molecular weight of polyarylate was 69,000 and the glass transition temperature of polyarylate was 215°C as the result of the above-mentioned analysis.

[0076] <Example 1>

0.05 g of amino resin (MELCROSS™85 resin, P&ID) was added to 9.00 g of methylene chloride to prepare a homogenous solution. Then, 1.00 g of the polyarylate resin prepared in Preparation Example was added thereto, and stirred at 30°C for 24 hours to prepare a homogenous solution. Precipitates and dust were removed using a 0.45 μm filter to prepare a polyarylate solution containing the amino resin. The dope was cast on a glass plate using a doctor blade at a speed of 0.6 m/min, and dried at room temperature for 60 minutes, at 100°C for 60 minutes, at 150°C for 60 minutes, and at 190°C for 30 minutes to remove the solvent. Then, stripping was performed. The film had a thickness of 51 μm, a glass transition temperature (Tg) of 211°C, a total light transmittance of 91.8%, and a haze value of 0.6%. The total light transmittance and haze value were measured using HR-100 (MURAKAMI COLOR RESEARCH LABORATORY Co.) three times, and the mean value was used.

[0078] In this connection, the in-plane retardation and thickness direction retardation of the film were measured as follows. The thickness direction retardation was measured using Kobra21-ADH (commercial name) that is manufactured by Oji Scientific Instrument Co. Refractive indexes n_x, n_y, and n_z were measured in respect to axes at 590 nm while the axis having the highest refractive index in the surface direction was set to an x-axis at 590 nm, the axis which was perpendicular to the x-axis in the surface direction was set to an y-axis, and the axis which was perpendicular to the x-y plane was set to a z-axis. The thickness of the film layer was measured to obtain the refractive indexes n_x, n_y, and n_z in respect to the axes. The thickness direction retardation and in-plane retardation of the film were calculated using Equations 1 and 2. The results are shown in Table 1.

[0079] <Example 2>

A film was prepared in the same manners as in Example 1, except using 0.1 g of MELCROSS™85 resin (P&ID). The film had a thickness of 51 μm, a glass transition temperature (Tg) of 205°C, a total light transmittance of 92.0%, and a haze value of 0.5%. The results of the in-plane retardation and thickness direction retardation of the film are shown in Table 1.

[0081] <Example 3>

A film was prepared in the same manners as in Example 1, except using 0.25 g of MELCROSS™85 resin (P&ID). The film had a thickness of 50 μm, a glass transition temperature (Tg) of 199°C, a total light transmittance of 91.9%, and a haze value of 0.6%. The results of the in-plane retardation and thickness direction retardation of the film are shown in Table 1.

[0083] <Example 4>

A film was prepared in the same manners as in Example 1, except using 0.5 g of MELCROSS™85 resin (P&ID). The film had a thickness of 53 μm, a glass transition temperature (Tg) of 192°C, a total light transmittance of 91.8%, and a haze value of 0.7%. The results of the in-plane retardation and thickness direction retardation of the film are shown in Table 1.

[0085] <Comparative Example 1>

A film was prepared in the same manners as in Example 1, except using no MELCROSS™85 resin (P&ID). The film had a thickness of 50 μm, a glass transition temperature (Tg) of 215°C, a total light transmittance of 92.1%, and a haze value of 0.8%. The results of the in-plane retardation and thickness direction retardation of the film are shown in Table 1.

<table>
<thead>
<tr>
<th>Example</th>
<th>In-plane retardation (nm)</th>
<th>Thickness direction retardation (nm)</th>
<th>Thickness(μm)</th>
<th>Retardation to thickness (nm/μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 1</td>
<td>0</td>
<td>-770</td>
<td>51</td>
<td>-15.1</td>
</tr>
<tr>
<td>Example 2</td>
<td>0</td>
<td>-530</td>
<td>51</td>
<td>-10.4</td>
</tr>
<tr>
<td>Example 3</td>
<td>0</td>
<td>-155</td>
<td>50</td>
<td>-3.2</td>
</tr>
<tr>
<td>Example 4</td>
<td>0</td>
<td>-9</td>
<td>53</td>
<td>-0.2</td>
</tr>
<tr>
<td>Comparative Example 1</td>
<td>0</td>
<td>-860</td>
<td>50</td>
<td>-17.2</td>
</tr>
</tbody>
</table>
Claims

1. A resin composition for an optical film, comprising an amino resin having a triazine structure and a polyarylate resin.

2. The resin composition for an optical film according to claim 1, further comprising a catalyst.

3. The resin composition for an optical film according to claim 2, wherein the catalyst comprises at least one selected from the group consisting of C1 to C10 organic acids including acetic acid, benzoic acid, oxalic acid, toluenesulfonic acid, and methanesulfonic acid; inorganic acids including hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid; and tin compounds including dibutyltin dilaurate.

4. The resin composition for an optical film according to claim 1, wherein the amino resin having a triazine structure is a monomer or oligomer represented by the following Formula 1:

\[
\text{[Formula 1]}
\]

\[
\begin{align*}
R_3^O & \quad N \quad N \\
R_4^O & \quad N \quad N \\
x & \quad y
\end{align*}
\]

wherein x and y are an integer, satisfying the following conditions: \(x + y = 3, 1 \leq x \leq 3, \text{and } 0 \leq y \leq 2\), and \(R_3^{}, R_4^{}, R_5^{}\) are each independently selected from the group consisting of hydrogen, halogen, alkyl having C1 - C10 carbon atoms, aryalkyl having C7 - C12 carbon atoms, aryl having C6 - C1 carbon atoms, and acyl having C1 - C12 carbon atoms.

5. The resin composition for an optical film according to claim 1, wherein the amino resin having a triazine structure is contained in an amount of 0.1 to 100 parts by weight, based on 100 parts by weight of the polyarylate.

6. The resin composition for an optical film according to claim 4, wherein the amino resin having a triazine structure comprises at least one kind selected from the group consisting of hexamethoxymethylene melamine, hexaethoxymethylene melamine, hexabutoxymethylene melamine, tetrahydroxymethylene benzoguanamine, tetramethoxymethylene benzoguanamine, tetraethoxy benzoguanamine, and tetrabutoxymethylene benzoguanamine.

7. The resin composition for an optical film according to claim 1, wherein the polyarylate resin is an aromatic polyester resin comprising a repeating unit represented by the following Formula 2, prepared by condensation of aromatic dicarboxylic acid and aromatic diol:

\[
\text{[Formula 2]}
\]

\[
\begin{align*}
\text{(R1)}_a & \quad \text{(R2)}_b
\end{align*}
\]

wherein a and b are each independently an integer of 0 to 4, R1 and R2 are each independently selected from halogen, alkyl, alkenyl, or alkynyl having C1 - C12 carbon atoms, aryalkyl having C7 - C12 carbon atoms, aryl having C6 - C12 carbon atoms, nitrile having C1 - C12 carbon atoms, alkoxy having C1 - C12 carbon atoms, and acyl having C1 - C12 carbon atoms, with the proviso that a is 2 or more, two or more of R1 is the same or different from each other, with the proviso that b is 2 or more, two or more of R2 is the same or different from each other, and
W is one selected from alkylidene having C1 - C30 carbon atoms, alkylene having C2 - C30 carbon atoms, cycloalkyli-
dene having C3 - C30 carbon atoms, cycloalkylene having C3 - C30 carbon atoms, phenyl-substituted alkylene having
C2 - C30 carbon atoms, nitrogen derivatives such as NH or NR (wherein, R is defined as in R1 and R2), phosphorus
derivatives, phosphorus oxide, oxygen, sulure, sulfoxide and sulfone.

8. The resin composition for an optical film according to claim 7, wherein the aromatic dicarboxylic acid comprises at
least one kind selected from the group consisting of terephthalic acid, isopthalic acid, dibenzoic acid, naphthalene
dicarboxylic acid, 4,4'-methylene-bis(benzoic acid), 1,2-bis(4-hydroxycarbonylphenyl)ethane, 2,2-bis(4-hydroxycar-
bonylphenyl)propane, 4,4'-oxo-bis(benzoic acid), bis(4-hydroxycarbonylphenyl)sulfide, bis(4-hydroxycarbonylphen-
yl)sulfone, and aromatic dicarboxylic acid in which aromatic groups thereof are substituted with a C1 to C2 alkyl
group or a halogen group.

9. The resin composition for an optical film according to claim 7, wherein the aromatic diol comprises at least one kind
selected from the group consisting of bis(4-hydroxyaryl)alkane, bis(hydroxyaryl)cycloalkane, dihydroxy diarylether,
dihydroxy diarylsulfide, dihydroxy diarylsulfoxide and dihydroxy diarylsulfone.

10. An optical film produced by using the resin composition for an optical film of any one of claims 1 to 9.

11. The optical film according to claim 10, wherein a thickness direction retardation defined as the following Equation
1 is controlled according to the content of the amino resin having a triazine structure, and an in-plane retardation
defined as the following Equation 2 is controlled by stretching:

\[R_{th} = \left(n_x - \frac{n_x + n_y}{2} \right) \times d \]

wherein \(n_x \) is a refractive index of the direction having the highest refractive index in a film surface, \(n_y \) is the refractive
index of the direction perpendicular to the direction of \(n_x \) in the film surface, \(n_z \) is the refractive index of the direction
perpendicular to a plane of the film, \(d \) is a thickness of the film, and \(R_{th} \) is a thickness direction retardation, and

\[R_{in} = (n_x - n_y) \times d \]

wherein \(n_x \) is a refractive index of the direction having the highest refractive index in a film surface, \(n_y \) is the refractive
index of the direction perpendicular to the direction of \(n_x \) in the film surface, \(d \) is a thickness of the film, and \(R_{in} \) is an in-plane retardation.

12. The optical film according to claim 10, wherein the optical film has a thickness direction retardation of a negative
value, having an absolute value in the range of 0 to 1000 nm, and an in-plane retardation in the range of 0 to 1000 nm.

13. The optical film according to claim 10, wherein the optical film comprises at least one selected from the group
consisting of a gas barrier layer, a moisture barrier layer, an oxygen barrier layer and a transparent conductive layer
on at least one side of the film.

14. The optical film according to claim 10, wherein the optical film is stretched in a ratio of 1%-500% in in-plane direction.

15. A display comprising the optical film of claim 10 as a substrate or a retardation film.

Patentansprüche

1. Harzzusammensetzung für einen optischen Film, die ein Aminoharz mit einer Triazinstruktur und ein Polyarylharz
umfasst.

2. Harzzusammensetzung für einen optischen Film nach Anspruch 1, die weiter einen Katalysator umfasst.

3. Harzzusammensetzung für einen optischen Film nach Anspruch 2, wobei der Katalysator wenigstens einen umfasst, der ausgewählt ist aus der Gruppe, bestehend aus organischen C₁-bis C₁₀-Säuren, einschließlich Essigsäure, Benzoessäure, Oxalsäure, Toluolsulfonsäure und Methansulfonsäure; anorganischen Säuren, einschließlich Salzsäure, Schwefelsäure, Sulpetersäure und Phosphorsäure; und Zinnverbindungen, einschließlich Dibutylzinndilaurat.

4. Harzzusammensetzung für einen optischen Film nach Anspruch 1, wobei das Aminoharz mit einer Triazinstruktur ein Monomer oder Oligomer ist, dargestellt durch die folgende Formel 1:

5. Harzzusammensetzung für einen optischen Film nach Anspruch 1, wobei das Aminoharz mit einer Triazinstruktur in einer Menge von 0,1 bis 100 Gewichtsteilen enthalten ist, bezogen auf 100 Gewichtsteilen des Polymethylats.

7. Harzzusammensetzung für einen optischen Film nach Anspruch 1, wobei das Polyarylatharz ein aromatisches Polyesterharz ist, das eine Wiederholungseinheit umfasst, die dargestellt ist durch die folgende Formel 2, hergestellt durch Kondensation von aromatischer Dicarbonsäure und aromatischem Diol:

wobei a und b jeweils unabhängig eine ganze Zahl von 0 bis 4 sind, R₁ und R₂ jeweils unabhängig ausgewählt sind aus Halogen, Alkyl, Alkenyl oder Alkinyl mit C₁ - C₁₂ Kohlenstoffatomen, Arylalkyl mit C₇ - C₁₂ Kohlenstoffatomen, Aryl mit C₆ - C₁₂ Kohlenstoffatomen, Nitril mit C₁ - C₁₂ Kohlen-
stoffatomen, Alkoxy mit C₁ - C₁₂ Kohlenstoffatomen und Acyl mit C₁ - C₁₂ Kohlenstoffatomen, mit der Maßgabe,
presso 2 oder mehr ist, zwei oder mehr von R1 identisch oder verschieden voneinander sind, mit der Maßgabe,
asso b 2 oder mehr ist, zwei oder mehr von R2 identisch oder verschieden voneinander sind, und
W eine Gruppe ist, die ausgewählt ist aus Alkyliden mit C₁ - C₃₀ Kohlenstoffatomen, Alkylen mit C₂ - C₃₀ Kohlen-
stoffatomen, Cycloalkyliden mit C₃ - C₃₀ Kohlenstoffatomen, Cycloalkylkylen mit C₃ - C₃₀ Kohlenstoffatomen, phenyl-
substituiertem Alkylen mit C₂ - C₃₀ Kohlenstoffatomen, Stickstoff-Derivaten, wie etwa NH oder NR (wobei R definiert
ist wie in R₁ und R₂), Phosphor-Derivaten, Phosphoroxyd, Sauerstoff, Schwefel, Sulfoxid und Sulfon.

8. Harzzusammensetzung für einen optischen Film nach Anspruch 7, wobei die aromatische Dicarbonsäure wenigstens
eine umfasst, die ausgewählt ist aus der Gruppe, bestehend aus Terephthalsäure, Isophthalsäure, Dibenzoësäure,
Naphthalindicarbonsäure, 4,4′'-Methylenbis(benzoesäure), 1,2-Bis(4-hydroxybenzylidenphenyl)ethan, 2,2-Bis(4-hy-
droxy-carbonylphenyl)propan, 4,4'-Oxobis(benzoesäure), Bis(4-hydroxybenzoylphenyl)sulfid, Bis(4-hydroxy-
carbonylphenyl)sulfon und aromatischer Dicarbonsäure, in der aromatischen Gruppen derselben mit einer C₁- bis C₂-Al-
kygruppe oder einer Halogengruppe substituiert sind.

9. Harzzusammensetzung für einen optischen Film nach Anspruch 7, wobei das aromatische Diol wenigstens eines
umfasst, das ausgewählt ist aus der Gruppe, bestehend aus Bis(4-hydroxyaryl)alkan, Bis(hydroxyaryl)cycloalkan,
Dihydroxydiarylether, Dihydroxydiarylsulfid, Dihydroxydiarylsulfon und aromatischer Dicarbonsäure, in der aromatischen Gruppen derselben mit einer C₁- bis C₂-Alkylgruppe oder einer Halogengruppe substituiert.

10. Optischer Film, hergestellt durch Verwendung der Harzzusammensetzung für einen optischen Film nach einem
der Ansprüche 1 bis 9.

11. Optischer Film Anspruch 10, wobei eine Retardierung in Richtung der Dicke, definiert wie die folgende Gleichung
1, entsprechend dem Gehalt des Aminoharzes mit einer Triazinstruktur eingestellt ist und eine Retardierung in der
Ebene, definiert wie die folgende Gleichung 2, durch Streckung eingestellt ist:

\[
R_{th} = \frac{n_x - \frac{n_x + n_y}{2} \times d}{},
\]

wobei \(n_x\) ein Brechungsindex der Richtung mit dem höchsten Brechungsindex in einer Filmoberfläche ist, \(n_y\) der
Brechungsindex der Richtung senkrecht zur Richtung von \(n_x\) in der Filmoberfläche ist, \(n_z\) der Brechungsindex der
Richtung senkrecht zu einer Ebene des Films ist, d eine Dicke des Films ist und \(R_{th}\) eine Retardierung in Richtung
der Dicke ist, und

\[
R_{in} = \left(n_x - n_y\right) \times d,\]

wobei \(n_x\) ein Brechungsindex der Richtung mit dem höchsten Brechungsindex in einer Filmoberfläche ist, \(n_y\) der
Brechungsindex der Richtung senkrecht zur Richtung von \(n_x\) in der Filmoberfläche ist, d eine Dicke des Films ist und \(R_{in}\) eine Retardierung in der Ebene ist.

12. Optischer Film nach Anspruch 10, wobei der optische Film eine Retardierung in der Richtung der Dicke mit einem
negativen Wert aufweist, wobei ein absoluter Wert im Bereich von 0 bis 1000 nm liegt, und eine Retardierung in
der Ebene im Bereich von 0 bis 1000 nm.

13. Optischer Film nach Anspruch 10, wobei der optische Film wenigstens eines umfasst, das ausgewählt ist aus der
Gruppe, bestehend aus einer Gasbarriereschicht, einer Feuchtigkeitsbarriereschicht, einer Sauerstoffbarrier-
eschicht und einer durchsichtigen leitfähigen Schicht auf wenigstens einer Seite des Films.

14. Optischer Film nach Anspruch 10, wobei der optische Film in einem Verhältnis von 1% - 500% in Richtung der
Ebene gestreckt ist.
15. Display, das den optischen Film nach Anspruch 10 als ein Substrat oder einen Retardierungsfilm umfasst.

Revendications

1. Composition de résine destinée à un film optique contenant une résine aminique présentant la structure de la triazine et une résine polyarylate.

2. Composition de résine destinée à un film optique selon la revendication 1, contenant en outre un catalyseur.

3. Composition de résine destinée à un film optique selon la revendication 2, dans laquelle le catalyseur contient au moins un élément sélectionné parmi le groupe constitué d’acides organiques en C₃ à C₁₀, y compris de l’acide acétique, de l’acide benzoïque, de l’acide oxalique, de l’acide toluène sulfonique et de l’acide méthane sulfonique ; des acides inorganiques y compris de l’acide chlorhydrique, de l’acide sulfurique, de l’acide nitrique et de l’acide phosphorique ; et des composés d’étain dont le dilaurate de dibutylétain.

4. Composition de résine destinée à un film optique selon la revendication 1, dans laquelle la résine aminique ayant la structure de la triazine est un monomère représenté par la formule 1 suivante :

 <Formule 1>

 ![Formule 1](image)

 où x et y représentent un nombre entier répondant aux conditions suivantes : x + y = 3, 1 ≤ x ≤ 3 et 0 ≤ y ≤ 2 et R³, R⁴ et R⁵ sont chacun indépendamment sélectionnés parmi le groupe constitué d’hydrogène, halogène, alkyle comptant des atomes de carbone en C₁ - C₁₀, arylalkyle comptant des atomes de carbone en C₇ - C₁₂, aryle comptant des atomes de carbone en C₆ - C₁₂ et acyle comptant des atomes de carbone en C₁ - C₁₂.

5. Composition de résine destinée à un film optique selon la revendication 1, dans laquelle la résine aminique présentant la structure de la triazine est contenue selon une quantité de 0,1 à 100 parties en poids, basée sur 100 parties en poids de polyarylate.

6. Composition de résine destinée à un film optique selon la revendication 4, dans laquelle la résine aminique présentant la structure de la triazine contient au moins un type d’élément sélectionné parmi le groupe constitué d’hexamé-thoxyméthylèneméthylène, d’hexaéthoxyméthylènéméthylène, d’hexahydroxyméthylèneméthylène, d’hexabutoxy-méthylèneméthylène, de tétrahydroxyméthylènebenzoguanamine, de tétraméthoxyméthylènebenzoguanamine, de tétraéthoxybenzoguanamine et de tetrabutoxyméthylènebenzoguanamine.

7. Composition de résine destinée à un film optique selon la revendication 1, dans laquelle la résine de polyarylate est une résine de polyester aromatique contenant une unité de répétition représentée par la Formule 2 suivante, préparée par condensation de l’acide dicarboxylique aromatique et du diol aromatique :
où a et b sont indépendamment un nombre entier valant de 0 à 4,
R1 et R2 sont chacun indépendamment sélectionnés parmi halogène, alkyle, alkényle ou alkyne comptant des atomes de carbone en C1 - C12, arylalkyle comptant des atomes de carbone en C7 - C12, arylique comptant des atomes de carbone en C1 - C12, alkoxy comptant des atomes de carbone en C1 - C12 et acyle comptant des atomes de carbone en C1 - C12, à condition que a représente 2 ou plus, deux ou plus de R1 sont identiques ou différents l’un de l’autre, à condition que b représente 2 ou plus, deux ou plus de R2 sont identiques ou différents l’un de l’autre, et
W représente un élément sélectionné parmi alkylidène comptant des atomes de carbone en C1 - C30, alkylène comptant des atomes de carbone en C2 - C30, cycloalkylidène comptant des atomes de carbone en C3 - C30, cycloalkylène comptant des atomes de carbone en C3 - C30, alkylène phényle substitué comptant des atomes de carbone en C2 - C30, dérivés de l’azote tels que NH ou NR (où R est défini comme dans R1 et R2), dérivés du phosphore, oxyde de phosphore, oxygène, sulfure, sulfoxide et sulfone.

8. Composition de résine destinée à un film optique selon la revendication 7, dans laquelle l’acide dicarboxylique aromatique contient au moins un élément sélectionné parmi le groupe constitué d’acide téréphthalique, acide isophthalique, acide dibenoïque, acide naphtalène dicarboxylique, 4,4’-méthylène-bis(acide benzoïque), 1,2-bis(4-hydroxycarboxyphényle)éthane, 2,2-bis(4-hydroxycarboxyphényle)propane, 4,4’-oxo-bis(acide benzoïque), bis(4-hydroxycarboxyphényle)sulfure, bis(4-hydroxycarboxyphényle)sulfone et acide dicarboxylique aromatique dans lequel les groupes aromatiques de celui-ci sont substitués avec un groupe alkyle en C1 à C2 ou un groupe halogène.

9. Composition de résine destinée à un film optique selon la revendication 7, dans lequel le diol aromatique comprend au moins type d’élément sélectionné parmi le groupe constitué de bis(4-hydroxyaryle)alcane, bis(hydroxyaryle) cycloalcane, dihydroxy diaryle éther, dihydroxy diaryle sulfure, dihydroxy diaryle sulfoxide et dihydroxy diaryle sulfone.

10. Film optique produit par l’utilisation d’une composition de résine destinée à un film optique selon l’une quelconque des revendications 1 à 9.

11. Film optique selon la revendication 10, dans lequel un retard dans la direction de l’épaisseur défini par l’équation 1 suivante est contrôlé en fonction du contenu de la résine aminique ayant la structure de la triazine, et un retard dans le plan défini par l’équation 2 suivante est contrôlé par étirement:

\[R_{th} = \left(n_x - \frac{n_x n_y + n_y}{2} \right) \times d \]

où \(n_x \) est un indice de réfraction dans la direction ayant l’indice de réfraction le plus élevé dans une surface du film, \(n_y \) est l’indice de réfraction dans la direction perpendiculaire à la direction de \(n_x \) dans la surface du film, \(n_z \) est l’indice de réfraction dans la direction perpendiculaire à un plan du film, d est une épaisseur du film et \(R_{th} \) est...
un retard dans la direction de l'épaisseur, et

\[R_{in} = (n_x - n_y) \times d \]

où \(n_x \) est un indice de réfraction dans la direction ayant l'indice de réfraction le plus élevé dans une surface du film, \(n_y \) est l'indice de réfraction dans la direction perpendiculaire à la direction de \(n_x \) dans la surface du film, \(d \) est une épaisseur du film et \(R_{in} \) est un retard dans le plan.

12. Film optique selon la revendication 10, dans lequel le film optique a un retard dans la direction de l'épaisseur d'une valeur négative, ayant une valeur absolue se situant dans la plage de 0 à 1000 nm et un retard dans le plan se situant dans la plage de 0 à 1000 nm.

13. Film optique selon la revendication 10, dans lequel le film optique comprend au moins un élément sélectionné parmi le groupe constitué d'une couche de barrage au gaz, d'une couche de barrage à l'humidité, d'une couche de barrage à l'oxygène et d'une couche conductrice transparente sur au moins un côté du film.

14. Film optique selon la revendication 10, dans lequel le film optique est étiré selon un rapport de 1 % à 500 % dans une direction dans le plan.

15. Affichage comprenant le film optique de la revendication 10 à titre de substrat ou de film de retardement.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- KR 102005004439 [0007]
- US 5580950 A [0009]
- KR 2005003057 W [0011]