EP 2 094 561 B1

EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 01.02.2012 Bulletin 2012/05

Application number: 07819831.4

Date of filing: 15.11.2007

Int Cl.: B64C 1/14 (2006.01)

International application number: PCT/EP2007/009897

International publication number: WO 2008/058746 (22.05.2008 Gazette 2008/21)

Designated Contracting States: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC MT NL PL PT RO SE SI SK TR

Priority: 16.11.2006 DE 102006053967

Date of publication of application: 02.09.2009 Bulletin 2009/36

Proprietor: Airbus Operations GmbH
21129 Hamburg (DE)

Inventor: KRAHN, Stefan
49074 Osnabrück (DE)

Representative: Schatt, Markus F.
Schatt IP
Patent- und Rechtsanwaltskanzlei
Rindermarkt 7
80331 München (DE)

References cited:
DE-A1-102005 058 749

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The invention relates to a window element for inserting in a window cutout in an aircraft skin, the window element being prepared by means of masking for painting. The invention further relates to a method of integration of a window in a structural part.

[0002] EP 0 936 138 A discloses a window element for an aircraft prepared by means of masking for painting, the window element comprising a window frame for being connected to the structural part with a window cutout and a window assembly and an encircling sealing profile, the window assembly being accommodated between the retainer and the window frame by means of fastening elements for clamping the window assembly on the window frame. The sealing profile is designed such that these surfaces provide self-centering of the window assembly in the window frame.

[0003] After installation in the window openings in an aircraft fuselage, known window elements are generally painted in the colour of the aircraft. For this purpose, the window frame and/or the window surface have to be masked in a complicated manner with films and/or adhesive tapes in order to avoid undesirable soiling of the window surfaces during the painting process. Use is made in this connection of adhesive tapes and/or adhesive films which, after the painting process is ended, can be removed from the masked surfaces of the fuselage without leaving a residue. In addition, the adhesive tapes/adhesive films may be disturbed during the preparatory sanding of the surfaces to be painted, and therefore, under some circumstances, further finishing work, for example in the form of re-adhering masking means or redrawing contours using cutter blades arises. For masking, use may also be made of templates, but these likewise have to be fitted individually onto each window element and oriented in order to achieve the desired covering effect in the edge regions too. In the case of passenger aircraft with usually several 100 window elements, the preparatory work for the painting operation proves highly labour-intensive.

[0004] It is an object of the invention to provide a window element which is advantageous with regard to painting measures on the aircraft structure. A further object of the invention is to provide a method of integration of a window in a structure part, and particularly in an aircraft structure, which reduces the painting effort.

[0005] This objects are achieved by a window element having features of the independent claim directed to a window element and by the features of the independent method claim. Further embodiments are described in the subclaims depending on the window element claim or the method claim.

[0006] Particularly, according to the invention, a window frame is provided, which window frame can be connected to the skin or a structure part.

a window assembly with an inner pane and an outer pane which are enclosed by an encircling seal, the seal having an encircling recess for self-centring in the window frame,

a retainer which can be fixed to the window frame by fastening elements, the window assembly being accommodated between the retainer and a bearing surface of the window frame, and the recess bearing at least in some regions against a window frame inner edge,

a covering means which covers the outer pane with an edge region being left free, or completely covers it, and

an encircling covering tape, the first section of which covers the covering means and the second section of which runs between the recess and the window frame inner edge.

[0007] According to the invention, after fitting into an aircraft fuselage, the window element can be immediately painted over. Additional preparatory measures, such as, for example, masking the window element, are dispensed with entirely. After the painting process is finished, first of all the covering means, which preferably completely covers the window assembly to the outside, is pulled off. The encircling covering tape can then be pulled out from the gap between the recess of the window assembly seal and the window frame inner edge.

[0008] In order to obtain a firm fit and therefore a good masking effect, the covering tape runs with its first section in the edge region of the outer pane while a second section, which encloses an angle of approximately 90° with the first section, runs at least in some regions between an encircling recess of the window assembly seal and a window frame inner edge.

[0009] The covering means is preferably formed by a self-adhesive thermoplastic film which can be detached from an underlying surface without leaving a residue. The covering tape is also formed by a tape-shaped, self-adhesive thermoplastic film which can be detached or pulled off without leaving a residue, with neither the covering means nor the covering tape having any fibre reinforcement. The covering means may cover the outer pane completely or with an edge region being left free.

[0010] In order, in particular, to ensure that the covering tape is pulled out without leaving a residue, the thermoplastic material used for producing the covering tape has to have a sufficient mechanical shearing strength. At the same time, the covering tape has to be sufficiently flexible so that the covering tape can be applied in an crease-free a manner as possible in the region of the essentially oval outer contour of the window assembly.

[0011] An advantageous refinement of the window element provides that the first section and the second section of the covering tape enclose an angle of approximately 90°.
[0012] As a result of the "bevelling" of the covering tape or of the masking tape, a particularly tightly fitting masking of the window element is achieved, and therefore neither paint nor spray mist can reach surfaces of the window element that are not to be painted.

[0013] According to a further advantageous refinement, it is provided that the covering means overlaps the covering tape at least in some regions in the edge region of the outer pane of the window element.

[0014] Owing to the fact that the extensive covering means constitutes the continuation of the covering tape, the overlapping ensures a gap-free transition between the covering tape and the covering means. In this case, the covering tape preferably rests on the edge of the covering means. A reverse sequence between the covering means and the covering tape is likewise conceivable.

[0015] Further advantageous refinements of the arrangement are depicted in the further patent claims.

[0016] In the drawing:

Fig. 1 shows a plan view of a window element according to the invention from the outside,

Fig. 2 shows a cross-sectional illustration along the section line II-II through the window element, and

Fig. 3 shows a cross-sectional illustration through a variant embodiment of the window element.

[0017] Fig. 1 shows a plan view of a window element or window package or window module 1 according to the invention from the outside. In figure 2, for orientation an outer side A and an outer side B are defined with regard to the window when inserted in a structure part. Further, with regard to the cross-section of the profile of the window frame and of the sealing profile according to the invention, a first side I, a second side II and a first direction D1 running from the second side II to the first side I is defined.

[0018] The window element 1 is fastened in a window cutout 2 in a structural part 3, particularly in a structural part, f.e. the fuselage, of an aircraft. The window element 1 comprises a window frame 4 into which a window assembly 5 with an inner pane 9, 30, an outer pane 10, 31 and an encircling sealing profile 11, 32. The inner pane 9, 30 and the outer pane 10, 31 are inserted in at least one cross-sectional recess of the seal profile. Particularly, two recesses 11a, 11b (figure 2) can be provided in the sealing profile 11 so that the inner pane 9 can be inserted in a first cross-sectional recess 11a and the outer pane 10 can be inserted in a second cross-sectional recess 11b. The outer pane 10, 31 is lying on the outer side A of the structure part 3 and the inner pane 9, 30 is lying on the inner side B of the structure part 3.

[0019] The sealing profile 11, 32 comprises an outer inclined surface 11b, 32b directed more or less to the outer side A. Further, the window frame 4, 24 comprises an inner inclined surface 14b, 29b directed more or less to the inner side B. Particularly, the window frame 4, 24 can comprise a shoulder or a cross-sectional part 14c, 29c extending to the first side I and comprising the inner inclined surface 14b, 29b. The seal profile 11, 32 and the window frame 4, 24 are designed and positioned such that the outer inclined surface 11b, 32b of the seal profile 11, 32 is at least partially abutting the inner inclined surface 14b, 29b of the window frame, the outer inclined surface 11b, 32b and the inner inclined surface 14b, 29b being designed such that these surfaces provide self-centering of the window assembly 5, 25 in the window frame 4, 24. For this purpose, in the cross-sectional view of figures 2 and 4, the inner inclined surface 14b, 29b is at least a part of the inner surface of the cross-sectional part 14c, 29c extending to the first side I and the inner inclined surface 14b, 29b has a direction component directed to the first side I and also a direction component directed to the outer side A.

[0020] The self-centering inclined surfaces 11b, 29ba and 14b, 29b, respectively, can also be provided sectionally in the longitudinal direction (direction of line of sight onto the drawing plane) of the window frame 4, 24 and the sealing profile 11, 32, respectively.

[0021] An edge region 6 of the window assembly 5, which edge region encircles around the contour of the window assembly 5 and has an essentially constant width, is covered by an encircling covering tape 7 which is preferably designed as a pull-off tape which can be detached without leaving a residue. The surface of the window assembly 5 is covered by the covering layer 8, 35 which edge region encircles around the contour of the window assembly 5 and has a width, is covered by an encircling covering tape 7 which can be detached without leaving a residue. The covering layer 8, 35 can be formed as an extensive covering means. The covering layer 8, 35 can be designed such and is placed on the outer pane 10, 31 such that a border area or an encircling area 10a, 31a of the surface of the outer pane 10, 31 is being left free. Alternatively, the covering layer 8, 35 can be designed such and can be placed on the outer pane 10, 31 such that the covering layer 8, 35 completely covers the outer pane 10, 31. The covering tape 7 is preferably designed as a pull-off tape which can be detached without leaving a residue.

[0022] The border area or the encircling area 10a, 31a of the surface of the outer pane 10, 31 can run a distance in the first direction D1 from the most outer edge or an outer edge 10b of the outer pane 10, 31.

[0023] Further, on the outer pane a part of a covering tape 7 is placed on the border area 6 of the surface of the outer pane 10, 31 and/or on the covering layer 8, 35. The covering tape can have a constant width in its longitudinal direction. Alternatively, the covering tape can have a width which changes along its longitudinal direction. The covering tape can cover a border area 10a, 30a completely encircling the outer edge of the outer pane which runs along the outer edge of the outer pane 10, 31 so that the covering tape encircles around the contour of the outer pane 10, 31. Alternatively, the covering tape can cover at least one section of the encircling border.
area 10a, 31a of the surface of the outer pane 10, 31.

[0024] Preferably, the covering layer 8, 35 and the covering tape 7 are placed such that the surface of the outer pane of the window element 1 which is seen from the outer side A is completely covered by the covering layer 8, 35 and the covering tape 7.

[0025] The covering tape 20, 37 can completely or partially encircling the outer pane. Preferably, the covering tape partially covers or overlaps with a first section 20, 37 an edge region or a border area 8a of the covering means 8.

[0026] A second section 21, 38 of the covering tape 20, 37 is positioned between the outer inclined surface 11b of the seal profile 11, 32 and the inner inclined surface 14b of the window frame 4, 24.

[0027] Both the encircling covering tape 7 and the covering means or covering layer 8 are already applied to the window assembly 5 of the window element 1 in a process which can be separate from the painting process. After insertion of the window element 1 into the window cutout or opening 2 of the structural part 3, the window element 1 according to the invention can therefore be immediately painted over without further preparatory measures. After the painting process is ended, first of all the covering layer 8 is pulled off from the window assembly 5. The encircling covering tape 7 is then pulled out and the painting operation is finished.

[0028] Fig. 2 shows a cross-sectional illustration along the section line II-II. The window frame 4 is fastened in the window cutout or opening 2. The window frame 4 is fastened in the window cutout 2 of the structural part 3 by, for example, an encircling, two-row riveting or screwing operation or by adhesive bonding.

[0029] The window assembly 5 has an inner pane 9 and an outer pane 10 which, uniformly spaced apart from each other, are surrounded by an encircling seal 11. The seal or sealing profile 11 comprises the outer inclined surface 11b.

[0030] In one embodiment, the outer inclined surface 11b can be provided with an partially or completely encircling recess 12 or an rebate. The outer inclined surface 11b can also be formed of two surface sections, a front part 11a and a rear part 11d, cross-sectionally running angled with regard to each other and, particularly, which can form an approximately right-angled cross-sectional geometry. The inner surface of the window frame 4, 24 can also be provided with a front part 14a and a rear part 14d, cross-sectionally running angled with regard to each other and, particularly, be formed such that the recess or rebate 12 form-fits with and bears against a window frame inner edge 13, as a result of which the window assembly 5 is centred in the window frame 4. In this embodiment, the rear parts 11d, 14d can particularly be bearing surfaces so that the encircling seal 11 of the window assembly 5 bears against a bearing surface 14d of the window frame 4, which bearing surface is preferably formed conically, i.e. slightly inclined towards the centre of the window cutout 2.

[0031] Also, the front parts 11a, 14a and the rear parts 14a, 14d can form an ellipsoid contour of the surfaces 11b, 14b.

[0032] The window assembly 5 is fixed from the inside to the window frame 4 by means of at least one fastening element 16, 27, optionally by means of an additional retainer 15. With using the retainer 15, the retainer and the window frame 4 are fixed by means of the fastening element 16 which, in the exemplary embodiment shown in Fig. 1, is designed as an eye bolt 17 which is connected to the window frame 4 by a fastening bolt 18 which is guided through the window frame 4 horizontally, i.e. approximately parallel to the skin of the fuselage 3. The fixing between the retainer 15 and the window frame 4 preferably takes place by a total of at least four fastening elements which are distributed over the circumference of the window frame 4 approximately uniformly spaced apart from one another and which correspond in their construction to the fastening element 16.

[0033] The covering means or layer 8 extends over the entire surface or a region of the surface of the outer pane 10. In one embodiment, the covering means 8 leaves, in particular, an encircling edge region 6 free. The covering means 8 may also completely cover the outer pane 10. The covering means 8 is overlapped on the edge side by the covering tape 7 with an overlapping section 19 being formed so as to avoid any formation of a gap and a resultantly caused inadvertent penetration of paint. The covering tape 7 comprises a first cross-sectional section 20 which, in the overlapping region, runs on the covering means 8 and also on the outer pane 10. A second cross-sectional section 21 of the covering tape 7 runs between the inclined surfaces.

[0034] An outmost part 11a, 32a of the outer inclined surface 11b, 32b and an outmost part 14a, 29a of the inner inclined surface 14b, 29b can extend in a direction which, in a cross-sectional view (figures 2 and 3) is directed with an angle of 90° ±15° with regard to the outer surface of the outer pane 8, 35 or with regard to the opening 2. Preferably, the outmost part forms an angle of more than 90° with regard to a plane section of the rear part 11d, 32d of the inclined surface 11b, 32b and a plane section of the rear part 14d, 29d of the inner inclined surface 14b, 29b.

[0035] Preferably, the second cross-sectional section 21 of the covering tape 7 cross-sectionally extends only between the outmost part 11a, 32a of the outer inclined surface 11b, 32b and the outmost part 14a, 29a of the inner inclined surface 14b, 29b.

[0036] When a recess 12 is provided, the section 21 of the covering tape 7 can extend into a gap (not denoted specifically) between, if provided, the recess 12 in the seal 11 of the window assembly 5 and the window frame inner edge 13.

[0037] With the embodiment with the second section 21 of the covering tape 7 not running in the region between the bearing parts or rear parts 11d, 32d and , respectively, of the inclined surfaces 11b, 14b and the seal
11, trapping of the covering tape 7 during fixing of the window assembly 5 to the window frame 4 is avoided. Secondly, the penetration of paint or of spray mist is reliably avoided by means of the profile, which is angled approximately by 90° with respect to the first section 20 of the covering tape 7, of the second section 21 which projects into the recess 12 of the seal 11, and therefore only the fuselage skin 3 and a window frame outer side 22 are coated with the desired colour.

[0038] The covering means 8 is preferably formed by a self-adhesive, smooth plastic film which can be detached from the underlying surface without leaving a residue. Correspondingly, the covering tape 7 is formed by a plastic tape which can be detached from the underlying surface without leaving a residue. Both the plastic film and the plastic tape are formed by a thermoplastic material. In particular, the thermoplastic material used for the covering tape 7 has to have sufficient flexibility so that it can be placed into the recess 12 around the contour of the window assembly 5 in a manner free from creasing. In addition, the plastic material has to have sufficient mechanical tensile strength so that the covering tape 7 between the seal 11 and the window frame inner edge 13 can be pulled out without leaving a residue, i.e., in particular, in a manner free from torn or split pieces.

[0039] By means of the covering tape 7 and the covering means 8, the outer pane 10 and the rubber seal 11 are completely covered by a continuous protective film covering during the painting operation. Accordingly, the window frame outer surface 22 of the window element 1 according to the invention and the aircraft skin 3 can be painted over immediately after fitting in the desired colour without further measures protecting against an inadvertent or undefined application of paint in the region of the window element 1.

[0040] After the painting operation is finished, the covering tape 7 between the seal 11 and the window frame inner edge 13 is pulled out. The covering means 8, i.e., the self-adhesive plastic film, is subsequently lifted from the outer pane 10 and detached and the window frame outer side 22 is completely painted over in the desired colour.

[0041] Immediately after fitting in the window cutout 2 of an aircraft fuselage skin 3, the window element 1 according to the invention can be painted in the desired colour of the aircraft fuselage. Complicated preliminary painting work, such as, for example, the time-consuming masking of all of the window elements 1, can be entirely dispensed with. In particular in the case of large passenger aircraft with frequently several hundred window elements, a considerable potential saving in respect of the painting preparation arises with the use of the window element 1 according to the invention.

[0042] Fig. 3 shows a variant of the window element. In contrast to the illustration of Fig. 2, a window element 23 comprises a window frame 24 with an essentially L-shaped cross-sectional geometry. A window assembly 25 is fixed to the window frame 24 by means of a retainer 26. The fixing between the retainer 26 and the window frame 24 takes place by means of a fastening element 27. In this case, the entire window element 23 preferably comprises at least six fastening elements which are designed in accordance with the fastening element 27 and are distributed uniformly spaced apart from one another over the circumference of the window frame 24. The window frame 24 in turn is connected to the fuselage skin 28, in particular by means of a riveting, screwing or adhesive connection. The window assembly 25 bears against a bearing surface 29 of the window frame 24, which bearing surface is conical, i.e. positioned slightly obliquely. The window assembly 25 comprises an inner pane 30 and an outer pane 31 which runs at a distance parallel thereto, said panes being enclosed by an encircling seal 32. The seal 32 has an encircling recess 33 with which the window assembly 25 bears against a window frame inner edge 34.

[0043] A covering means 35 and, overlapping therewith, an encircling covering tape 36 are arranged on the outer pane 31 of the window assembly 25 in order to ensure complete protection of the window element 24 against the paint or the spray mist during the painting operation. A first section 37 of the covering tape 36 in turn rests in an overlapping manner on the covering means 35, which essentially entirely covers the outer pane 31, while a second section 38 of the covering tape 36, angled at 90° with respect to the first section 37, runs between the window frame inner edge 34 and the recess 33. Otherwise, the arrangement and the position of the covering means 35 and of the covering tape 36 corresponds to the arrangement already explained within the context of the description of Fig. 2.

[0044] For the covering means 35, use is again made of a self-adhesive plastic film which can be detached without leaving a residue. The covering tape 36 is likewise formed by a self-adhesive, tape-shaped plastic film which can be detached from the underlying surface without leaving a residue. Both plastic films preferably consist of a thermoplastic material without a fibre reinforcement.

List of reference numbers

[0045]

1. Window element
2. Window cutout
3. Skin (fuselage)
4. Window frame
5. Window assembly
6. Edge region
7. Covering tape
Claims

1. Window element (1, 23) prepared by means of masking for painting, the window element (1, 23) comprising a window frame (4, 24) for being connected to the structural part (3, 28) of an aircraft with a window cutout (2) and a window assembly (5, 25) with an inner pane (9, 30), an outer pane (10, 31) and an encircling sealing profile (11, 32), the window assembly (5, 25) being accommodated between a retainer (15, 26) and the window frame (4, 24) by means of fastening elements (16, 27) for clamping the window assembly (5, 25) on the window frame (4, 24), the sealing profile (11, 32) having an outer inclined surface (11b) and the window frame (4, 24) having an inner inclined surface (14b) which is abutting the outer inclined surface (11b) of the window frame, the outer inclined surface (11b) and the inner inclined surface (14b, 29b) being designed such that these surfaces provide self-centering of the window assembly (5, 25) in the window frame (4, 24), characterized by...
Window element (1, 23) according to one of claims 1 to 5.

Window element (1, 23) according to claim 1, characterized in that the outer inclined surface (11 b, 32 b) of the seal profile (11, 32) has a convex surface and the inner inclined surface (14 b, 29 b) of the window frame (4, 24) has a convex surface.

Window element (1, 23) according to claim 2, characterized in that the outer inclined surface (11 b, 32 b) of the seal profile (11, 32) has a concave surface and the inner inclined surface (14 b, 29 b) of the window frame (4, 24) have an ellipsoid form in the cross-sections of the seal profile (11, 32) and of the window frame (4, 24).

Window element (1, 23) according to one of the preceding claims 1 to 4, characterized in that the window element (1, 23) comprises a retainer (15, 26) for clamping the window assembly (5, 25) on the window frame (4, 24) by the fastening elements (16, 27).

Window element (1, 23) according to one of the preceding claims 1 to 5, characterized in that window frame (4, 24) has an L-shaped or T-shaped cross-sectional geometry.

Window element (1, 23) according to one of the preceding claims 1 to 5, characterized in that the cross-section of the window frame (4, 24) has an inwardly extending section on an inner end thereof.

Window element (1, 23) according to one of the preceding claims 1 to 7, characterized in that the covering layer (8, 35) is placed on the outer pane (10, 31) with a border area (6) of the surface of the outer pane being left free.

Window element (1, 23) according to one of the preceding claims 1 to 8, characterized in that the covering layer (8, 35) completely covers the outer pane (10, 31).

Window element (1, 23) according to one of the preceding claims, characterized in that the covering layer (8, 35) and the covering tape (7, 36) are overlapping each other at least in some regions in the border area (6) of the surface of the outer pane.

Window element (1, 23) according to one of preceding claims, characterized in that the covering tape (7, 36) has a high shearing strength in order, in particular, to enable it to be pulled out without leaving a residue.

Window element (1, 23) according to one of claims 1 to 11, characterized in that the covering layer (8, 35) is a self-adhesive plastic film which can be detached without leaving a residue.

Window element (1, 23) according to one of claims 1 to 12, characterized in that the covering tape (7, 36) is a self-adhesive plastic tape which can be detached without leaving a residue.

Method of integration of a window in a structural part (3), comprising the steps:

- inserting of a window element according to one of the claims 1 to 13 in an opening of a structural part (3),
- painting of at least a part of the structural part (3),
- removing the covering tape (7, 36) and the covering layer (8, 35).

Method according to claim 14, wherein first the covering layer (8, 35) and then the covering tape (7, 36) is removed or wherein first the covering tape (7, 36) and then the covering layer (8, 35) is removed.

Patentansprüche

1. Fensterelement, das mittels einer Abdeckung für Bemaalungszwecke vorbereitet ist, das Fensterelement (1, 23) aufweisend: einen Fensterrahmen (4, 24), der mit der Außenhaut (3, 28) eines Flugzeugs verbindbar ist, mit einem Fensterausschnitt (2) und einem Fensterrahmen (4, 24) mittels Befestigungselementen (16, 27) zum Klemmen des Fensterpakets (5, 25) zwischen einem Andruckrahmen (15, 26) und einem umlaufenden Dichtungsprofil (11, 32), wobei das Fensterpaket (5, 25) zwischen einem Andruckrahmen (15, 26) und dem Fensterrahmen (4, 24) gelegen ist, wobei das umlaufende Dichtungsprofil (11, 32) eine äußere schräg verlaufende Oberfläche (11 b) und der Fensterrahmen (4, 24) eine innere schräg verlaufende Oberfläche (14 b), die an der äußere schräg verlaufenden Oberfläche (11 b) anliegt,
hat, wobei die äußere schräg verlaufende Oberfläche (11b) und die innere schräg verlaufende Oberfläche (14b, 29b) derart gestaltet sind, dass diese Oberflächen eine Selbstzentrierung des Fensterrahmens (4, 24) bereitstellt, gekennzeichnet, durch

- eine Abdecklage (8, 35), das wenigstens teilweise die Außenscheibe (10, 31) bedeckt,
- ein umlaufendes Abdeckband (7, 36), von dem ein erster Abschnitt (20, 37) einen Randbereich (8, 35a) der Abdecklage (8, 35) abdeckt und von dem ein zweiter Abschnitt (21, 38) wenigstens in Bezug auf den Querschnitt zwischen der äußeren schräg verlaufenden Oberfläche (11b) des Dichtungsprofils (11, 32) und der inneren schräg verlaufenden Oberfläche (14b, 29b) des Fensterrahmens (4, 24) gelegen ist.

2. Fensterelement (1, 23) nach Anspruch 1, dadurch gekennzeichnet, dass die äußere schräg verlaufende Oberfläche (11b, 32b) des Dichtungsprofils (11, 32) eine konkave Oberfläche und die innere schräg verlaufende Oberfläche (14b, 29b) des Fensterrahmens (4, 24) eine konvexe Oberfläche hat.

3. Fensterelement (1, 23) nach Anspruch 2, dadurch gekennzeichnet, dass die äußere schräg verlaufende Oberfläche (11b, 32b) des Dichtungsprofils (11, 32) und die innere schräg verlaufende Oberfläche (14b, 29b) des Fensterrahmens (4, 24) in den Querschnitten des Dichtungsprofils (11, 32) und des Fensterrahmens (4, 24) eine ellipsoide Form hat.

4. Fensterelement (1, 23) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die äußere schräg verlaufende Oberfläche (11b, 32b) des Dichtungsprofils (11, 32) und die innere schräg verlaufende Oberfläche (14b, 29b) des Fensterrahmens (4, 24) zur Selbstzentrierung im Fensterrahmen (4, 24) eine begrenzende Umlauffläche (12, 33) aufweisen.

5. Fensterelement (1, 23) nach einem der vorstehenden Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Fensterelement (1, 23) einen Andruckrahmen (15, 26) zum Klemmen des Fensterpakets (5, 25) auf den Fensterrahmen (4, 24) mittels der Befestigungsselemente (16, 27) aufweist.

6. Fensterelement (1, 23) nach einem der vorstehenden Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Querschnitt des Fensterrahmens (4, 24) L-förmig oder T-förmig gebildet ist.

7. Fensterelement (1, 23) nach einem der vorstehenden Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Querschnitt des Fensterrahmens (4, 24) an einem inneren Ende desselben einen sich nach innen erstreckenden Abschnitt aufweist.

8. Fensterelement (1, 23) nach einem der vorstehenden Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Abdecklage (8, 35) die Außenscheibe (10, 31) unter Freilassung eines Randbereichs (6) bedeckt.

9. Fensterelement (1, 23) nach einem der vorstehenden Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Abdeckmittel (8, 35) die Außenscheibe (10, 31) vollflächig bedeckt.

10. Fensterelement (1, 23) nach einem der vorstehenden Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das Abdeckband (7, 36) das Abdeckmittel (8, 35) in dem Randbereich (6) der Oberfläche der äußeren Scheibe wenigstens Bereichsweise überlappt.


12. Fensterelement (1, 23) nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass das Abdeckmittel (8, 35) als selbstklebend und rückstandslos ablösbarer Kunststofffolie ist.

13. Fensterelement (1, 23) nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Abdeckband (7, 36) ein selbstklebendes und rückstandslos ablösbares Kunststoffband ist.

14. Verfahren zur Integration eines Fensters in ein Strukturtile (3), das Verfahren aufweisend die Schritte:

- Einsetzen eines Fensterelements nach einem der Ansprüche 1 bis 13 in eine Öffnung eines Strukturtteils (3),
- Bemalen wenigstens eines Teils des Strukturtteils (3),
- Entfernen des Abdeckbands (7, 36) und der Abdecklage (8, 35).

15. Verfahren nach Anspruch 14, wobei zuerst die Abdecklage (8, 35) und dann das Abdeckband (7, 36) entfernt wird oder wobei zuerst das Abdeckband (7, 36) und dann die Abdecklage (8, 35) entfernt wird.

Revendications

1. Élément de fenêtre (1, 23) préparé au moyen du masquage pour la peinture, l’élément de fenêtre (1, 23) comprenant un châssis de fenêtre (4, 24) destiné à être relié à la partie structurale (3, 28) d’un aéronef
avec une découpe de fenêtre (2), et un montage de fenêtre (5, 25) avec une vitre intérieure (9, 30), une vitre extérieure (10, 31) et un profilé d’étanchéité encerclant (11, 32), le montage de fenêtre (5, 25) étant disposé entre une patte de fixation (15, 26) et le châssis de fenêtre (4, 24) au moyen d’éléments de fixation (16, 27) pour serrer le montage de fenêtre (5, 25) sur le châssis de fenêtre (4, 24), le profilé d’étanchéité (11, 32) présentant une surface extérieure inclinée (11b) et le châssis de fenêtre (4, 24) présentant une surface intérieure inclinée (14b) qui bute contre la surface extérieure inclinée (11b) du châssis de fenêtre, la surface extérieure inclinée (11b) et la surface intérieure inclinée (14b, 29b) étant conçues de telle façon que ces surfaces fournissent un auto-centrage du montage de fenêtre (5, 25) dans le châssis de fenêtre (4 , 24), caractérisé par

- une couche couvrante (8, 35) qui recouvre au moins partiellement la vitre extérieure (10, 31),
- une bande couvrante encerclante (7, 36) dont une première section (20, 37) couvre une zone de bordure (8a, 35a) de la couche couvrante (8, 35) et dont une deuxième section (21, 38) est au moins positionnée en section transversale entre la surface extérieure inclinée (11b, 32b) du profilé d’étanchéité (11, 32) et la surface intérieure inclinée (14b, 29b) du châssis de fenêtre (4, 24).

2. Elément de fenêtre (1, 23) selon la revendication 1, caractérisé en ce que la surface extérieure inclinée (11b, 32b) du profilé d’étanchéité (11, 32) présente une surface concave et la surface intérieure inclinée (14b, 29b) du châssis de fenêtre (4, 24) présente une surface convexe.

3. Elément de fenêtre (1, 23) selon la revendication 2, caractérisé en ce que la surface extérieure inclinée (11b, 32b) du profilé d’étanchéité (11, 32) et la surface intérieure inclinée (14b, 29b) du châssis de fenêtre (4, 24) présentent une forme ellipsoidale dans les sections transversales du profilé d’étanchéité (11, 32) et du châssis de fenêtre (4, 24).

4. Elément de fenêtre (1, 23) selon la revendication 1 ou 2, caractérisé en ce que la surface extérieure inclinée (11b, 32b) du profilé d’étanchéité (11, 32) et la surface intérieure inclinée (14b, 29b) du châssis de fenêtre (4, 24) présentent un évidement encerclant (12, 33) pour l’auto-centrage dans le châssis de fenêtre (4, 24).

5. Elément de fenêtre (1, 23) selon l’une des revendications 1 à 4, caractérisé en ce que l’élément de fenêtre (1, 23) comprend une patte de fixation (15, 26) pour serrer le montage de fenêtre (5, 25) sur le châssis de fenêtre (4, 24) par les éléments de fixation (16, 27).

6. Elément de fenêtre (1, 23) selon l’une des revendications 1 à 5, caractérisé en ce que le châssis de fenêtre (4, 24) présente une géométrie de section transversale en L ou en T.

7. Elément de fenêtre (1, 23) selon l’une des revendications 1 à 5, caractérisé en ce que la section transversale du châssis de fenêtre (4, 24) présente une section s’étendant vers l’intérieur sur une extrémité intérieure de celle-ci.

8. Elément de fenêtre (1, 23) selon l’une des revendications 1 à 7, caractérisé en ce que la couche couvrante (8, 35) est placée sur la vitre extérieure (10, 31) avec une zone de bordure (6) de la surface de la vitre extérieure laissée libre.

9. Elément de fenêtre (1, 23) selon l’une des revendications 1 à 8, caractérisé en ce que la couche couvrante (8, 35) couvre complètement la vitre extérieure (10, 31).

10. Elément de fenêtre (1, 23) selon l’une des revendications précédentes, caractérisé en ce que la bande couvrante (7, 36) et la bande couvrante (7, 36) se chevauchent l’une et l’autre au moins dans certains endroits dans la zone de bordure (6) de la surface de la vitre extérieure.

11. Elément de fenêtre (1, 23) selon l’une des revendications précédentes, caractérisé en ce que la bande couvrante (7, 36) présente une force de cisaillement, afin, en particulier, de lui permettre d’être tirée vers l’extérieur sans laisser de résidu.

12. Elément de fenêtre (1, 23) selon l’une des revendications 1 à 11, caractérisé en ce que la couche couvrante (8, 35) est un film plastique auto-adhésif qui peut être enlevé sans laisser de résidu.

13. Elément de fenêtre (1, 23) selon l’une des revendications 1 à 12, caractérisé en ce que la bande couvrante (7, 36) est un film plastique auto-adhésif qui peut être enlevé sans laisser de résidu.

14. Procédé d’introduction d’une fenêtre dans une partie structurale (3), comprenant les étapes :

- d’intégration d’un élément de fenêtre selon l’une des revendications 1 à 13 dans une ouverture d’une partie structurale (3),
- de peinture d’au moins une partie de la partie structurale (3),
- de retrait de la bande couvrante (7, 36) et de
la couche couvrante (8, 35).

15. Procédé selon la revendication 14, dans lequel la couche couvrante (8, 35) est d'abord retirée et ensuite la bande couvrante (7, 36) est retirée ou dans lequel la bande couvrante (7, 36) est d'abord retirée et ensuite la couche couvrante (8, 35) est retirée.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• EP 0936138 A [0002]