EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 01.08.2012 Bulletin 2012/31

(21) Application number: 07857954.7

(22) Date of filing: 20.12.2007

(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

(30) Priority: 16.01.2007 EP 07100578

(43) Date of publication of application: 30.09.2009 Bulletin 2009/40

(73) Proprietor: Catexel Limited
London
EC4A 3AE (GB)

(72) Inventors:
• DE ALMEIDA, Joaquim, Manuel, Henriques
  Matlock Derbyshire DE4 3GP (GB)
• BACHUS, Herbert
  72379 Hechingen (DE)
• DJODIKROMO, Zinaida, Ponie
  NL-3083 JL Rotterdam (NL)
• DOERFLER, Christian
  72141 Waldorphaeslach (DE)
• HAGE, Ronald
  NL-3133 AT Vlaardingen (NL)
• LIENKE, Joachim
  NL-3133 AT Vlaardingen (NL)

(74) Representative: McNab, Donald C. et al
Marks & Clerk LLP
Aurora
120 Bothwell Street
Glasgow
G2 7JS (GB)

(54) BLEACHING OF SUBSTRATES
VERFAHREN ZUM BLEICHEN VON SUBSTRATEN
BLANCHIMENT DES SUBSTRATS

(51) Int Cl.:
D06L 3/02 (2006.01) D21C 9/10 (2006.01)
D21C 9/16 (2006.01) C11D 3/395 (2006.01)

(56) References cited:
EP-A2- 0 458 397
WO-A-02/064721
WO-A-2006/125517

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The present invention relates to the catalytic bleaching of substrates.

BACKGROUND OF INVENTION

The bleaching of raw cotton and wood pulp are massive industries.

Raw cotton originating from cotton seeds contains mainly colourless cellulose, but has a yellow-brownish colour due to the natural pigment in the plant. Many impurities adhere, especially to the surface. They consist mainly of protein, pectin, ash and wax.

The cotton and textile industries recognise a need for bleaching cotton prior to its use in textiles and other areas. The cotton fibres are bleached to remove natural and adventitious impurities with the concurrent production of substantially whiter material.

There have been two major types of bleach used in the cotton industry. One type is a dilute alkali or alkaline earth metal hypochlorite solution. The most common types of such hypochlorite solutions are sodium hypochlorite and calcium hypochlorite. Additionally, chlorine dioxide as bleaching agent has been developed and shows less cotton damage than hypochlorite does. Also mixtures of chlorine dioxide and hypochlorite can be applied. The second type of bleach is a peroxide solution, e.g., hydrogen peroxide solutions. This bleaching process is typically applied at high temperatures, i.e. 80 to 100°C. Controlling the peroxide decomposition due to trace metals is key to successfully apply hydrogen peroxide. Often Mg-silicates or sequestering agents such as EDTA or analogous phosphonates can be applied to reduce decomposition.

The above types of bleaching solutions and caustic scouring solutions may cause tendering of the cotton fibre due to oxidation which occurs in the presence of hot alkali or from the uncontrolled action of hypochlorite solutions during the bleaching process. Also hydrogen peroxide is known to give reduced cotton fibre strengths, especially when applied without proper sequestration or stabilisation of transition-metal ions. Tendering can also occur during acid scour by the attack of the acid on the cotton fibre with the formation of hydrocellulose.

Purified cellulose for rayon production usually comes from specially processed wood pulp. It is sometimes referred to as “dissolving cellulose” or “dissolving pulp” to distinguish it from lower grade pulps used for papermaking and other purposes. Dissolving cellulose is characterised by a high cellulose content, i.e., it is composed of long-chain molecules, relatively free from lignin and hemicelluloses, or other short-chain carbohydrates. A manufactured fibre composed of regenerated cellulose, in which substituents have replaced not more than 15% of the hydrogens of the hydroxyl groups. Wood pulp produced for paper manufacture either contains most of the originally present lignin and is then called mechanical pulp or it has been chiefly delignified, as in chemical pulp. Different sources of wood pulp can be found, such as softwood pulp (from e.g., fir trees), or hardwood pulp, such as that originating from birch or eucalyptus trees. Mechanical pulp is used for e.g. newsprint and is often more yellow than paper produced from chemical pulp (such as for copy paper or book-print paper). Further, paper produced from mechanical pulp is prone to yellowing due to light- or temperature-induced oxidation. Whilst for mechanical pulp production mild bleaching processes are applied, to produce chemical pulp having a high whiteness, various bleaching and delignification processes are applied. Widely applied bleaches include elemental chlorine, chlorine dioxide, hydrogen peroxide, and ozone.

Whilst for both textile bleaching and wood pulp bleaching, chlorine-based bleaches are often most effective, there is a need to apply oxygen-based bleaches for environmental reasons. Hydrogen peroxide is a good bleaching agent; however, it needs to be applied at high temperatures and long reaction times. For industry it is desirable to be able to apply hydrogen peroxide at lower temperatures and shorter reaction times than in current processes.

The macrocyclic triazacycllic molecules have been known for several decades, and their complexation chemistry with a large variety of metal ions has been studied thoroughly. The azacyclic molecules often lead to complexes with enhanced thermodynamic and kinetic stability with respect to metal ion dissociation, compared to their open-chain analogues.

EP 0458397 discloses the use manganese 1,4,7-Trimethyl-1,4,7-triazacyclononane (Me3-TACN) complexes as bleaching and oxidation catalysts and use for paper/pulp bleaching and textile bleaching processes. 1,4,7-Trimethyl-1,4,7-triazacyclononane (Me3-TACN) has been used in dishwashing for automatic dishwashers, SUN™, and has also been used in a laundry detergent composition, OMO Power™. The ligand (Me3-TACN) is used in the form of its manganese transition metal complex, the complex having a counter ion that prevents deliquescence of the complex.

United States Application 2001/0025895A1, Patt et al, discloses the use of PF6- salts of 1,2,-bis-(4,7,-dimethyl-1,4,7,-triazacyclonon-1-yl)-ethane and Me4-DTNE.

United States Application 2002/010120 discloses the bleaching of substrates in an aqueous medium, the aqueous medium comprising a transition metal catalyst and hydrogen peroxide.
WO 2006/125517 discloses a method of catalytically treating a cellulose or starch substrate with a Mn(III) or Mn(IV) preformed transition metal catalyst salt and hydrogen peroxide in an aqueous solution. The preformed transition metal catalyst salt is described as having a non-coordinating counter ion and having a water solubility of at least 30 g/l at 20 °C. Exemplified ligands of the catalysts described in WO 2006/125517 are 1,4,7-Trimethyl-1,4,7-triazacyclononane (Me₃-TACN) and 1,2,-bis-(4,7,-dimethyl-1,4,7,-triazacyclonon-1-yl)-ethane (Me₄-DTNE).

SUMMARY OF INVENTION

The present invention provides effective bleaching of cellulose material whilst reducing cellulosic polymer degradation which results in fiber damage.

In one aspect the present invention provides a method of bleaching a cellulose material comprising the following step: treating the cellulose material with an non-buffered aqueous solution, the aqueous solution having a initial pH from 8 to 11, the aqueous solution comprising:

(i) a preformed transition metal catalyst (manganese catalyst), the transition metal catalyst present in a concentration from 0.1 to 100 micromolar, and
(ii) from 5 to 1500 mM of hydrogen peroxide,

wherein the pH of the aqueous solution is maintained within an operating window such that the initial pH does not decrease by more than 1.5 pH units during the treatment of the cellulose material in the presence of the catalyst before rinsing and, the preformed transition metal catalyst is a mononuclear or dinuclear complex of a Mn(III) or Mn(IV) transition metal catalyst wherein the ligand of the transition metal catalyst is of formula (I):

\[
(Q)p \\
\text{I}
\]

wherein:

\[
P = \frac{R}{N - (C_R_1 R_2 C_R_3 R_4)}
\]

p is 3;
R is independently selected from: hydrogen, C1-C6-alkyl, CH2CH2OH, and CH2COOH, or one of R is linked to the N of another Q via an ethylene bridge;
R1, R2, R3, and R4 are independently selected from: H, C1-C4-alkyl, and C1-C4-alkylhydroxy,

wherein the pH of the aqueous solution is maintained within the operating window of 1.5 pH units by a process selected from:

a) the cellulose material is first treated with NaOH and at pH from 11 to 12 for between 2 and 120 min at a temperature in the range from 50 to 110 °C without the presence of the manganese catalyst, after which the pH is lowered to the pH range from 9 to 11 and further treated in the presence of the manganese catalyst for between 2 and 60 min at 50 to 110 °C, hydrogen peroxide being added either during with the first treatment with NaOH and/or when the manganese catalyst is present;
b) the cellulose material is treated at a pH in the range from 10 to 11 with sequestrant, H₂O₂, NaOH and the manganese catalyst whilst permitting the pH to reduce naturally as a consequence of the bleaching; and,
c) the cellulose material is treated with sequestrant, H₂O₂, NaOH and the manganese catalyst whilst maintaining the pH in the range 8 to 11 by addition of aqueous NaOH.

Of the steps a), b) and c) step b) is the most preferred and step a) is the second most preferred.
MAINTENANCE of pH

[0017] Stabilization of the pH provides better bleaching of the cellulosic material. The requirement that the pH of the aqueous solution is prevented from decreasing by more than 1.5 pH unit during treatment of the cellulose material in the presence of the catalyst before rinsing may be provided for in a number of ways. Below are three ways that are preferred.

First high pH with H2O2 and surfactant without catalyst, then dropping the pH and add catalyst

[0018] 1) Pretreating the cellulose material with base (e.g., NaOH) to ca pH 11.5 and optionally with H2O2 before lowering the pH to the range 8 to 11 and then adding the manganese catalyst. If no H2O2 was used in the pretreatment stage then H2O2 must be added after or as the pH is lowered. Optionally, also low amounts of hydrogen peroxide may be employed in the pretreatment phase, and additional hydrogen peroxide may be added after or as the pH is lowered. There is no need rinse or wash the cellulose material after the pretreatment step, although an aqueous wash is preferred but this adds to cost.

Single stage process, starting at the appropriate pH window.

[0019] 2) Commencing treatment of the cellulose material at pH in the range from 10 to 11 with sequestrant/H2O2/NaOH/ manganese catalyst and letting the pH reduce naturally as a consequence of the bleaching (typically from pH 8.5 to 10).

Single stage process at lower pH with maintaining the pH constant.

[0020] 3) Maintaining the pH in the range 8 to 11 during the treatment by addition, preferably continuous, of aqueous NaOH. This may be provided by the use of a pH probe together with a feed back loop which controls the addition of sodium hydroxide.

[0021] Other ways of maintaining the pH in the range 8 to 11 during the treatment such as by applying ion exchange resins may be used.

[0022] Ideally the pH is constant and is prevented from decreasing during treatment of the cellulose material in the presence of the manganese catalyst before rinsing. However practically this is difficult to effect but in reality the pH change can be minimized to a pH change of 0.2 in an industrial setting.

[0023] Preferably, the pH of the aqueous solution is prevented from decreasing by more than 1 pH unit during treatment of the cellulose material in the presence of the manganese catalyst before rinsing, more preferably 0.7 pH, even more preferably 0.4 pH.

[0024] One will appreciate the closer the pH tolerances the greater the cost of treatment.

CELLULOSE MATERIAL

[0025] This may be found, for example, cotton, wood pulp, straw, and hemp. Preferably the cellulose material treated is wood pulp or cotton, most preferably cotton.

[0026] Raw cotton (gin output) is dark brown in colour due to the natural pigment in the plant. The cotton and textile industries recognise a need for bleaching cotton prior to its use in textiles and other areas. The object of bleaching such cotton fibres is to remove natural and adventitious impurities with the concurrent production of substantially whiter material.

[0027] Wood pulp produced for paper manufacture either contains most of the originally present lignin and is then called mechanical pulp or it has been chiefly delignified, as in chemical pulp. Different sources of wood pulp can be found, such as softwood pulp, e.g., from fir trees, or hardwood pulp, e.g., from birch or eucalyptus trees. Mechanical pulp is used for newsprint and is often more yellow than paper produced from chemical pulp. Further, paper produced from mechanical pulp is prone to yellowing due to light- or temperature-induced oxidation. Whilst for mechanical pulp production mild bleaching processes are applied, to produce chemical pulp having a high whiteness, various bleaching and delignification processes are applied.

[0028] Widely applied bleaches include elemental chlorine, hydrogen peroxide, chlorine dioxide and ozone.

[0029] The aforementioned materials are discussed in WO 2006/125517.

[0030] The method is also applicable to laundry applications in both domestic and industrial settings. The method is particularly applicable to domestic or industrial laundering machines that have capabilities to control the pH during the washing processes, such as described in US2006/0054193, US2005-0252255, and US2005-0224339. The method is
most particularly applicable to the bleaching of stains found on white institutional cotton fabric as found in prisons and hospitals.

NON-BUFFERED SYSTEM

[0031] The aqueous solution is not buffered. In this regard, the aqueous solution does not contain an inorganic buffer, e.g., carbonate, phosphate, and borate. However, the organic sequestrant and hydrogen peroxide may be considered to have some buffering capacity but this is not to be considered as buffering within the context of the present invention. Most preferably, the aqueous solution is not buffered other than by the organic sequestrant and hydrogen peroxide.

TRANSITION METAL CATALYST

[0032] EP 0458397 and EP 0458398 disclose the use manganese 1,4,7-Trimethyl-1,4,7-triazacyclononane (Me₃-TACN) complexes as bleaching and oxidation catalysts and use for paper/pulp bleaching and textile bleaching processes. 1,4,7-Trimethyl-1,4,7-triazacyclononane (Me₃-TACN) has been used in dishwashing for automatic dishwashers, SUN™, and has also been used in a laundry detergent composition, OMO Power™. The ligand (Me₃-TACN) is used in the form of its manganese transition metal complex, the complex having a counter ion that prevents deliquesce of the complex. The counter ion for the commercialised products containing manganese Me₃-TACN is PF₆⁻. The is Me₃-TACN PF₆⁻ salt has a water solubility of 10.8 g per litre at 20 °C. Additionally, the perchlorate (ClO₄⁻) counter ion is acceptable from this point of view because of its ability to provide a manganese Me₃-TACN that does not appreciably absorb water. However, due to potential explosive properties of transition-metal perchlorate complexes, perchlorate-containing compounds are not preferred. Reference is made to United States Patent 5,256,779 and EP 458397, both of which are in the name of Unilever. One advantage of the PF₆⁻ or ClO₄⁻ counter ions for the manganese Me₃-TACN complex is that the complex may be easily purified by crystallisation and recrystallisation from water. In addition, there non-deliquescent salts permit processing, e.g., milling of the crystals, and storage of a product containing the manganese Me₃-TACN. Further, these anions provide for storage-stable metal complexes. For ease of synthesis of manganese Me₃-TACN highly deliquescent water soluble counter ions are used, but these counter ions are replaced with non-deliquescent, much less water soluble counter ions at the end of the synthesis. During this exchange of counter ion and purification by crystallisation loss of product results. A drawback of using PF₆⁻ as a counterion is its significant higher cost when compared to other highly soluble anions.

[0033] Whilst the manganese transition metal catalyst used may be non-deliquescent by using counter ions such as PF₆⁻ or ClO₄⁻, it is preferred for industrial substrates that the transition metal complex is water soluble. It is preferred that the preformed transition metal is in the form of a salt such that it has a water solubility of at least 50 g/l at 20°C. Preferred salts are those of chloride, acetate, sulphate, and nitrate. These salts are described in WO 2006/125517.

[0034] The preformed transition metal catalyst may be added in one batch, multiple additions, or as a continuous flow. The use of a continuous flow is particularly applicable to continuous processes.

[0035] Preferably, R₁, R₂, R₃, and R₄ are independently selected from: H and Me. Most preferably, the manganese catalyst is derived from a ligand selected from the group consisting 1,4,7-Trimethyl-1,4,7-triazacyclononane (Me₃-TACN) and 1,2-bis-(4,7-dimethyl-1,4,7-triazacyclonon-1-yl)-ethane (Me₄-DTNE).

[0036] The preformed transition metal catalyst salt is preferably a dinuclear Mn(III) or Mn(IV) complex with at least one O²⁻ bridge.

pH Changing Materials

[0037] The pH of the aqueous environment of the cellulose material may be readily changed by the addition of acid or base. Suitable examples of acids are hydrochloric acid, sulphuric acid and acetic acid. Suitable examples of bases are sodium hydroxide, potassium hydroxide and sodium carbonate. The acid and basic components are preferably added as aqueous solutions, preferably dilute aqueous solutions.

ORGANIC SEQUESTRANT

[0038] Preferably, the aqueous solution comprises from 0.01 to 10 g/l of an organic sequestrant, the sequestrent selected from: an aminophosphonate sequestrent and a carboxylate sequestrent. This is particularly preferred for in the case where the cellulose material is cotton.

[0039] The sequestrant is either an aminophosphonate sequestrent or a carboxylate sequestrent. Preferably, the sequestrent is either an aminophosphonate sequestrent or an aminocarboxylate sequestrent.

[0040] The following are preferred examples of aminophosphonate sequestrents nitroil trimethylene phosphonates, ethylene-diamine-N,N,N',N'-tetra(methylene phosphonates) (Dequest™ 204) and diethylene-triamine-N,N,N',N'',N'''-
penta(methylene phosphonates) (Dequest™ 206), most preferably diethylene-triamine-N,N',N''-N'''- penta(methylene phosphonates. One skilled in the art will be aware that that different types of each Dequest™ exist, e.g., as phosphonic acid or as sodium salts or any mixture thereof.

[0041] The following are preferred examples of aminocarboxylate sequestrants: ethylenediaminetetraaeetic acid (EDTA), N-hydroxyethylenediaminetetraacetic acid (HEDTA), nitrioltriacetic acid (NTA), N-hydroxyethyleniminodiacetic acid, N-hydroxyethylenaminodiacetic acid, glutamic diacetic acid, sodium iminosuccinate, diethylenetriaminepentaacetic acid (DTPA), ethylenediamine-N,N'-diosuccinic acid (EDDS), methylglycinediacetic acid (MGDA), and alamine-N,N-diacetic acid. A most preferred aminocarboxylate sequestrant is diethylenetriaminepentaacetic acid (DTPA).

[0042] The sequestrants may also be in the form of their salts, e.g., alkali metal, alkaline earth metal, ammonium, or substituted ammonium salts preferably. The sequestrant is in the free acid form, sodium or magnesium salt.

[0043] Examples of carboxylate sequestrants are polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, maleic acid, (ethylenedioxy) diacetic acid, maleic acid, diglycolic acid, tartaric acid, tartronic acid, and fumaric acid, as well as the ether carboxylates. Polycarboxylates containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the carboxymethoxy succinates. Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1,261,829, 1,1,2,2-ethane tetracarboxylates, 1,1,3,3-propane tetracarboxylates and 1,1,2,3-propane tetracarboxylates. Polycarboxylates containing five substituted ammonium salt. Preferably the sequestrant is in the free acid form, sodium or magnesium salt.

[0044] Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1,261,829, 1,1,2,2-ethane tetracarboxylates, 1,1,3,3-propane tetracarboxylates and 1,1,2,3-propane tetracarboxylates.

[0045] Other suitable water-soluble organic salts are the homo- or co-polymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms. Polymers of the latter type are disclosed in GB-A-1,596,756. Examples of such salts are polycarboxylates of M.Wt. 2000 to 5000 and their copolymers with maleic anhydride, such copolymers having a molecular weight of from 20,000 to 70,000, especially about 40,000.

[0046] Also copolymeric polycarboxylate polymers which, formally at least, are formed from an unsaturated polycarboxylic acid such as maleic acid, citraconic acid, itaconic acid and mesaconic acid as first monomer, and an unsaturated monocarboxylic acid such as acrylic acid or an alpha -C1-C4 alkyl acrylic acid as second monomer. Such polymers are available from BASF under the trade name Sokalan® CP5 (neutralised form), Sokalan® CP7, and Sokalan® CP45 (acidic form).

[0047] Most preferred sequestrants are Dequest™ 2066 or DTPA.

Surfactant

[0048] It is preferred that bleaching method is conducted in the presence of a surfactant. The use of surfactants, for example, helps to remove the waxy materials encountered in cotton. For substrates originating from wood pulp, hydrophobic substrates are not encountered and therefore, the need of surfactants in the treatment process is not so preferred. In this regard, it is preferred that a surfactant is present in the range from 0.1 to 20 g/L, preferably 0.5 to 10 g/l. It is preferred that the surfactant is a non-ionic surfactant and most preferably biodegradable.

EXPERIMENTAL

Experiment 1: pH control by continuously adding NaOH solution during the bleaching process.

[0049] Raw cotton with a Berger Whiteness value of 5.5 +/- 1.0 was treated as follows: 6 grams of the cotton was immersed into temperature-controlled beaker glasses a 60 ml solution (cloth liquor ratio of 1/10) containing 20 microM of [Mn2O3(Me3-TACN)2] (PF6)2.H2O, 2.3% H2O2 (equals to 6.66 ml (35%)/l; w/w wt cotton), 0.4 g/l H5-DTPA (ex Akzo-Nobel; trade name Dissolvine D50; purity is 50%), pH-value adjusted to desired level (after correction for temperature differences), 2 g/l Sandoclean™ PCJ (ex Clariant).

[0050] Drops of NaOH (1M) were added to maintain the pH (within 0.2 pH units) for 30 minutes of agitated solutions at 75 to 80 °C. The pH was monitored with a pH meter. Subsequently the cotton swathes were rinsed with 2 to 3 litres of hot demineralised water (80 °C), then washed with copious amounts of demineralised water, spun in a spin drier for 3 minutes and dried overnight under ambient conditions. The optical properties of the cloths were then measured using a Minolta spectrophotometer CM-3700d, using L, a, b values which are converted to Berger Whiteness values.

[0051] The values of the whiteness is expressed in Berger units. The formula of Berger whiteness is given below:

\[ W_{berger} = Y + a.Z - b.X, \]

where \( a = 3.448 \) and \( b = 3.904 \).
The values X, Y, Z are the coordinates of the achromatic point.

The results of the experiments are given in Table 1.

The results shown in the Table 1 indicate that when controlling the pH (entry 2), the bleach effect is much larger than when allowing the pH to drop below 8.0. As a benchmark, the bleach performance in the absence of the manganese catalyst shows 41.0 Wb (at pH 10) under these conditions. Without DTPA added, in the presence of catalyst the whiteness is about 10 Wb lower than the system with DTPA.

Experiment 2: pH control by pretreating the cotton with NaOH/H2O2 without catalyst and then lowering the pH to an optimal level and adding the catalyst.

Raw cotton with a Berger Whiteness value of 5.5 +/- 1.0 was treated as follows: 6 grams of the cotton was immersed into temperature-controlled beaker glasses of a 60 ml solution (cloth/liquor ratio of 1/10), containing 0.5 g/l DTPA, 2 g/l Sandoclean PCJ, 2.3% H2O2 (equals to 6.66 ml (35%)/l; w/w wrt cotton), for 15 minutes at 75 °C. Subsequently, sulphuric acid was added (1M) until the desired pH was added followed by 20 microM of [Mn2O3(Me3-TACN)2] (PF6)2.H2O and the mixture left for 15 minutes with continuous stirring. No NaOH solution was added during the bleaching process in the presence of catalyst. After the allocated time, the cloths are washed and dried as exemplified above. The values of the whiteness are expressed in Berger units, as defined above.

The results are given in Table 2.

Table 2: Whiteness (Berger) results obtained using 20 microM [Mn2O3(Me3-TACN)2] (PF6)2.H2O in an unbuffered solution with 0.2 g/l DTPA at 75°C for 15 minutes, after having the cloths allowed to pretreat with NaOH/ H2O2 for 15 minutes at 75°C (entry 1) vs adding the catalyst at the beginning of the bleaching experiment at pH 9.75.

<table>
<thead>
<tr>
<th>pH(step 1)</th>
<th>pH(step2)</th>
<th>pH(final)</th>
<th>Wb</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>10</td>
<td>9.4</td>
<td>60.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9.75</td>
<td></td>
<td>7.6</td>
<td>51.0</td>
<td>0.4</td>
</tr>
</tbody>
</table>

The results in Table 2 indicate that the pre-treatment step offers a big advantage in bleaching results, as compared to the comparative experiment wherein the catalyst is allowed to bleach the substrate starting from pH 10 without pre-treatment step (entry 2). As a comparative experiment, bleaching the cloths at pH 11 without catalyst, yielded a final pH of 9.9 and 51.0 (0.9 SD) Wb points.

Experiment 3: starting at pH 10.9 and letting the pH reduce during the bleaching reaction.

A batch of raw cotton with a Berger Whiteness value of 0 was treated as follows: 6 grams of the cotton was immersed into temperature-controlled beaker glasses a 60 ml solution (cloth/liquor ratio of 1/10) containing 10 microM of [Mn2O3(Me3-TACN)2] (PF6)2.H2O, 2.3% H2O2 (equals to 6.66 ml (35%)/l; w/w wrt cotton), 0.4 g/l H5-DTPA (ex Akzo-Nobel; trade name Dissolvine D50; purity is 50%), and 2 g/l Sandoclean PCJ (ex Clariant). The temperature of the experiment was 77 oC.

The pH of water containing Sandoclean, Na5DTPA, cotton and appropriate amount of NaOH was determined at room temperature, heated to 77 oC, the pH value was monitored and then hydrogen peroxide was added. Then a correction for the addition of hydrogen peroxide was made by adding some extra NaOH. Then the catalyst was added and left for 30 minutes under stirring. The cloths were then rinsed and washed as described above. The pH of the solution after the bleaching stage was determined after allowing the solution cooled down to room temperature. As a comparative experiment to determine the effect of the manganese-triazacyclononane compound, no catalyst was added. The results are given in the table below. The values of the whiteness are expressed in Berger units, as defined above.
The results shown in the table indicate that at this pH the effect of the catalyst is significant, compared to the reference experiment.

<table>
<thead>
<tr>
<th></th>
<th>pH(init)</th>
<th>pH(final)</th>
<th>Wb</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without catalyst</td>
<td>10.7</td>
<td>9.6</td>
<td>51.5</td>
<td>0.6</td>
</tr>
<tr>
<td>With catalyst</td>
<td>10.7</td>
<td>9.7</td>
<td>57.6</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Claims

1. A method of bleaching a cellulose material comprising the following step:

   treating the cellulose material with an non-buffered aqueous solution, the aqueous solution having a initial pH from 8 to 11, the aqueous solution comprising:

   (i) a preformed transition metal catalyst, the transition metal catalyst present in a concentration from 0.1 to 100 micromolar, and
   (ii) from 5 to 1500 mM of hydrogen peroxide,

   wherein the pH of the aqueous solution is maintained within an operating window such that the initial pH does not decrease by more than 1.5 pH units during the treatment of the cellulose material in the presence of the catalyst before rinsing and, the preformed transition metal catalyst is a mononuclear or dinuclear complex of a Mn(III) or Mn(IV) transition metal catalyst wherein the ligand of the transition metal catalyst is of formula (I);

   \[
   \begin{array}{c}
   (Q)P \\
   (I)
   \end{array}
   \]

   wherein:

   \[
   Q = \begin{array}{c}
   \text{R} \\
   \text{N} \quad \text{[CR_1R_2CR_3R_4]} \\
   \end{array}
   \]

   p is 3;

   R is independently selected from: hydrogen, C1-C6-alkyl, CH2CH2OH, and CH2COOH, or one of R is linked to the N of another Q via an ethylene bridge;

   R1, R2, R3, and R4 are independently selected from: H, C1-C4-alkyl, and C1-C4-alkylhydroxy,

   wherein the pH of the aqueous solution is maintained within the operating window of 1.5 pH units by a process selected from:

   a) the cellulose material is first treated with NaOH and at pH from 11 to 12 for between 2 and 120 min at a temperature in the range from 50 to 110°C without the presence of the manganese catalyst, after which the pH is lowered to the pH range from 9 to 11 and further treated in the presence of the manganese catalyst for between 2 and 60 min at 50 to 110°C, hydrogen peroxide being added either during with the first treatment with NaOH and/or when the manganese catalyst is present;
   b) the cellulose material is treated at a pH in the range from 10 to 11 with sequestrant, H2O2, NaOH and the manganese catalyst whilst permitting the pH to reduce naturally as a consequence of the bleaching; and,
   c) the cellulose material is treated with sequestrant, H2O2, NaOH and the manganese catalyst whilst main-
2. A method according to claim 1, wherein R1, R2, R3, and R4 are independently selected from: H and Me.

3. A method according to claim 1, wherein the catalyst is derived from a ligand selected from the group consisting 1,4,7-Trimethyl-1,4,7-triazacyclononane (Me$_3$-TACN) and 1,2-bis-(4,7-dimethyl-1,4,7-triazacyclonon-1-yl)-ethane (Me$_4$-DTNE).

4. A method according to any preceding claim, wherein the preformed transition metal catalyst salt is a dinuclear Mn(III) or Mn(IV) complex with at least one O$_2^-$ bridge.

5. A method according to any preceding claim, wherein the aqueous solution comprises from 0.01 to 10 g/l of an organic sequestrant, the sequestrent selected from: an aminophosphonate sequestrent and a carboxylate sequestrent.

6. A method according to any preceding claim, wherein the sequestrant is selected from: an aminophosphonate sequestrent and an aminocarboxylate sequestrent.

7. A method according to claim 6, wherein the sequestrant is DTPA (diethylenetriamine pentaacetic acid).

8. A method according to any preceding claim, wherein the aqueous solution comprises from 5 to 100 mM of hydrogen peroxide.

9. A method according to any preceding claim, wherein the initial pH of the solution is between 9 and 10.5.

10. A method according to any previous claim, wherein the cellulose material is cotton and is first treated with NaOH and hydrogen peroxide at pH from 11 to 12 for between 2 and 120 min at a temperature in the range from 50 to 110°C without the presence of a catalyst, after which the pH is lowered to between pH 9 and 11 and further bleached in the presence of catalyst between 2 and 60 min at 50 to 110°C.

11. A method according to claim 10, wherein the first step is between 5 and 40 minutes at 60 to 90°C and the second step containing the catalyst is between 5 and 40 min at 60 to 90°C.

12. A method according to any previous claim, wherein a pH probe is used to monitor the pH of the cellulose material environment together with a feed back loop controlling the addition of acidic or basic to material to maintain the pH within the window.

13. A method according to claim 12, wherein the window is 1 pH unit.

**Patentansprüche**

1. Verfahren zum Bleichen eines Cellulosematerials, das den folgenden Schritt aufweist:

   Behandeln des Cellulosematerials mit einer ungepufferten wässrigen Lösung, wobei die wässrige Lösung einen Anfangs-pH-Wert von 8 bis 11 aufweist, wobei die wässrige Lösung aufweist:

   (i) einen als Vorprodukt gebildeten Übergangsmetallkatalysator, wobei der Übergangsmetallkatalysator in einer Konzentration von 0,1 bis 100 μM anwesend ist, und
   (ii) 5 bis 1500 mM Wasserstoffperoxid,

   wobei der pH-Wert der wässrigen Lösung innerhalb eines Arbeitsfensters gehalten wird, das so beschaffen ist, dass der Anfangs-pH-Wert während der Behandlung des Cellulosematerials in Anwesenheit des Katalysators vor dem Spülen um nicht mehr als 1,5 pH-Einheiten abnimmt, und wobei der als Vorprodukt gebildete Übergangsmetallkatalysator ein einkerniger oder zweikerniger Komplex aus einem Mn(III)- oder Mn(IV)-Übergangsmetallkatalysator ist, wobei der Ligand des Übergangsmetallkatalysators die folgende Formel (i) aufweist:
wobei

ist:

p gleich 3 ist;

R unabhängig voneinander unter Wasserstoff, einem C₁-C₆-Alkyl, CH₂CH₂OH und CH₂COOH ausgewählt ist oder eines der R über eine Ethylenbrücke an das N eines anderen Q gebunden ist; R₁, R₂, R₃ und R₄ unabhängig voneinander unter H, einem C₁-C₄-Alkyl und C₁-C₄-Alkylhydroxy ausgewählt sind, wobei der pH-Wert der wässrigen Lösung durch einen unter den folgenden ausgewählten Prozess innerhalb des Arbeitsfensters von 1,5 pH-Einheiten gehalten wird:

a) das Cellulosematerial wird zunächst bei einem pH-Wert von 11 bis 12 und einer Temperatur im Bereich von 50 bis 110°C ohne Anwesenheit des Mangankatalysators 2 bis 120 Minuten mit NaOH behandelt, wonach der pH-Wert auf den pH-Bereich von 9 bis 11 abgesenkt und das Cellulosematerial in Anwesenheit des Mangankatalysators 2 bis 60 Minuten bei 50 bis 110°C weiterbehandelt wird, wobei entweder während der ersten Behandlung mit NaOH und/oder in Anwesenheit des Mangankatalysators Wasserstoffperoxid zugesetzt wird;

b) das Cellulosematerial wird bei einem pH-Wert im Bereich von 10 bis 11 mit einem Maskierungsmittel, H₂O₂, NaOH und dem Mangankatalysator behandelt, wobei eine natürliche Verminderung des pH-Werts als Folge des Bleichens zugelassen wird; und
c) das Cellulosematerial wird mit Maskierungsmittel, H₂O₂, NaOH und dem Mangankatalysator behandelt, wobei der pH-Wert durch Zusatz von wässrigem NaOH im Bereich von 8 bis 11 gehalten wird.

2. Verfahren nach Anspruch 1, wobei R₁, R₂, R₃ und R₄ unabhängig voneinander unter H und Me ausgewählt sind.

3. Verfahren nach Anspruch 1, wobei der Katalysator von einem Liganden abgeleitet ist, der aus der Gruppe ausgewählt ist, die aus 1,4,7-Trimethyl-1,4,7-triazacyclononan (Me₃-TACN) und 1,2-Bis-(4,7-dimethyl-1,4,7-triazacyclonon-1-yl)ethan (Me₄-DTNE) besteht.

4. Verfahren nach einem der vorstehenden Ansprüche, wobei das als Vorprodukt gebildete Übergangsmetallkatalysatorsalz ein zweikerniger Mn(III)- oder Mn(IV)-Komplex mit mindestens einer O²⁻-Brücke ist.

5. Verfahren nach einem der vorstehenden Ansprüche, wobei die wässrige Lösung 0,01 bis 10 g/l eines organischen Maskierungsmittels aufweist, wobei das Maskierungsmittel unter einem Aminophosphonat-Maskierungsmittel und einem Carboxylat-Maskierungsmittel ausgewählt ist.


7. Verfahren nach Anspruch 6, wobei das Maskierungsmittel DTPA (Diethyltriaminpentaessigsäure) ist.

8. Verfahren nach einem der vorstehenden Ansprüche, wobei die wässrige Lösung 5 bis 100 mM Wasserstoffperoxid aufweist.


10. Verfahren nach einem der vorstehenden Ansprüche, wobei das Cellulosematerial Baumwolle ist und zunächst bei
einem pH-Wert von 11 bis 12 und einer Temperatur im Bereich von 50 bis 110°C ohne Anwesenheit eines Kataly- 
sators 2 bis 120 Minuten mit NaOH und Wasserstoffperoxid behandelt wird, wonach der pH-Wert auf 9 bis 11 
abgesenkt wird und in Anwesenheit des Katalysators 2 bis 60 Minuten bei 50 bis 110°C weiter gebleicht 
wird.

11. Verfahren nach Anspruch 10, wobei der erste Schritt 5 bis 40 Minuten bei 60 bis 90°C ausgeführt wird und der 
zweite Schritt mit Anwesenheit des Katalysators 5 bis 40 Minuten bei 60 bis 90°C ausgeführt wird.

12. Verfahren nach einem der vorstehenden Ansprüche, wobei eine pH-Sonde zur Überwachung des pH-Werts des 
Cellulosematerial-Milieus benutzt wird, zusammen mit einer Rückkopplungsschleife, die den Zusatz von saurer oder 
basischer Substanz zu dem Material steuert, um den pH-Wert innerhalb des Fensters zu halten.

13. Verfahren nach Anspruch 12, wobei das Fenster 1 pH-Einheit ist.

Reverdications

1. Procédé de blanchiment d'une matière cellulosique comprenant l'étape suivante consistant à:

traiter la matière cellulosique avec une solution aqueuse non tamponnée, la solution aqueuse ayant un pH initial 
de 8 à 11, la solution aqueuse comprenant:

(i) un catalyseur de type métal de transition préformé, ce catalyseur de type métal de transition étant présent 
to une concentration de 0,1 à 100 micromolaire, et
(ii) 5 à 1500 mM de peroxyde d'hydrogène,

où le pH de la solution aqueuse est maintenu dans une fenêtre de travail de sorte que le pH initial ne baisse 
pas de plus de 1,5 unités de pH pendant le traitement de la matière cellulosique en présence du catalyseur 
avant le rinçage et, le catalyseur de type métal de transition préformé est un complexe mononucléaire ou 
dinucléaire d’un catalyseur de type métal de transition Mn(III) ou Mn(IV) dans lequel le ligand du catalyseur 
de type métal de transition répond à la formule (I):

\[
    (Q)\begin{array}{c}
        \text{R}
    \end{array}
\]

dans laquelle:

\[
    p \text{ vaut } 3;
\]

R est indépendamment choisi parmi: un hydrogène, un groupe alkyle en C1-C6, CH2CH2OH, et CH2COOH, ou
un des R est lié au N d’un autre Q via un pont éthylène;

R₁₀, R₂, R₃, et R₄ sont indépendamment choisis parmi: H, un groupe alkyle en C₁-C₄, et (alkyl en C₁-C₄)-hydroxy,

où le pH de la solution aqueuse est maintenu dans la fenêtre de travail de 1,5 unités de pH par un procédé 
choisi parmi:

a) on traite d’abord la matière cellulosique avec NaOH et à un pH de 11 à 12 pendant 2 à 120 min à une 
température comprise entre 50 et 110°C sans la présence du catalyseur au manganèse, après quoi le pH 
est abaissé jusqu’à être compris entre 9 et 11 et le traitement est poursuivi en présence du catalyseur au 
manganèse pendant 2 à 60 min entre 50 et 110°C, du peroxyde d’hydrogène étant ajouté soit pendant le 
premier traitement avec NaOH soit/et quand le catalyseur au manganèse est présent;

b) on traite la matière cellulosique à un pH compris entre 10 et 11 avec un agent séquestrant, H₂O₂, NaOH 
et le catalyseur au manganèse, tout en laissant le pH baisser naturellement suite au blanchiment; et,

c) on traite la matière cellulosique avec un agent séquestrant, H₂O₂, NaOH et le catalyseur au manganèse
tout en maintenant le pH entre 8 et 11 par addition de NaOH aqueux.

2. Procédé selon la revendication 1, dans lequel \( R_1, R_2, R_3, \) et \( R_4 \) sont indépendamment choisis parmi : H et Me.

3. Procédé selon la revendication 1, dans lequel le catalyseur dérive d’un ligand choisi dans le groupe constitué du 1,4,7-triméthyl-1,4,7-triazacyclononane (Me3-TACN) et du 1,2-bis-(4,7-diméthyl-1,4,7-triazacyclonon-1-yl)éthane (Me4-DTNE).

4. Procédé selon l’une quelconque des revendications précédentes, dans lequel le sel du catalyseur de type métal de transition préformé est un complexe de Mn(III) ou Mn(IV) dinucléaire avec au moins un pont \( \text{O}_2^2^- \).

5. Procédé selon l’une quelconque des revendications précédentes, dans lequel la solution aqueuse comprend de 0,01 à 10 g/l d’un agent séquestrant organique, l’agent séquestrant étant choisi parmi: un séquestrant aminophosphonate et un séquestrant carboxylate.


7. Procédé selon la revendication 6, dans lequel l’agent séquestrant est le DTPA (acide diéthylènetriamine-pentaa-cétique).

8. Procédé selon l’une quelconque des revendications précédentes, dans lequel la solution aqueuse comprend 5 à 100 mM de peroxyde d’hydrogène.

9. Procédé selon l’une quelconque des revendications précédentes, dans lequel le pH initial de la solution est compris entre 9 et 10,5.

10. Procédé selon l’une quelconque des revendications précédentes, dans lequel la matière cellulosique est du coton et est d’abord traitée avec NaOH et du peroxyde d’hydrogène à un pH de 11 à 12 pendant 2 à 120 min à une température comprise entre 50 et 110°C sans la présence d’un catalyseur, après quoi le pH est abaissé jusqu’à être compris entre 9 et 11 et le blanchiment est poursuivi en présence d’un catalyseur pendant 2 à 60 min entre 50 et 110°C.

11. Procédé selon la revendication 10, dans lequel la première étape dure entre 5 et 40 minutes à 60-90°C et la seconde étape faisant intervenir le catalyseur dure entre 5 et 40 min à 60-90°C.

12. Procédé selon l’une quelconque des revendications précédentes, dans lequel une sonde de pH est utilisée pour suivre le pH de l’environnement de la matière cellulosique conjointement avec une boucle de rétroaction régulant l’addition d’acide ou de base à la matière pour maintenir le pH dans la fenêtre visée.

13. Procédé selon la revendication 12, dans lequel la fenêtre fait 1 unité de pH.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- EP 0458397 A [0010] [0032]
- US 20010025695 A1, Patt [0011]
- US 2002010120 A [0012]
- WO 2006125517 A [0013] [0029] [0033]
- US 20060054193 A [0030]
- US 20050252255 A [0030]
- US 20050224339 A [0030]
- EP 0458398 A [0032]
- US 5256779 A [0032]
- EP 458397 A [0032]
- GB 1261829 A [0043] [0044]
- GB 1398421 A [0043]
- GB 1398422 A [0043]
- US 3936448 A [0043]
- GB 1439000 A [0043]
- GB 1596756 A [0045]