METHOD OF HYDROLYSIS OF PEPTIDE BOND

VERFAHREN ZUR HYDROLYSE EINER PEPTIDBINDUNG

PROCEDE D'HYDROLYSE D'UNE LIAISON PEPTIDE

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

Priority: 09.02.2006 PL 37894606

Date of publication of application: 23.09.2009 Bulletin 2009/39

Proprietor: Instytut Biochemii i Biofizyki PAN
02-106 Warszawa (PL)

Inventors:
- BAL, Wojciech
 PL-05-509 Mysiadlo p. Piaseczno (PL)
- KOPERA, Edyta
 PL-39-300 Mielec (PL)
- KREZEL, Artur
 PL-50-312 Wroclaw (PL)
- WYSLOUCH-CIESZYNSKA, Aleksandra
 PL-83-319 Wroclaw (PL)

Representative: Brodowska, Iwona et al
Lex-Pat
Kancelaria Prawno-Patentowa
Lucka 15/514
00-842 Warsaw (PL)

References cited:
- KARACZYN AA ET AL.: "The Octapeptidic End of the C-Terminal Tail of Histone H2A Is Cleaved Off in Cells Exposed to Carcinogenic Nickel(II)"
- BAL W ET AL.: "Ni(II) Specifically Cleaves the C-Terminal Tail of the Major Variant of Histone H2A and Forms an Oxidative Damage-Mediating Complex with the Cleaved-Off Octapeptide"
 CHEMICAL RESEARCH IN TOXICOLOGY, vol. 13, 13 June 2000 (2000-06-13), pages 616-624, XP002409350 ISSN: 0893-228X cited in the application

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
This invention relates to a method of hydrolysis of the peptide bond between R_1 and B in a specific designed amino acid sequence R_1BXZJR_2, where R_1 represents a polypeptide of interest, R_2 represents a sequence capable of specific binding to another component or molecule, or another domain which needs to be cleaved, and B represents an optional short peptide sequence, wherein the said method is based on a novel molecular mechanism, occurring in a specific complex of this metal ion with the BXZ sequences as defined in the appended claims. This mechanism involves a metal ion assisted transfer of R_1 to the side chain of residue B, to form an intermediate product, which subsequently undergoes hydrolysis. This method can be used to remove C-terminal BXZJR_2 domains in recombinant polypeptides, to yield pure, unmodified target R_1 polypeptides of interest. The intermediate product can also be reacted with other compounds to obtain derivatives of R_1 with the carboxyl group at its C terminus modified.

Background of the invention

The cleavage of the peptide bond is a subject of ongoing interest, being one of the most common and most important procedures in biochemistry. However, the extreme stability of this bond, with half-life for spontaneous hydrolysis estimated as 350 - 600 years at neutral pH and room temperature (Radzicka, A., Wolfenden, R., J. Am. Chem. Soc. 1996, 110, 6105-6109) limits the range of reagents for efficient peptide or protein cleavage. Proteolytic enzymes are natural reagents that cleave peptide bonds with various degrees of specificity. However, only a few of them are used routinely in industrial or laboratory practice, due to such limitations as their narrow requirements for temperature and pH. Therefore, new agents that provide the selective cleavage of peptides and proteins have gained increasing importance. Potential applications are foreseen in protein engineering. They include the removal of functional domains from recombinant polypeptides in protein purification procedures, processing of precursors of active proteins, etc.

Developments in recombinant DNA technology have made it possible to express a wide range of cloned foreign genes in host organisms such as bacteria and yeast. The usage of suitable recombinant polypeptides for the expression of peptides or proteins of interest has become a common practice. Such carriers have several advantages. They may be selected to increase solubility of proteins of interest, to prevent their degradation in host cells or to simplify purification and detection procedures. However, it is often necessary to remove the added functional partner from the polypeptide of interest by means of specific peptide bond cleavage. This concerns for example pharmaceutical applications, where foreign polypeptide sequences can elicit immune response in patients, or structural investigations. A suitable method of peptide bond cleavage must be both specific and efficient and must not yield unwanted side products. In particular, such a method should not introduce such modifications in the polypeptide of interest, which would be difficult to remove. Furthermore, for pharmaceutical or other life sciences applications, such a method should not pose a threat of contamination of the product with pathogens.

One common approach to the issue of specific peptide bond cleavage is to use proteolytic enzymes. The most frequently used ones include Factor Xa (for example Nagai et al., EP0161937 and Grandi et al., EP0505921), enterokinase (for example LaVallie, EP0679189 and Ley et al., US2005158838), and thrombin (for example Gilbert et al., EP0666692'). However, several serious inconveniences accompany enzymatic proteolysis. These include non-specific proteolytic attack on the polypeptide of interest; a need for extended incubations, which can cause denaturation or aggregation of the polypeptide of interest; incomplete cleavage, which reduces the yield and/or introduces heterogeneity to the purified polypeptide; the need for additional purification steps to separate it from the fusion partner, deactivate and remove protease, and exchange buffer or salt. Finally, proteolytic enzymes are often expensive, and thus not feasible for the large-scale use in pharmaceutical, clinical and biotechnological applications.

Another family of methods for specific peptide bond cleavage is based on protein splicing with inteins, naturally occurring internal sequences, which undergo an intramolecular rearrangement, through the formation and subsequent hydrolysis of an active (thio)ester. The latter step leads to an elimination of the intein and recombination of the neighbouring sequences (Hiera et al. J. Biol. Chem. 1990, 265, 6726-6733). Recently a number of mutant inteins have been designed that are able to promote only the first step of protein splicing (Muir, Annu. Rev. Biochem. 2003, 72, 249-289). In this approach, the polypeptide of interest is fused to a self-cleavable intein domain, which can be cleaved alternatively via an intermolecular trans(thio)esterification reaction with external thiols, such as dithiotreitol, β-mercaptoethanol or cysteine. This increasingly popular methodology has several drawbacks. The cleavage reaction requires the addition of thiols that modify the C-terminus of the polypeptide of interest. It is strictly dependent on the preservation of native intein conformation, which results in specific narrowed requirements for reaction conditions. Also the large sizes of intein moieties constitute a disadvantage because they can diminish solubility and purification efficiency (Belfort et al. US6933362).

A further family of specific peptide bond cleavage methods is based on chemical cleavage agents. These often require harsh reaction conditions. Even when added at a great excess over the substrate, they tend to cleave only with partial selectivity and low yield. Cyanogen bromide is one of principal chemical reagents for peptide bond hydrolysis.
Although used commonly, it has several serious shortcomings. It is volatile and very toxic, is applied at a 100-fold excess over methionine residues, for which it is specific, requires 70% formic acid as solvent, and gives several unwanted side reactions. As a consequence of its specificity for single methionine residues, for proteins with additional methionines cyanogen bromide produces protein fragments that are no longer native because methionine residues in them undergo irreversible modifications (Dimarchi, EP0134070). Another way of chemical cleavage is to react a protein or peptide with hydroxylamine, which cleaves the bond between the Asn and Gly residues. Disadvantages of this approach include side reactions of hydroxylamine with other Asn and Gly residues in a protein or peptide, yielding hydroxamates (Wang, CN 1371918). The cleavage of an Asn-Gly bond in a protein or peptide was disclosed (Palm, W0952815), by treating it with a compound of the general formula R₁(CHO₂)x-NH(CH₂)mR₂, wherein R₁ denotes NH₂ or OH, R₂ denotes hydrogen, lower alkyl, NH₂, OH or halogen, n denotes an integer from 1 to 3, and m denotes 0 or an integer from 1 to 3. This is a generalisation of the hydroxylamine cleavage, possessing similar limitations. A chemical method for peptide bond cleavage at tryptophan residues was also disclosed (Richiyaedo, EP0298272), by treating a peptide or protein with trifluoroacetic acid, in the presence of sulfoxide and chloride ions. Hinman et al. (EP0339217) disclosed the cleavage of peptide bonds by nucleophilic tertiary organophosphines. Another method includes the peptide bond cleavage between a Lys and a Cys residue. In this reaction the cysteine residue is first cyanogenated, then the peptide is treated with weak alkali and the amino group of the lysine acts as a nucleophilic group attacking the carbonyl carbon on the peptide bond between Lys and the cyano-cysteine residue and cleaving this bond (Iwakura et al., JP10045796). The use of the chemical cleavage methods outlined above will in most cases generate non-specific protein fragmentation, since tryptophan residues, and Asn-Gly or Lys-Cys pairs are frequently found in proteins. Another serious disadvantage of these methods is the use of toxic or harmful chemicals.

Although many studies were made on model systems such as activated amides (Sayre et al., Inorg. Chem. 1992, 31, 935-937 and references therein) and dipeptides or small peptides (Fujii et al., J. Biol. Inorg. Chem. 2002, 7, 843-851 and references therein, Kassai et al., Inorg. Chem. 2004, 43, 6130-6132 and references therein), but the hydrolytic cleavage of proteins was achieved only in several cases. Smith et al. showed that Cu²⁺ ions, and also Ni²⁺, Zn²⁺, Mn²⁺, Mg²⁺, Ca²⁺, Fe²⁺ ions were able to cleave (with various efficacies) the Lys₂₂₆-Thr₂₂₇ peptide bond in the hinge region of human IgG₁ but did not propose a molecular mechanism (Smith et al., Int. J. Peptide Protein Res. 1996, 48, 48-55). The scission of myoglobin with low sequence specificity was proved for a series of Cu²⁺ compounds (Zhang et al., Inorg. Chem., 2003, 42, 492) which exhibited two adjacent cleavage sites. Another study on BSA, using a macrocyclic Cu²⁺ complex, demonstrated several preferred sites of cleavage, but no clear sequence specificity could be observed (Hegg and Burstyn, J. Am. Chem. Soc. 1995, 117, 70115-7016). Although in some cases the protein cleavage may be rapid, the sequence specificity of such reactions is still poor and hard to predict (de Oliveira et al., Inorg. Chem., 2005, 44, 921-929).

Yashiro et al. studied the mechanism of hydrolysis of peptides containing Ser residues, with a low sequence specificity, defined as Xaa-Ser-, where Xaa denotes any amino acid. The mechanism of this reaction consists of an N→O acyl shift, with a possible role for Zn²⁺, Cu²⁺, Ni²⁺, Pr³⁺ or Eu³⁺ as free ions or complex species to polarize the peptide carbonyl group by coordination, and to promote the nucleophilic attack of an intramolecular OH group (Yashiro et al., Org. Biomol. Chem., 2003, 1, 629-632 and references therein).

A different mechanism was proposed for hydrolytic reactions mediated by Pt²⁺ and Pd²⁺ complexes. Kostic and Zhu (US5352771) disclosed complexes of Pt²⁺ and Pd²⁺ which selectively bind to sulfur atoms in side chains of residues such as methionine, cysteine and S-alkyl cysteine and promote the cleavage of peptide bonds adjacent to
these sulfur-containing residues. The disclosed mechanism of this process assumes that either an internal transfer of a water molecule from the metal complex to the amide group or the attack of the exogenous water molecule derived from the aqueous reaction medium on the amide group is the crucial step of this reaction. Although these inventors proposed a wide variety of peptides and proteins which could be hydrolysed with this method (e.g. myoglobin, Zhu et al., J. Biol. Inorg. Chem., 1998, 3, 383-391), the low pH of the reaction, around 2, together with a low sequential specificity, limit the range of applications. A similar peptide bond cleavage mechanism between X and Z residues was also demonstrated for a Pd2+ complex and peptides of X-Z-His sequences (Milovic et al., J. Am. Chem. Soc. 2003, 125, 781-788 and references therein). This methodology is well suited for protein fragmentation for mass spectroscopy. Yet another mechanism was proposed speculatively by Zhu and Kostic (Inorg. Chim. Acta 2002, 339, 104-110) for the cleavage of Ser/Thr-His/Met sequences in human serum albumin (HSA) by Pd2+ complexes. It includes an acyl group shift with the formation of an intermediate ester with the alcoholic group present in the Ser/Thr side chain. This mechanism was cited for the cisplatin-mediated selective hydrolytic cleavage of acetic acid from the Ac-Ser-Met dipeptide, but not for the reaction of the Ac-Ser-His dipeptide (Manka et al., J. Inorg. Biochem. 2004, 98, 1947-1956).

Recently, Dutca et al. (Inorg. Chem., 2005, 44, 5141-5146) reported enhanced cleavage of Met-X peptide bonds by a Pt2+ complex under ultraviolet or microwave irradiation.

Humphreys (WO0032795) proposed the cleavage sites comprising the -DKTH-, -DRSH-, -EKSH- or -DKSH-sequences which are specifically cleaved by Cu2+ ions at temperatures above 50 °C. However, the Cu2+ related hydrolysis was demonstrated previously to occur simply for Ser-His and Thr-His sequences under such conditions (Allen and Campbell, Int. J. Pept. Protein Res. 1996, 48, 265-273) and therefore multiple unspecific cleavages should be expected for this method.

Altogether then, the reactions of metal ions proposed previously and presented above share a disadvantage of low sequence specificity, based on one or two adjacent amino acid residues. Therefore they are suited better for protein fragmentation than for selective cleavage of dedicated sites that would occur without side reactions.

The Ac-TESHHK-NH2 hexapeptide was recently found to undergo a slow, spontaneous, sequence-specific hydrolysis in the presence of Ni2+ ions in a phosphate buffer, at pH 7.4 and 37 °C (Bal et al., Chem. Res. Toxicol., 1998, 11, 1014-1023). A Ni2+ complex of the C-terminal tetrapeptide amide SHHK-NH2 was found to be the product of this reaction, with a yield between 3% and 9% after 140 hours of incubation, depending on the concentration of Ni2+ ions. The cleavage occurred therefore between the Glu and Ser residues. Subsequent studies revealed that a peptide of 34 residues, comprising the above sequence, was cleaved with an identical sequence specificity by Ni2+ ions under analogous conditions, but ca. five times faster (Bal et al., Chem. Res. Toxicol., 2000, 13, 616-624). The same work demonstrated that Cu2+ ions hydrolysed this 34-peptide with the same specificity, but slower. The other two metal ions tested, Co2+ and Zn2+ were inactive. An analogous hydrolysis reaction was also seen for Ni2+ ions and histone H2A, which was the source of the hexapeptide and 34-peptide sequences. Further studies on Ala-substituted hexapeptide analogues of Ac-TESHK-NH2 indicated that the reaction proceeded at alkaline pH, and allowed to identify the Ser residue and the C-terminal His residue as the ones necessary for it to occur. The substitution of the Glu residue with Ala did not affect the reaction (Mylonas et al., J. Chem. Soc., Dalton Trans., 2002, 4296-4306). This published research indicated that peptides which could potentially be hydrolysed under alkaline conditions in the presence of metal ions, such as Ni2+, are represented by a general sequence P1SA1HP2, where P1 and P2 represent any peptide sequences, and A1 represents any amino acid residue.

The above description clearly demonstrates that there is a need for a method of selective cleavage of a peptide bond in a peptide or a protein, which would combine advantages of chemical agents, such as low cost and easy removal of the cleaving agent, with advantages normally associated with enzymatic reactions, such as high sequence specificity and reproducibility of cleavage and a lack of side reactions.

The present invention provides such a method, based on a novel molecular mechanism involving metal ions.

Description of the invention

The method of hydrolysis of the peptide bond between the peptide sequence R1 and the amino acid residue B consists in designing and obtaining by molecular biology methods, in particular by overexpression, a recombinant polypeptide represented by the general formula R1BXJZR2, which contains, starting from N-terminus: an amino acid sequence of polypeptide of interest R1, a metal cation binding sequence BXJZ, and a functional domain R3R2, wherein:

- R1 denotes the sequence of the polypeptide to be obtained, preferably the polypeptide of interest to be purified, which contains a C-terminal amino acid residue capable of forming a peptide bond with amino acid residue B.
- R2 denotes the sequence of the peptide or protein, which is being removed, preferably the sequence capable of binding to another component or molecule.
- R3 denotes the sequence of the peptide or protein, preferably an oligopeptide spacer sequence, which separates R2 from other parts of the recombinant protein, preferably the Ala-Pro sequence.
In the method according to the invention, the actual reaction of peptide bond hydrolysis is performed preferably following the removal of the recombinant protein from the solid support, or directly on the solid support, wherein the products are separated using standard techniques when the procedure is performed in solution, while pure R1 polypeptide in solution is obtained following the peptide bond hydrolysis on the solid support.

In a preferred embodiment of the invention the operation for which the functional domain R3R2 is created consists of contacting the recombinant protein, being present in the mixture of biological origin, preferably a cellular lysate or homogenate, with a compound immobilized on a solid support which is capable of interacting specifically with R3R2, followed by washing off other compounds present in the biological mixture.

In step 1 the metal ion Ni2+ spontaneously forms a bond to the YJ group of the J residue in the R1BXJZR3R2 sequence. In step 2 the metal ion Ni2+ forms additional coordination bonds to amide nitrogens of residues J, X, and B which form covalent bonds with the C-terminal carbon atom of the R1 polypeptide, selected from the group comprising natural and synthetic esterases and thioesterases.

All one letter symbols describe individual amino acid residues, according to the official IUPAC nomenclature, unless defined otherwise above. Three letter amino acid symbols are also used according to this nomenclature.

The molecular mechanism of the peptide bond hydrolysis consists of five principal steps, shown in Scheme 1. In step 1 the metal ion Ni2+ spontaneously forms a bond to the YJ group of the J residue in the R1BXJZR3R2 sequence. In step 2 the metal ion Ni2+ forms additional coordination bonds to amide nitrogens of residues J, X, and B (complex III). This occurs in a stepwise, pH-dependent fashion, because hydrogen ions have to be displaced from these
nitrogen atoms by Ni$^{2+}$. As a result, relative concentrations of complexes containing one (J), then two (J and X) and finally three (J, X and B) Ni$^{2+}$-peptidic nitrogen bonds increase at higher pH values. The equilibrium is established in minutes to hours, depending on the peptide sequence, temperature and pH. Steps 1 and 2 are common to all sequences containing single J residues. Additional complex forms may exist with peptides in which residues X and/or Z or other residues share properties with J residue, that is they are able to coordinate metal ions through their side chains, but complex (III) will always be present as a major species at a sufficiently high pH. The reactions of steps 1 and 2 are well known to those skilled in the art, and were described for many examples (see for example Kozlowski et al., Coord. Chem. Rev. 1999, 184, 319-346, Sigel and Martin, Chem. Rev. 1982, 82, 385-420). An attack of the hydroxyl group Y_B on the $R_1\cdot B$ peptide bond follows in step 3. The participation of Y_B in the hydrolysis reaction was suggested in the literature cited above, for B denoting a Ser or Thr residue. A novel and unexpected aspect of step 3 is that for the amino acid sequence $R_1\cdot BX\cdot JZR_3\cdot R_2$ the attack of the group Y_B on the $R_1\cdot B$ peptide bond occurs specifically in complex (III), in which Ni$^{2+}$ is coordinated to Y_J and three peptide nitrogen atoms of residues J, X, and B. This fact is demonstrated by the pH profile of hydrolysis, presented in Example 3 below for J denoting His. In a consequence, step 4 consists of the intramolecular transfer of R_1 acyl group from the amino group of residue B to the group Y_B, to form an active ester or ester analogue. This ester/analogue subsequently undergoes spontaneous hydrolysis in water solution in step 5. An unequivocal chemical proof for the intermediate ester formation is provided in Example 5 below.

Scheme I presents the general molecular mechanism for the metal ion dependent peptide bond hydrolysis for the $R_1\cdot BX\cdot JZR_3\cdot R_2$ sequence according to the invention. Wavy lines connecting the main chain with Y_B and Y_J groups denote the remaining atoms of side chains of residues B and J, respectively.

In one aspect of the invention, the said molecular mechanism is realized for Ni$^{2+}$ and for such $R_1\cdot BX\cdot JZR_3\cdot R_2$ sequences, in which B denotes Ser or Thr, and J denotes His. Scheme II illustrates this version of the molecular mechanism according to the invention. Persons skilled in the art will recognize that the mechanism presented in Scheme II corresponds fully to the general mechanism of Scheme I.

Scheme II presents therefore the general molecular mechanism for the metal ion dependent peptide bond hydrolysis for the $R_1\cdot BX\cdot JZR_3\cdot R_2$ sequence according to the invention, in which B represents Ser or Thr, and J represents His.

The molecular mechanism according to the invention requires that residue B in the sequence $R_1\cdot BX\cdot JZR_3\cdot R_2$ contains such group Y_B in its side chain which is capable of accepting an acyl moiety. Therefore, in accordance with the invention Y_B is hydroxyl and B denotes a Ser or Thr residue. In one preferred embodiment, B represents Ser. In another preferred embodiment, B represents Thr.

The molecular mechanism according to the invention also requires residue J in the sequence $R_1\cdot BX\cdot JZR_3\cdot R_2$ to contain such group Y_J in its side chain, which is capable of binding the metal ion M^{n+} in such a fashion that M^{n+} can simultaneously coordinate to group Y_J and three peptidic nitrogens of residues J, X, and B. Therefore, in one embodiment of the invention Y_J is selected from the group including, but not limited to inorganic acid moieties, such as sulphate, nitrate or phosphate, organic acid moieties, such as carboxylates, phenols, amines, such as primary, secondary or tertiary aliphatic or alicyclic amines, phosphines, thioles, thioceters, heterocycles, such as derivatives of pyridine, imidazole, triazine, etc. According to the method of the invention, residue J denotes, Asp, Glu, Tyr, Met, Cys or His. In a preferred embodiment residue J denotes Cys or His. In a more preferred embodiment residue J denotes His.

It has to be noted that the molecular mechanism proposed in the literature for the reaction of hydrolysis of the Ala-Ser and Glu-Ser peptide bonds in Ni$^{2+}$ complexes of CH$_3$CO-Thr-Glu/Ala-Ser-His/Ala-His-Lys-NH$_2$ peptides (Mylonas et al., J. Chem. Soc., Dalton Trans. 2002, 4296-4306) is substantially different from the mechanism according to the present invention, because it assumes (i) the attack of a hydroxide ion (or water molecule) from the bulk of the solution on the peptide bond being hydrolyzed, and (ii) the participation of the Ser side chain in the reaction via the formation of a hydrogen bond with the carbonyl oxygen of the Glu/Ala-Ser peptide bond. It is also wrong, because it explains neither the observed pH dependence of the hydrolysis rate, nor the formation of the intermediate ester with the Ser/Thr hydroxyl group.

It also has to be noted that the molecular mechanism proposed in the literature for the reaction of hydrolysis of the peptide bond preceding Ser/Thr in Ser/Thr-Met/His sequences in HSA by Pd$^{2+}$ complexes (Zhu and Kostic, Inorg. Chim. Acta 2002, 339, 104-110), and extended over the reaction of hydrolysis of the Ac-Ser bond in the Ac-Ser-Met complex with Pt$^{2+}$ by Manka et al. (J. Inorg. Biochem. 2004, 98, 1947-1956), is substantially different from that disclosed herein because it occurs in complexes, in which the metal ion forms only three, rather than four bonds at the hydrolyzed peptide bond. Also the formation of an intermediate ester at the Ser/Thr residue was proposed speculatively there, and was not demonstrated experimentally.

In a further aspect of this invention, it was unexpectedly found that certain specific amino acid substitutions in positions X and Z strongly modulate the maximum rate, as well as the pH profile of the hydrolysis reaction. This aspect was demonstrated by semiquantitative evaluation of progress of hydrolysis in a combinatorial library of peptides substituted in positions X and Z of the test sequence $R_1\cdot BX\cdot HZR_2$, where B denotes Ser or Thr, R_1 denotes CH$_3$CO-Gly-Ala, and R_2 denotes Lys-Phe-Leu-NH$_2$ (Example 1 below). The influence of substituents in positions X and Z on the rate of
hydrolysis at pH 8.2 was found to be approximately additive. For position X the highest susceptibilities for hydrolysis were found for amino acid residues with highest van der Waals volumes, which measure bulkiness of their side chains. For position Z the highest susceptibilities for hydrolysis were found for amino acid residues with high octanol/water partition coefficients, which measure hydrophobicity of their side chains. Therefore, in a preferred embodiment, the invention relates to the metal ion-dependent hydrolysis of R1BXJZR3R2 sequences, wherein Arg, Lys or His is present in position X and A Trp is present in position Z. In a further preferred embodiment of this invention B denotes a Ser or a Thr residue, X denotes a His, Lys, or Arg residue, and J denotes a His residue. In another preferred embodiment B denotes a Ser residue, X denotes a Lys or Arg residue, and J denotes a His residue. In the most preferred embodiment, the invention relates to the metal ion-dependent hydrolysis of R1BXJZR3R2 sequences, wherein B denotes a Ser residue, X denotes an Arg residue, J denotes a His residue and Z denotes a Trp residue.

[0045] In another embodiment of the invention, the sequences optimized for hydrolysis can be used to provide functional and specific cleavage sites in recombinant polypeptides, which can be applied to separate C-terminal RaR2 domains, such as peptides or proteins able to bind specifically to or interact in other ways with another component or molecule, from N-terminal domains in recombinant polypeptides, wherein these N-terminal domains, represented by R1 in the general sequence R1BXJZR3R2, are limited in no way by other components of the recombinant polypeptide, namely B, X, J, Z, R2 or R3, where B represents a residue capable of accepting the R1 acyl group, X represents a bulky residue, J represents a metal ion-binding residue, Z represents a highly hydrophobic residue, and R2 and R3 represent any amino acid sequences, as defined above.

[0046] Examples of R2 functional domains, used widely in the practice of protein purification include hexahistidine peptide, maltose binding protein (MBP), thioredoxin (TRX), glutathione S-transferase (GST) and many others (Terpe, Appl. Microbiol. Biotechnol. 2003, 60, 523-533).

[0047] In a consequence of the reaction mechanism, the rate of hydrolysis is proportional to the concentration of the active complex (III). As a result, the pH profiles of these two quantities match each other closely (Fig. 1). While the optimal pH for this reaction is 10 and higher for most peptides, for optimized sequences, disclosed above, the reaction can proceed effectively at a lower pH, such as 8.2, where the active complex is a minor species among several types of complexes formed simultaneously by R1BXJZR3R2 and Ni2+. The formation of the active complex at such lower pH depends on the availability of the metal ion, which is controlled by the overall Ni2+ concentration, as well as by the competition for Ni2+ by other components of reaction mixtures, such as buffers. Therefore, in another embodiment of the invention the hydrolysis of NR1BXJZR3R2 is performed in such a buffer which does not compete for Ni2+ effectively. Thus, in a preferred embodiment of the present invention the hydrolysis reaction is performed in a buffer weakly coordinating Ni2+ according to the invention, and in the most preferred embodiment the hydrolysis reaction is performed in a buffer which does not coordinate Ni2+. In another preferred embodiment, the buffer is Tris. In an even more preferred embodiment, the buffer is Hepes.

[0048] In one embodiment of the present invention R1BXJZR3R2 describes a recombinant polypeptide in which R1 denotes a polypeptide of interest, R2 denotes a functional domain, and R3 denotes empty sequence (is absent from the said sequence). In another embodiment of the invention, the domain R2 is separated from the residue Z by one or more residues, represented by R5, which do not participate in the hydrolysis reaction but separate R5 from the rest of the polypeptide to prevent specific interference with the function of the peptide sequence R2. In a yet another embodiment, the role of R3 is to prevent the inhibition of binding of metal ions according to the invention to the sequence BXJZ.

[0049] The present invention poses no limitations on the character of R2 domains. They can be peptides or proteins capable of specific binding to a solid support, reporter domains, targeting sequences, solubilisation domains or domains exerting any other functions.

[0050] In a particular embodiment of the invention BXJZ denotes Ser-Arg-His-Trp (SRHW), R3 denotes Ala-Pro (AP) dipeptide sequence, and R2 denotes a hexahistidine (HHHHHH) affinity tag.

[0051] In a further embodiment of this invention, the hydrolysis reaction can be performed in a solution, following purification of the recombinant polypeptide on a solid support, such as affinity column. This approach requires a further purification step, to separate the polypeptide of interest R1 from the cleaved off BXJZR3R2 domain. In another embodiment, the cleavage reaction can be performed while the polypeptide of interest R1 remains attached to the solid support. In this approach, the polypeptide of interest is washed from the solid support together with the hydrolysis buffer, while the cleaved off BXJZR3R2 domain remains attached to the solid support.

[0052] In another embodiment of the present invention, a natural or artificial esterase or a similar catalyst can be added to the reaction mixture to accelerate hydrolysis of ester or ester analogue, which constitutes step 5 of the mechanism presented in Scheme I.

[0053] In yet another embodiment of the invention, further reagents can be added to reaction to derivative the C-terminus of R1, thereby accomplishing the synthesis of novel compounds. Such reaction with hydroxylamine, yielding the C-terminal hydroxamate of the target protein, is described in Example 5. Another reaction, with trifluoroethanol, yielding the C-terminal trifluoroethyl ester of the peptide, is described in Example 7.
Short description of Figures

[0054]

Fig. 1 presents the comparison of pH dependences between the first order rate constant for the hydrolysis of the CH$_3$CO-Gly-Ala-Ser-Arg-His-Trp-Lys-Phe-Leu-NH$_2$ peptide (circles) and the concentration of the active complex III according to Scheme II (solid line).

Fig. 2 presents the HPLC chromatogram of products of the reaction of (SPI2)-SRHW-AP-HHHHHH recombinant polypeptide with Ni$^{2+}$ ions under conditions described in Example 6. Labels: 1, SRHW-AP-HHHHHH, molecular mass 1575.73; 2, intermediate product, molecular mass 5866; 3, SPI2 protein, EAAVCTTEWDPVCGKDGKTYSNLCLWLNEAGVGLDHEGEC, theoretical molecular mass 4195.8 (accounting for the formation of two disulfide bridges) measured molecular mass 4309, due to the formation of an adduct with one molecule of trifluoroacetic acid (TFA), HPLC buffer component of molecular mass 114; 4, starting recombinant polypeptide, EAAVCTTEWDPCGKDGTKYSNLCLWLNEAGVGLDHEGEC, theoretical molecular mass 5752.5, measured molecular mass 5866 due to formation of an adduct with one molecule of TFA.

Fig. 3 presents the HPLC chromatogram of products of the reaction of the (SPI2)-SRHW-AP-HHHHHH recombinant polypeptide with Ni$^{2+}$ ions, after incubation with 0.25 M hydroxylamine, as described in Example 7. Labels: *, impurity; 1, SRHW-AP-HHHHHH; 2, intermediate product; 3, hydroxamate of SPI2 protein, molecular mass 4325; 4, starting recombinant polypeptide; 5, SPI2 protein.

Fig. 4 presents HPLC chromatograms of samples obtained during the cleavage of recombinant polypeptide (SPI2)-SRHW-AP-HHHHHH attached to Ni-NTA agarose in 100 mM Hepes buffer, pH 8.2. Labels 1-4 are identical to those used in Fig. 2.

Fig. 5 presents ESI MS spectra, demonstrating the formation of the trifluoroethyl ester of the CH$_3$CO-Gly-Ala peptide, resulting from the Ni$^{2+}$ dependent hydrolysis of the CH$_3$CO-Gly-Ala-Ser-Arg-His-Trp-Lys-Phe-Leu-NH$_2$ peptide. A. The spectrum of the product of the hydrolysis reaction performed in the presence of 50% TFE. B. The spectrum of the product of the hydrolysis reaction performed in the absence of TFE, which was subsequently incubated with 50% TFE. Signal assignments: 189.0889, CH$_3$CO-Gly-Ala+H$^+$; 271.0712, CH$_3$CO-Gly-Ala-OCH$_2$CF$_3$+H$^+$; 293.0355, CH$_3$CO-Gly-Ala-OCH$_2$CF$_3$+Na$^+$; 309.0024, CH$_3$CO-Gly-Ala-OCH$_2$CF$_3$+K$^+$.

[0055] The examples of embodiments of the invention are presented below.

Example 1.

Optimisation of positions X and Z in the R$_1$BXHZR$_2$ sequence, where B denotes Ser or Thr, for the acceleration of Ni$^{2+}$ dependent hydrolysis, using combinatorial synthesis and mass spectrometry.

[0056] The sequence CH$_3$CO-Gly-Ala-Ser/Thr-X-His-Z-Lys-Phe-Leu-NH$_2$ was designed so that the fixed R$_1$ and R$_2$ sequences, CH$_3$CO-Gly-Ala, and Lys-Phe-Leu-NH$_2$, respectively, allowed optimal detection by MALDI-TOF mass spectrometry of substrates as well as expected products, Ser/Thr-X-His-Z-Lys-Phe-Leu-NH$_2$ and assured separation between the clusters of signals for substrates and products in sublibraries (see below).

[0057] Residues in position X included all amino acids commonly present in proteins, except for Asp, Glu, and Cys. The former two contain carboxylates in their side chains, which may bind Ni$^{2+}$ in a way which would quench or slow down the hydrolysis reaction. The Cys residue may do the same, and also may engage in side reactions with Ni$^{2+}$ ions, including redox processes (for example see Bal and Kasprowicz, Toxicol. Lett. 2002, 127, 55-62). Only the Cys residue was eliminated from position Z, for the same reasons.

[0058] The synthesis of the library was accomplished on a RINK amide resin (Novabiochem) on a 800 mg scale, according to a typical Fmoc protocol (Fields, Meth. Enzymol. Vol. 289). The resin-attached Leu-Phe-Lys peptide was synthesised first and coupled with the isokinetic mixture of 19 amino acids selected for position Z, and then with the His residue. The resin carrying the library of pentapeptides was divided into Ser and Thr halves at this stage, and each of these halves into 17 portions, which were coupled with individual amino acids selected for position X. The coupling with Ser or Thr as appropriate, additions of Ala and Gly residues, acetylation of Gly, deprotection and cleavage from the resin were accomplished subsequently. Each of the resulting 34 samples of sublibraries randomized at position X was separated into two portions, one for the reaction at 37 °C and another for the reaction at 45 °C. The hydrolysis reactions were accomplished in 10 mM Tris buffers at pH 8.2. The total concentrations of peptide mixtures and Ni$^{2+}$ ions were 1 mM and 2 mM, respectively. The pH for the reaction was chosen as selective for highly reactive sequences.

[0059] The detection of reaction products was accomplished with the use of a MALDI-TOF mass spectrometer (Micromass). The aliquots were removed from reaction mixtures and measured by MS at 2, 4, 6, and 8 hours of incubation. The progress of reaction was evaluated by visual detection in mass spectra of appearance of signals corresponding to
expected products of hydrolysis, Ser/Thr-X-His-Z-Lys-Phe-Leu-NH₂, at given measurement times, tᵣ. The formula used for semiquantitative evaluation of reaction progress had a following form: score = 24/tᵣ, therefore a given peptide was assigned a score of 12, if it was seen to be partially hydrolysed at 2 hours, a score of 6 for detection at 4 hours, a score of 4 for detection at 6 hours, a score of 3 for detection at 8 hours, and a score of 0 if no trace of the product of hydrolysis was seen after 8 hours of incubation. For the most active peptides, for which the formation of Ser/Thr-X-His-Z-Lys-Phe-Leu-NH₂ products was seen at 2 hours, the progress of reaction was additionally controlled at longer incubation times. Also the decrease of signals of substrates was controlled in these cases.

Residues X and Z were then sorted according to various molecular parameters, describing their physical properties (Carugo, In Silico Biol. 2003, 3, 0035). Van der Waals volumes, which correspond to the bulkiness of their side chains and octanol/water partition coefficients, which correspond to hydrophobicities of their side chains were found to provide the best positive correlations to observed scores for positions X and Z, respectively. The results for individual peptides, ordered according to these parameters, are presented in Table 1A-D. The contributions of substituents X and Z to the scores for hydrolysis were found to be approximately additive, with some positive or (more often) negative deviations, indicative of the presence of secondary specific interactions between the residues. The Ser library provided a higher number of reactive peptides than the Thr library. Following the additivity of effects, the scores were also summed up in lines and columns of Table 1A-D, thereby creating final rankings for preferred substitutions in positions X and Z.
Table 1

A. The hydrolysis scores from MALDI-TOF screening of the library of peptides CH$_3$CO-Gly-Ala-Ser-X-His-Z-Lys-Phe-Leu-NH$_2$, incubated with Ni$^{2+}$ at 45 °C.

Z	E	D	N	Q	S	A	P	H	T	G	V	Y	M	I	L	K	F	W	R	Sc.		
G	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	3	3	3	0	4	3	19
A	0	0	0	0	0	3	0	4	0	0	0	3	3	0	4	4	6	3	6	6	42	
S	3	3	0	0	3	3	0	3	6	4	3	3	6	6	3	6	3	6	6	67		
P	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	6		
T	0	0	0	0	0	0	0	0	3	0	0	0	0	0	6	3	0	3	6	3	6	
N	0	0	0	0	0	0	0	0	3	0	0	0	3	3	0	4	4	4	3	6	36	
V	0	0	0	0	0	0	0	3	0	0	0	3	3	0	3	3	3	3	4	3	29	
Q	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	4	3	6	6	48	
L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	3	4	21	
I	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	3	4	22	
H	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	3	4	55	
M	0	0	0	0	0	3	0	0	3	0	6	4	3	3	6	12	12	12	6	4	6	68
R	3	0	0	0	0	0	4	4	0	0	0	0	0	0	0	0	0	4	4	0	66	
W	0	0	0	0	0	3	0	0	3	0	0	0	0	0	0	0	0	4	3	4	82	
Sc.	12	3	0	0	10	24	0	42	3	12	84	56	22	101	101	109	51	111	91	832		

Table 1 (Continued)

B. The hydrolysis scores from MALDI-TOF screening of the library of peptides CH$_3$CO-Gly-Ala-Ser-X-His-Z-Lys-Phe-Leu-NH$_2$, incubated with Ni$^{2+}$ at 37 °C.

Z	E	D	N	Q	S	A	P	H	T	G	V	Y	M	I	L	K	F	W	R	Sc.	
G	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	3	3	6	6
A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	4	3	10
S	0	0	0	0	0	0	0	0	0	0	3	3	3	6	6	4	3	6	6	6	
P	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	3	6	40
T	0	0	0	0	0	0	0	0	0	0	4	3	3	0	4	12	12	12	4	6	3
N	0	0	0	0	0	0	0	0	0	0	3	3	0	4	4	4	3	6	6	33	
V	0	0	0	0	0	0	0	0	0	0	3	3	0	4	4	4	3	6	6	3	
Q	0	0	0	0	0	0	0	0	0	0	3	3	0	4	4	4	3	6	6	3	
L	0	0	0	0	0	0	0	0	0	0	3	3	3	0	3	3	3	3	3	15	
I	0	0	0	0	0	0	0	0	0	0	3	3	3	0	3	3	0	3	3	21	
H	0	0	0	0	0	0	0	0	0	0	3	3	3	0	6	6	6	6	6	4	46
M	0	0	0	0	0	0	0	0	0	0	3	3	3	4	4	4	3	3	4	3	
K	0	0	0	0	0	0	4	0	0	0	4	4	3	6	6	4	12	4	4	53	
F	0	0	0	0	0	0	3	0	0	0	3	3	0	4	4	4	3	4	4	4	
Y	0	0	0	0	0	0	4	0	0	0	6	3	0	4	4	4	3	6	4	38	
R	0	0	0	0	3	3	0	4	0	0	3	6	4	3	12	12	12	4	4	8	
W	0	0	0	0	0	0	4	0	0	0	3	0	0	6	5	4	3	4	3	3	
Sc.	0	0	0	0	3	6	0	25	0	6	40	29	12	71	71	60	32	87	63	505	
C. The hydrolysis scores from MALDI-TOF screening of the library of peptides CH₃CO-Gly-Ala-Thr-X-His-Z-Lys-Phe-Leu-NH₂, incubated with Ni²⁺ at 45 °C.

Z	X	E	D	N	Q	S	A	P	H	T	G	V	Y	M	I	L	K	F	W	R	Sc.
G	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
S	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
P	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
T	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
N	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
V	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Q	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
K	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
F	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Y	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
W	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Sc.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

D. The hydrolysis scores from MALDI-TOF screening of the library of peptides CH₃CO-Gly-Ala-Thr-X-His-Z-Lys-Phe-Leu-NH₂, incubated with Ni²⁺ at 37 °C.

Z	X	E	D	N	Q	S	A	P	H	T	G	V	Y	M	I	L	K	F	W	R	Sc.
G	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
S	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
P	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
T	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
N	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
V	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Q	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
L	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
K	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
F	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Y	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
W	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Sc.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Example 2.

Quantitative kinetic studies of CH₃CO-Gly-Ala-B-X-His-Z-Phe-Leu-NH₂ peptides, selected in combinatorial library screening.

1. The title octapeptides were synthesised according to a typical Fmoc protocol (Fields, Meth. Enzymol. Vol. 289). The list of variable BXHZ sequences is given in Table 2, along with 1st order rate constants determined at 45 °C, pH 8.2 (20 mM Tris buffer) for 1 mM peptide and Ni²⁺ concentrations. The rate constants were obtained by separating and quantifying the substrates and products at various incubation times using HPLC, followed by the fitting of the 1st order rate function to these data. The substrate and product peaks were identified by MALDI-TOF MS.

<table>
<thead>
<tr>
<th>BXHZ- sequence</th>
<th>k ± S.D. (s⁻¹ × 10⁻⁵)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-SRHW-</td>
<td>28.8 ± 0.8</td>
</tr>
<tr>
<td>-THHW-</td>
<td>13.7 ± 0.5</td>
</tr>
<tr>
<td>-SKHW-</td>
<td>11 ± 1</td>
</tr>
<tr>
<td>-TRHW-</td>
<td>10.2 ± 0.7</td>
</tr>
<tr>
<td>-TKHW-</td>
<td>9.1 ± 0.6</td>
</tr>
<tr>
<td>-SRHK-</td>
<td>4.0 ± 0.2</td>
</tr>
<tr>
<td>-SWHL-</td>
<td>3.7 ± 0.4</td>
</tr>
<tr>
<td>-SWHI-</td>
<td>3 ± 1</td>
</tr>
<tr>
<td>-THHK-</td>
<td>1.01 ± 0.09</td>
</tr>
</tbody>
</table>

The above results indicate that all peptides selected by combinatorial screening were hydrolysed at pH 8.2, but the hydrolysis rate constants at 45 °C varied by a factor of 30 over the group studied. The sequence -Ser-Arg-His-Trp- (-SRHW-) was found to be the most active among those selected, and was thus used in further studies.

Example 3.

Dependence of the rate of hydrolysis of the Ala-Ser peptide bond in the CH₃CO-Gly-Ala-Ser-Arg-His-Trp-Lys-Phe-Leu-NH₂ peptide on pH, buffer, and Ni²⁺ excess.

2. The title peptide was synthesised according to a standard Fmoc protocol (Fields, Meth. Enzymol. Vol. 289). The pH dependence of the formation of the active complex of the title peptide, represented by the structure (III) in Scheme 2, was determined by potentiometry at 25 °C, as described in Krezel et al., Chem. Res. Toxicol. 2003, 16, 855-864. The rate of peptide hydrolysis was studied by HPLC (as in Example 2) in a series of mixed phosphate/Tris/Borax buffers (40/20/20 mM) at 25 °C and pH between 6 and 12.5, with peptide and Ni²⁺ concentrations equal to 1 mM. As presented in [Fig. 1](#), the rate of hydrolysis matched the formation of the active complex quantitatively.

3. The dependence of the rate of hydrolysis on the buffer used was studied at 25 °C separately in 20 mM Tris, Hepes and sodium phosphate buffers, all at pH 8.2, for 1 mM peptide and 1.2 mM Ni²⁺. The results are presented in Table 3.

<table>
<thead>
<tr>
<th>buffer</th>
<th>k ± S.D. (s⁻¹ × 10⁻⁵)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris</td>
<td>4.8 ± 0.5</td>
</tr>
<tr>
<td>Hepes</td>
<td>5.9 ± 0.8</td>
</tr>
<tr>
<td>phosphate</td>
<td>0.74 ± 0.09</td>
</tr>
</tbody>
</table>
It was clearly demonstrated that Hepes is the optimal buffer for Ni^{2+}-dependent hydrolysis at pH 8.2, Tris is slightly inferior, while phosphate is inappropriate. The extent of inhibition of peptide hydrolysis is correlated to relative abilities of these buffers to compete for Ni^{2+} with the title peptide at pH 8.2: Hepes does not bind Ni^{2+}, Tris binds weakly, while phosphate is a relatively strong competitor (see Krezel et al., Chem. Res. Toxicol. 2003, 16, 855-864). This order is highly probable to be maintained for other M^{n+} according to the invention (see Sokolowska and Bal, J. Inorg. Biochem. 2005, 99, 1653-1660).

The dependence of the rate of hydrolysis of the title peptide on the molar ratio of Ni^{2+} to peptide was studied at 25 °C and pH 8.2, for 1 mM peptide. The reaction rate constant k was $4.3 \pm 0.2 \times 10^{-5}$ s$^{-1}$ for the Ni^{2+} to peptide molar ratio of 1.2 and $4.72 \pm 0.01 \times 10^{-5}$ s$^{-1}$ for the Ni^{2+} to peptide molar ratio of 5. This experiment demonstrated that the hydrolysis of the title peptide was somewhat faster for a several fold molar excess of Ni^{2+}, compared to the equimolar system.

The results presented in this Example demonstrate that the rate of hydrolysis according to the invention depends primarily on the concentration of the active complex, which can be maximized by assuring an excess of M^{n+} over the peptide being hydrolyzed, by avoiding M^{n+} competitors in reaction mixtures, and by adjusting the pH of reaction.

Example 4.

Ni^{2+}-dependent release of SPI2 protein from its fusion in solution.

The suitability of the reaction according to the invention for the cleavage of a functional domain from a polypeptide of interest was tested on a (SPI2)-SRHW-AP-HHHHHH recombinant polypeptide. SPI2 is a single domain Kazal type protease inhibitor. The biologically active recombinant SPI2, extended C-terminally with the myc epitope, followed by the HHHHHH sequence (hexahistidine peptide) was previously expressed in a Pichia pastoris system (Grzelak et al., WO2005007693). The (SPI2)-SRHW-AP-HHHHHH recombinant polypeptide was cloned under the control of the AOX promoter in the pPICZaB vector (Invitrogen), and then expressed and purified by affinity chromatography on Ni-NTA-agarose and by HPLC, as described for an analogous protein containing the myc epitope (Grzelak et al., WO2005007693).

The initial experiment was carried out in 1 M Hepes buffer at pH 8.2 and 45 °C, for the recombinant polypeptide at a concentration of 16 mM and Ni^{2+} concentrations of 0.2, 0.5 and 1 mM. After 16 hours of incubation the samples were analyzed by HPLC (C 18 column from ACE, 250 x 4.6 mm, 20-25% acetonitrile/0.1% TFA gradient over 25 min. at 1 ml/min). The results are presented in Fig. 2. The molecular masses of collected HPLC peaks, measured using ESI MS (Q-Tof1, Micromass), confirmed cleavage of the SRHW-AP-HHHHHH domain without side products. As seen in Fig. 2, differently to peptide studies, substantial amounts of an intermediate hydrolysis product, with the mass identical to the starting recombinant polypeptide, were observed.

Example 5.

The formation of a C-terminal hydroxamate of SPI2 resulting from the addition of hydroxylamine to the intermediate product of the Ni^{2+}-dependent release of SPI2 protein from its fusion in solution.

The experiment with hydroxylamine provided direct evidence for the presence of an ester moiety in the intermediate product. Hydroxylamine is known to react specifically with esters and form hydroxamic acids (Jencks et al., J. Biol. Chem. 1960, 235, 3608-3614). The recombinant polypeptide from Example 4 was incubated in 1 M Hepes buffer, pH 8.2 with 5 mM Ni^{2+} at 37 °C for 6 hours. Hydroxylamine was then added to the final concentration of 0.25 M, and pH was set to 6.0. The reaction mixture was subsequently incubated for 48 hours at 37 °C, and then analyzed by HPLC under conditions given in Example 4. Fig. 3 presents the resulting chromatogram. Molecular masses of collected peaks were measured with ESI MS. The formation of SPI2 hydroxamate was confirmed by the detection of a SPI2 analogue with the mass increased by 16 Da (4325 vs. 4309) upon the hydroxylamine treatment.

Example 6.

Ni^{2+}-dependent release of SPI2 protein from the recombinant polypeptide attached to a solid support.

The recombinant polypeptide from Example 4 (100 μl of a 140 μM solution) was loaded on 200 μl of Ni-NTA-agarose (Invitrogen), according to the manufacturer’s instruction, and incubated in 100 mM Hepes buffer, pH 8.2 with 5 mM Ni^{2+} at 50 °C without shaking. The incubation buffer (500 μl) was removed after 19 hours. Then the unreacted
polypeptide and the cleaved off SRHW-AP-HHHHH domain were washed from the column with two 400 µl portions of 200 mM imidazole, pH 7.4. The samples were analyzed by HPLC under conditions given in Example 4. Fig. 4 presented chromatograms of the control recombinant polypeptide, incubation buffer and both wash fractions. Masses of polypeptides were measured by ESI-MS. The yield of purified SPI2 was 88%. SPI2 obtained from this procedure was fully active, as determined according to Chavira et al., Anal. Biochem. 1984, 136, 446-450.

Example 7.

Modification of the C-terminus of CH₃CO-Gly-Ala dipeptide during the reaction of hydrolysis of CH₃CO-GAS-RHWKFL-NH₂ peptide in the presence of Ni²⁺ ions and 50% trifluoroethanol in solution.

[0071] The experiment with trifluoroethanol (TFE) confirmed the possibility of modifying the C-terminus of a polypeptide of interest in a reaction of the intermediate product with another compound. The title peptide was incubated in 10 mM Hepes buffer, pH 8.2 with 5 mM Ni²⁺ in the presence of 50% trifluoroethanol at 50 °C for 4 hours. The reaction mixture was subsequently analyzed by ESI MS. The formation of an ester of the CH₃CO-Gly-Ala dipeptide with trifluoroethanol was confirmed by detecting the reaction product with the mass increased by 82 Da relative to the mass of CH₃CO-Gly-Ala (189 versus 271) (Fig. 5B). As a control, the complete reaction of hydrolysis of the CH₃CO-GAS-RHWKFL-NH₂ peptide was performed (20 hours at 50 °C), followed by the addition of 50% TFE, incubation under the same conditions for 4 hours, and analysis of the reaction mixture using ESI MS. The mass of 271 was not detected, but a signal for the mass of 189 was found (Fig. 5A), which means that under these conditions the ester of CH₃CO-Gly-Ala dipeptide with trifluoroethanol was formed only by solvolysis of the intermediate product of the process according to the invention.

Claims

1. A method of hydrolysis of a peptide bond between a polypeptide sequence R₁ and an amino acid residue B wherein a recombinant polypeptide represented by the formula R₁BXJZR₃R₂ is designed and obtained by molecular biology methods, in particular by overexpression, which contains, starting from the N-terminus: the amino acid sequence of a polypeptide of interest R₁, the metal cation binding sequence BXJZ, and the functional domain R₃R₂, wherein:

 - R₁ denotes the sequence of the polypeptide to be obtained, preferably the polypeptide of interest to be purified, which contains a C-terminal amino acid residue capable of forming a peptide bond with amino acid residue B,
 - R₂ denotes the sequence of the peptide or protein which is being removed, preferably the sequence capable of binding to another component or molecule,
 - R₃ denotes the sequence of the peptide or protein, preferably an oligopeptide spacer sequence, which separates R₂ from other parts of the recombinant protein,
 - B is selected from Ser and Thr,
 - X is selected from the group comprising amino acid residues Arg, Lys and His,
 - J is selected from the group comprising amino acid residues Asp, Glu, Tyr, Met, Cys, His,
 - Z denotes an amino acid residue, Trp, which forms a peptide bond of the -C(O)-NH- type together with amino acid residue J;

 and, having used the recombinant protein constructed in this way for its planned purpose, the polypeptide of interest R₁ is cleaved off by contacting it with Ni²⁺, in a buffered solution, preferably containing Tris or Hpes, until completion of the process of hydrolysis of the peptide bond between R₁ and B.

2. The method of claim 1, wherein the operation for which the functional domain R₃R₂ is created consists of contacting the recombinant protein, being present in a mixture of biological origin, preferably a cellular lysate, with a compound immobilized on a solid support which is capable of interacting specifically with R₃R₂, followed by washing off other components present in the biological mixture.

3. The method of claim 1 or 2 wherein the actual reaction of peptide bond hydrolysis is performed following the removal of the recombinant protein from the solid support, or directly on the solid support.

4. The method of claim 3, wherein R₁ is separated from other components using standard techniques when the procedure is performed in solution, while pure R₁ polypeptide in solution is obtained following the peptide bond hydrolysis on the solid support.
5. The method of claim 1, wherein the R₁ peptide sequence denotes a polypeptide of interest, the R₂ peptide sequence denotes a peptide or protein capable of performing a specific function, and the R₃ peptide sequence is absent.

6. The method of claim 1, wherein the R₂ peptide sequence contains one, two or more amino acid residues, which separate the R₂ peptide sequence from the BXJZ sequence, preventing an interference with the action specific to the R₂ peptide sequence.

7. The method of claim 1 wherein the R₂ peptide sequence comprises a peptide or protein which is capable of specific binding to or interacting otherwise with another component or molecule.

8. The method of claim 1, wherein amino acid residue J is selected from the group comprising amino acid residues Cys and His.

9. The method of claim 1, wherein amino acid residue B denotes amino acid residue Ser.

10. The method of claim 1, wherein the hydrolysis environment contains one or more components accelerating hydrolysis, selected from the group comprising natural and synthetic esterases.

11. The method of claim 1, wherein the hydrolysis environment contains one or more components which covalently modify the C-terminal carbon atom of the sequence of peptide/protein R₁, selected from the group comprising hydroxylamine and its derivatives, alcohols, phenols, thiols, amines, phosphines and other compounds having similar properties.

Patentansprüche

 R₁ die zu erhaltene Polypeptidsequenz, am besten des untersuchten Polypeptides zur Reinigung, das einen C-Terminalen, eine Peptidbindung mit dem B-Rückstand der Aminosäure bildungsfähigen Rückstand der Aminosäure enthält, bezeichnet,

 R₂ eine Peptid- oder Proteinsequenz bezeichnet, die entfernt wird, am besten einer Sequenz, die fähig ist, sich an eine andere Komponente oder Molekül anschließen,

 R₃ eine Peptid- oder Proteinsequenz, am besten eine Sequenz eines Einlage-Oligopeptides, das R₂ von den anderen Teilen des rekombinanten Eiweißes trennt, bezeichnet,

 B aus Ser und Thr gewählt ist,

 X aus Gruppe gewählt ist, die aus Aminosäure-Rückständen Asp, Glu, Tyr, Met, Cys, His besteht,

 Z einen Aminosäure-Rückstand Trp bezeichnet, der Peptidbindungen des C(O)-NH-Typs zusammen mit dem J-Rückstand der Aminosäure bildet, sowie, bei Einsatz des so konstruierten rekombinanten Eiweißes für den geplanten Zweck, wird das untersuchte Polypeptid R₁ durch dessen Berührung mit Ni^{2+} im Puffer, der am besten Tris oder Heps enthält, getrennt, bis der Hydrolyse-Prozess der Peptidbindung zwischen R₁ und B beendet worden ist.

2. Anmeldungsmethode 1, in der die Operation, für die eine Funktionsdomäne R₃R₂ geschaffen wurde, aus der Berührung von rekombinanten, in einer Mischung biologischen Ursprungs, am besten im Zellenlysat anwesenden Proteinen mit einem Gemisch besteht, das auf einer Dauerbasis, die insbesondere R₃R₂ zu interagieren fähig ist, wonach eine Ausspülung von anderen, in dem biologischen Gemisch anwesenden Komponenten erfolgt, immobilisiert ist.

3. Anmeldungsmethode 1 oder 2, in der die echte Hydrolyse-Reaktion der Peptidbindung infolge der Entfernung des rekombinanten Proteins aus der Dauerbasis, oder direkt auf der Dauerbasis ausgeführt wird.

4. Anmeldungsmethode 3, wenn R₁ von anderen Komponenten bei Einsatz von Standardtechniken abgetrennt wird, wenn die Prozedur in der Lösung ausgeführt wird, wobei reines Polypeptid R₁ in der Lösung infolge der Hydrolyse
der Peptidbindung auf der Dauerbasis gewonnen wird.

5. Anmeldungsmethode 1, in der die R₁-Peptidsequenz das untersuchte Polypeptid bezeichnet, die R₂-Peptidsequenz das Peptid oder das Protein bezeichnet, die fähig sind, eine bestimmte Funktion auszuüben, und die R₃-Peptidsequenz ist abwesend.

6. Anmeldungsmethode 1, wobei die R₁-Peptidsequenz einen, zwei oder mehrere Aminosäurerückstände enthält, die die R₂-Peptidsequenz von der BXJZ-Sequenz trennen und verhüten, die Aktion durch das für die Sequenz spezifische R₂-Peptid zu stören.

7. Anmeldungsmethode 1, in der die R₂-Peptidsequenz aus einem Peptid oder Protein besteht, das zur besonderen Bindung für oder Zusammenreaktion auf eine andere Art und Weise und mit einer anderen Komponente oder Molekül fähig ist.

8. Anmeldungsmethode 1, wobei der J-Aminosäurerückstand aus einer aus Cys- und His-Aminosäurerückständen zusammengesetzten Gruppe gewählt ist.

9. Anmeldungsmethode 1, wobei der B-Aminosäurerückstand den Ser-Aminosäurerückstand bezeichnet.

10. Anmeldungsmethode 1, in der die Hydrolyse-Umgebung eine oder mehrere, die Hydrolyse beschleunigenden Komponenten enthält, die aus einer aus natürlicher und synthetischer Esterasen zusammengesetzten Gruppe ausgewählt wurden.

11. Anmeldungsmethode 1, in der die Hydrolyse-Umgebung eine oder mehrere Komponenten enthält, die das C-Terminale Kohleatom der R₁-Peptid/Protein-Sequenz, das aus einer aus Hydroxylamin und seinen Derivaten, Alkoholen, Phenolen, Thiolen, Aminen, Phosphinen und anderen Komponenten von ähnlichen Eigenschaften zusammengesetzten Gruppe ausgewählt wurde, kovalent modifizieren.

Revendications

1. Méthode d’hydrolyse de liaison peptidique entre une séquence polypeptidique R₁ et le résidu B de l’acide aminé, où le polypeptide récombiné représenté par la formule R₁BXJZR₃R₂ est designé et obtenu grâce aux méthodes de biologie moléculaire, et particulièrement par sur-expression, qui contient, en commençant par N-extrême: séquence de l’acide aminé du polypeptide R₁, examiné, séquence BXJZ de liaison métallique cation, et le domaine fonctionel R₃R₂, où:

R₁ signifie séquence polypeptidique que nous devons obtenir, le mieux du polypeptide examiné pour épuration, qui contient C-extrême résidu de l’acide aminé capable de former une liaison peptidique avec résidu B de l’acide aminé,

R₂ signifie une séquence peptidique ou protéine, qui est éliminée, le mieux une séquence capable de se lier à un autre constituant ou molécule,

R₃ signifie une séquence peptidique ou protéine, le mieux une séquence oligopeptidique entrecoupée, qui sépare R₂ d’autres parties des protéines récombinées,

B est choisi de Ser et Thr

X est choisi du groupe composé de résidus d’acides aminés Asp, Glu, Tyr, Met, Cys, His,

Z signifie résidu de l’acide aminé, Trp, qui forme une liaison peptidique de type-C(0)-NH- avec résidu J de l’acide aminé ainsi que, après avoir utilisé la protéine récombinée construite ainsi pour but envisagé, le poly-peptide examiné R₁ est séparé par moyen de le placer en contact avec z Ni²⁺ dans une solution tampon, le mieux contenant Tris ou Hapes, jusqu’à la fin du procès d’hydrolyses de la liaison peptidique entre R₁ et B.

2. Méthode de déclaration 1, où l’opération pour laquelle le domaine fonctionel R₃R₂ fut créé, est composé de contact de protéines récombinées, qui sont présentes dans la mixture de provenance biologique, le mieux de lyza cellulaire, avec mixture immobilisée sur support fixe, qui est capable d’interaction, particulièrement avec R₃R₂, après quoi a lieu le rinçement d’autres componants présents dans la mixture biologique.

3. Méthode de déclaration 1 ou 2, dans laquelle la réaction réelle de l’hydrolyse de la liaison peptidique est réalisée à la suite de l’ablation de la protéine récombinée de base fixe, ou directement sur la base fixe.
4. Méthode de déclaration 3, quand R₁ est séparée d'autres constituants en utilisant des techniques standards, quand la procédure est faite dans la solution, alors que le polypeptide pur R₁ dans la solution est obtenu suite à l'hydrolyse de la liaison peptidique sur base fixe.

5. Méthode de déclaration 1, où la séquence peptidique R₁ signifie le polypeptide examiné, séquence du polypeptide R₂ signifie le peptide ou la protéine capable d'exercer une fonction définie, et la séquence peptidique R₃ est absente.

6. Méthode de déclaration 1, où la séquence peptidique R₃ contient un, deux ou plus résidus d'acides aminés, qui séparent la séquence peptidique R₂ de la séquence BXJZ, prévenant la perturbation de l'action spécifique pour la séquence peptidique R₂.

7. Méthode de déclaration 1, où la séquence peptidique R₂ contient un peptide ou une protéine, qui sont capables de se lier particulièrement ou aussi coréagir d'une autre manière et avec autre constituant ou molécule.

8. Méthode de déclaration 1, où le résidu de l'acide aminé J est choisi parmi le groupe composé de résidus d'acides aminés Cys et His.

9. Méthode de déclaration 1, où le résidu de l'acide aminé B signifie le résidu de l'acide aminé Ser.

10. Méthode de déclaration 1, où l'environnement de l'hydrolyse comprend un ou plusieurs constituants accéléants l'hydrolyse, choisis du groupe composé d'estérases naturelles et synthétiques.

11. Méthode de déclaration 1, où l'environnement de l'hydrolyse contient un ou plusieurs constituants, qui modifient de façon covalente C-externe atome de carbone de séquence peptide/protéine R₁, choisi du groupe composé de hydroxyamine et ses dérivés, alcools, phénols, thiols, amines, phosphines et autres constituants à propriétés semblables.
Scheme I
Scheme II
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- EP 0161937 A, Nagai [0004]
- EP 0505921 A, Grandi [0004]
- EP 0679189 A, LaVallie [0004]
- US 2005158838 A, Ley [0004]
- EP 0666920 A, Gilbert [0004]
- US 6933362 B, Belfort [0005]
- EP 0134070 A [0006]
- CN 1371918, Wang [0006]
- WO 952815 A, Palm [0006]
- EP 0288272 A, Richiyaado [0006]
- EP 0339217 A, Hinman [0006]
- JP 10045796 B [0006]
- WO 2005005458 A, Linder [0007]
- EP 0669820 A, Suh and Son [0008]
- WO 0032795 A, Humphreys [0013]
- WO 2005007693 A, Grzelak [0067]

Non-patent literature cited in the description

- FIELDS. Meth. Enzymol., vol. 289 [0058] [0061] [0062]