NEW EUROPEAN PATENT SPECIFICATION
After opposition procedure

Date of publication and mention of the opposition decision:
20.06.2018 Bulletin 2018/25

Mention of the grant of the patent:
09.02.2011 Bulletin 2011/06

Application number: 09006866.9

Date of filing: 14.06.2004

Apparatus for screening drilling mud
Vorrichtung zum Sieben von Bohrschlamm
Appareil pour criblez la boue de forage

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

Priority: 12.06.2003 GB 0313521
24.12.2003 GB 0329920

Date of publication of application:
26.08.2009 Bulletin 2009/35

Document number(s) of the earlier application(s) in accordance with Art. 76 EPC:
04736760.2 / 1 631 367

Proprietor: Axiom Process Limited
Newcastle Upon Tyne
Tyne and Wear NE13 7BA (GB)

Inventor: Bailey, Marshall Graham
Dyce, Aberdeen AB21 0DP (GB)

Representative: Newell, Campbell et al
Marks & Clerk LLP
40 Torphichen Street
Edinburgh EH3 8JB (GB)

References cited:
WO-A2-01/81014 DE-A1- 3 015 665
US-B1- 6 530 482

• ANDREWS J. ET AL: 'Shale Shakers and Drilling Fluid Systems', 1999, GULF PROFESSIONAL PUBLISHING
• Brandt VSM 300 Brochure, 2001
• Thule VSM 100 and VSM 120 Brochures 1982 and 1992
• SWECO LM-3 Brochure
• TECHNICAL SERVICES STAFF OF BRANDT/EPI: 'The Handbook on Solids Control & Waste Management', vol. 4TH ED., 1996, BRANDT/EPI
Description

[0001] The present invention relates to vibratory screening apparatus suitable for use with drilling fluids, mineral processing, classification, and dewatering, and the like.

[0002] In US 2,943,679 the requirement for maintaining control of the content of a drilling fluid, especially the circulating material (solid particles) is described.

[0003] Vibratory screening apparatus is widely used in the oil drilling industry for removing drill cuttings from drilling fluids, and over the years various improvements have been made to the screens used therein, methods for mounting the screens etc to improve ease of use, reduce maintenance etc. A particular problem in offshore oil drilling is, however, that platform real estate is very restricted and extremely expensive. There is accordingly a need to improve the efficiency of vibratory screening apparatus in relation to the physical size thereof.

[0004] In US 3,452,868 a vibratory screening apparatus is described wherein the feed is divided into parallel flows that are directed to various screens in a stack of screens.

[0005] The present invention provides a basket suitable for use in a vibratory screening apparatus, for use in removing solids from a liquid and solids mixture feed, said basket mounting a stack of at least three screen assemblies, with superposed screen assemblies separated from each other by a respective flow directing tray:

said stack of at least three screen assemblies being provided with a flow distributor mounted on the basket and formed and arranged so as to be switchable between a plurality of different flow directing configurations, including:

a) a parallel processing configuration in which said flow distributor receives filtrate from a primary upper screen assembly and divides said filtrate into at least a first feed stream and a second feed stream, directs said feed streams onto respective ones of first and second screen assemblies, and receives filtrate from said respective flow directing trays; and

b) an intensive screening configuration in which the whole of the filtrate from a primary upper screen assembly is directed onto a first screen assembly and the whole of the filtrate from said first screen assembly is directed onto a second screen assembly.

[0006] The present invention also provides a vibratory screening apparatus for use in removing solids from a liquid and solids mixture feed, said apparatus comprising a basket as described above and a static outer housing, said housing comprising: a base support formed and arranged for mounting at least one said basket in floating manner so as to be vibratable, in use of the apparatus, by a vibrator device formed and arranged for vibrating said basket, said base support having a sump for receiving filtrate from said basket, and said housing having a feed device formed and arranged for directing said liquid and solids mixture feed to said basket mounted in said base support.

[0007] With an apparatus of the present invention, the size of apparatus required to process a given volume of feed is substantially reduced compared with conventional apparatus, since a substantially increased effective screen surface area can be accommodated with relatively little or no increase in the size of the apparatus by means of stacking a plurality of screen assemblies within a single basket and using a flow distributor to route multiple flows in parallel through different screens in the stack.

[0008] Additionally there may be provided a restricted feed capacity configuration in which the whole of the feed is directed onto only one of said first and second screen assemblies, and the filtrate therefrom exhausted directly from the apparatus without passing through the other one said first and second screen assemblies. Such a configuration is useful for basic fluid processing where high efficiency or high volume processing are not required and a reduced number of screens in operation reduces operating cost for screens consumed.

[0009] Advantageously the mesh sizes of the various screens are selected to suit the particular distributor configuration being employed and/or the loading of the mixture (% solids content), the particle size of the solids, and/or the particle size distribution of the solids. Thus for example in a configuration where the feed is divided into one portion passing through the first screen and not the second, and another portion passing through the second screen and not the first, the first and second screens would normally have the same mesh size. On the other hand in a configuration where the whole of the feed is passed successively through both the first and second screens, then the second screen would normally have a finer mesh size than the first screen.

[0010] In general the distributor will comprise a plurality of passages provided with valves, typically flap valves, sleeve valves or plug valves, or closure plates etc, for selective opening or closing of different passages. The distributor is mounted on the floating basket.

[0011] The passages of the distributor may be defined in various different ways. Conveniently they are defined by walls extending downwardly inside a downwardly extending chamber so as to provide a lateral subdivision of the chamber into individual passages providing predetermined proportions of the distributor flow capacity. Thus, for example, the distributor may be formed and arranged with one or more first flow passages for transmitting said first feed stream, and one or more second flow passages for transmitting said second feed stream.

[0012] It is generally preferred that vibratory screen apparatus should have a plurality of screen assembly stages with decreasing mesh size, i.e. meshes of succes-
sively finer cut. It will accordingly be appreciated that in addition to having first and second screen assemblies, with similar mesh size, formed and arranged for intercepting said first and second feed streams respectively, the vibratory basket may also have one or more further screen assemblies with different mesh size upstream and/or downstream of said first and second screen assemblies. Conveniently there is provided upstream of first and second screen assemblies, an initial, coarser mesh size, screen assembly and the vibratory screening apparatus is formed and arranged so that substantially the whole of the liquid and solids mixture feed is directed through said initial screen assembly, before being divided into said at least first and second feed streams. In such cases there would generally be used an initial screen assembly with a mesh size of around 10 to 80 (wires per inch), for example, about 20, and the first and second screen assemblies would have a mesh size of around 40 to 325, conveniently 100 to 250 for example about 200. In yet another possible distributor configuration which could also be provided, the feed is passed only through the initial coarse screen.

[0013] It will also be appreciated that, whilst in accordance with normal practice, all of the separated out solids are disposed of in one way or another, in certain cases it is advantageous to retain within the recycled drilling mud fluid, some solids within a particular size range. Typically these may comprise one or more of sized salt, sized calcium carbonate, and other suitable solids, which are selected to be of a size compatible with minimising formation damage during drilling of a specific formation such as an oil reservoir or a zone where fluid can be lost to the formation. In this instance solids above a specified size can be removed with a top screen and rejected, while solids of a smaller size but greater than a second size, can be separated with the second screen and subsequently returned to the drilling fluid mud system, with solids smaller than those removed by the second screen but larger than a third size, may be removed with a third screen and rejected. In other cases it may be desirable to return only the largest size particle fraction separated out at the first screen, for return to the drilling fluid where this is used in formations with particularly large pore size.

[0014] Various screen assemblies and screen mounting systems may be used in the apparatus and baskets of the present invention, including, for example, those described in our earlier patent publication WO 03/013690.

[0015] The floating basket may be mounted in any convenient manner known in the art. Typically there is used a resilient mounting such as a coil spring or rubber block mounting, and the basket vibrated with an eccentrically rotating weight drive. Other forms of resilient mounting may be more convenient with other forms of drive, for example, a leaf spring mounting, with the basket being vibrated with an electromagnetic displacement drive being used to displace the basket against the return force of the spring mounting.

[0016] Further preferred features and advantages of the invention will appear from the following detailed description given by way of example of preferred embodiments illustrated with reference to the accompanying drawings in which:

- Fig. 1 is a schematic sectional elevation of a vibratory screening apparatus of the present invention;
- Figs. 2A to 4B are schematic vertical sections illustrating different flow paths through the stacked screens with different configurations of the flow distributor set up for parallel and series operation;
- Figs. 5A-C are schematic perspective end views of the basket of the apparatus also illustrating the flow paths in various different configurations of the flow distributor;
- Fig. 6 is a side elevation of a modified apparatus (not according to the invention) with a static flow distributor connected to a floating vibratory apparatus;
- Fig. 7 is a partly cut-away schematic perspective view of a further embodiment showing one module of a twin-module apparatus set up for parallel operation;
- Figs. 8A and 8B are vertical sections of the apparatus of Fig. 7 at A and B;
- Figs. 9-10 are corresponding views of the apparatus of Figs. 7-8, set up for series operation;
- Fig. 11 is a schematic general side elevation of vibratory screen apparatus not in accordance with the invention, showing the housing;
- Fig. 12 is a schematic general side elevations of vibratory screen apparatus of the invention showing the housing; and
- Fig. 13 is a schematic perspective view of the apparatus of Fig. 12.

[0017] Fig. 1 shows schematically one embodiment of a vibratory screen apparatus 1 of the invention with an outer housing (indicated schematically) 2, in which is mounted on springs 3, a basket 4. (See below for more detailed description of housing.) The basket is generally box shaped with pairs of circumferentially extending inwardly projecting flanges 5 height on the basket side walls 6, for supporting respective ones of a stack 7 of screen assemblies 8 separated by flow directing trays 9. A vibrator unit 10 is secured to the top 11 of the basket. (Alternatively, the vibrator 10 could be mounted on a side of the basket 4, or incorporated into or within the structure of the basket 4. The interior 12 of the basket 4 is divided into a series of levels 13 between neighbouring screen assemblies 8 and flow directing trays 9.

[0018] Figs. 2 A/B to 4 A/B show schematically a distributor 15 provided at one end 16 of the floating basket 4. The distributor 15 is formed and arranged into inside and outside passages 17, 18 shown in Figs. 2A to 4A, and 2B to 4B, respectively, for connecting with the various levels 13 of the interior 12 of the basket 4 via openings 19 controlled by flap valves 20. In some cases the flap
Figs. 3B shows the distributor 15 configured so the first and second screens 8'', 8''' is passed through the coarse screen 8' and only one of screen 8'''. In this configuration the whole of the feed 22 is passed through the first, mid-level, screen 8'', onto a second, low-level, screen 8' and the filtrate 23 passed along the upper flow deflector tray 9'. An intermediate flap valve 20''' is raised to close an intermediate connecting opening 19''' connecting the passage 17 and a fourth level 134 below the lower flow deflector tray 9''. In this configuration it may be seen that a feed 22 of liquid and solids is passed through a coarse mesh, (typically mesh size 20) upper screen 8' and the filtrate 23 passed along the upper flow deflector tray 9' into passage 17 and thence, bypassing a first, mid-level, screen 8'', onto a second, low-level, screen 8'''. In this configuration the whole of the feed 22 is passed through the coarse screen 8' and only one of the first and second screens 8'', 8'''.

Figs. 3B shows the distributor 15 configured so that the upper flap valve 20' is raised to open the upper connecting opening 19' connecting the passage 17 and first level 131 above the upper flow deflector tray 9'. An intermediate flap valve 20'' is raised to close an intermediate connecting opening 19'' connecting the passage 17 and a fourth level 134 below the lower flow deflector tray 9''. In this configuration the whole of the feed 22 is passed through the coarse screen 8' and then successively through each of the first and second screens 8'', 8''' thereby providing a more progressively finer screening of the feed (by using a finer mesh size in the second screen than in the first screen).

Fig. 4A shows the distributor in the inside passage 17 configured so that the upper flap valve 20' is raised as before. The intermediate flap valve 20'' is lowered so as to open the intermediate connecting opening 19'' whilst simultaneously closing the intermediate level passage opening 21', and the lower flap 20''' is lowered to open the lower connecting opening 19''' whilst closing a bottom passage opening 21'' as before. In this configuration the whole of the feed 22 is passed through the coarse screen 8' and then successively through each of the first and second screens 8'', 8''' thereby providing a more progressively finer screening of the feed (by using a finer mesh size in the second screen than in the first screen).

Fig. 4A shows the distributor in the inside passage 17 configured so that the upper flap valve 20' is raised as before. The intermediate flap valve 20'' is lowered so as to open the intermediate connecting opening 19'' whilst simultaneously closing the intermediate level passage opening 21', and the lower flap 20''' is raised to close the lower connecting opening 19''' whilst opening the bottom passage opening 21'' as before. In this configuration of the inside passage 17 in the distributor 15, that part 23' of the filtrate 23 from the coarse screen 8' passing into the inside passage 17, is directed onto the first screen 8'' and then out of the bottom opening 21'' of the inside passage 17, by-passing the second screen 8''' and the remaining part 23'' of the filtrate 23 from the coarse screen 8' passing into the outside passage 18, is directed onto the second screen 8'''' by-passing the first screen 8''. It will be appreciated that in this configuration of the distributor 15, the screen area available for screening of the feed 22 is effectively double that used in Fig. 2A/B and that available in a conventional vibratory screening apparatus basket of similar footprint.

Figs. 5A - C are schematic perspective views of the end 16 of the basket 4 to which the distributor 15 is coupled but with the distributor 15 substantially removed for clarity, showing the flows in and out of the various openings 19 connecting the distributor 15 to the interior 12 of the basket 4.

Fig. 6 shows schematically another embodiment (not according to the invention) in which there is used a distributor 24 mounted on the static housing 2 and with its connecting openings 19 coupled to the corresponding levels 25 inside the floating basket 4 by flexible conduits 26.

Fig. 7 shows a further embodiment of a screening apparatus 27 of the invention which has identical twin modules 28, 29 (only one shown in detail). Each module has a first, coarse mesh, upper, scalping, deck 30 with a first, coarse mesh, screen 31 above a flow back tray 32. Fluid 33 to be screened is retained on the screen 31 by an end wall 34.

Below the first deck tray 32 is disposed a second deck 35 comprising a second screen 36 above a respective flowback tray 37. A certain amount of fluid 38 is retained on the second screen 36 by a weir 39 provided at the lower end 40 thereof. When the flow rate of the feed of fluid 33 to be screened, exceeds the capacity of the second screen, part 41 of the fluid 38 overflows the weir 39 either directly into one or other of two vertically extending conduits 42 at opposite sides of the module 28, or onto one or other of two sloping deflector plates 43 which divert it into a respective one of the conduit 42, as shown by the single headed fluid flow arrows in Figs. 7-8.

At the bottom 44 of the vertical conduits 42 are provided rearwardly facing openings 45 through which the diverted fluid 41 is directed onto the screen 46 of a third deck 47 disposed below the second deck 35. Thus this part 41 of the fluid flow 33 passes through the first deck screen 31 and the third deck screen 46, by-passing the second deck screen 36 (see also Figs. 8A and 8B, in which Fig. 8A is a section through a central vertical plane at A, which extends through a central portion 48 of the module 28, with the deflector plates 43; and Fig. 8B is a vertical section through one of the vertically extending side conduits 42).

That part 38 of the fluid 33 retained on the second screen 36 is passed through the second deck screen 36 (the solid particulate material 49 retained thereon being "walked up" the screen 36 in the usual way - see Fig. 8B), as indicated by the double headed arrows 50. This part 50 of the fluid flow 33, is then passed through a second deck end wall opening 51 and down a central
vertically extending conduit 52 underneath the deflector plates 43. A closure panel 53 seals a third deck end wall opening 54, below the second deck end wall opening 51, thereby preventing this part 50 of the fluid flow 33 from entering the third deck 47. A bottom opening 55 in the central vertical conduit 52 allows this fluid flow 50 to pass into the sump 56 of the apparatus 28 where it rejoins the other part 38 of the fluid flow 33, the respective parts 41 and 38, 50 of the fluid flow 33, being passed through the first deck screen 31 and then, in parallel, through a respective one of the second and third deck screens 36, 46.

[0029] The module 28 as described above, may be readily reconfigured for serial operation whereby the whole of the fluid is passes through each one of the first, second and third deck screens, 31, 36, 46, as shown in Figs. 9-10. In more detail the weir 39 is replaced by a high wall 57 which ensures that the whole of the fluid flow 33 is passed through the second deck screen 36. As before, the fluid flow 58 then passes out through the second deck end wall opening 51 into the central vertical conduit 52. In this configuration, the bottom opening 55 is sealed by a closure plate 59 whilst the closure panel 53 of the third deck end wall opening 54 is opened so that the fluid flow 58 is routed from the central vertical conduit 52 into the third deck 47 and passed through the screen 46 thereof into the sump 56.

[0030] Each of the first and second modules 28, 29, would normally be configured in the same way, but if desired they could be configured differently i.e. one for parallel (2 screen) operation and one for series (3 screen) operation. Also single screen operation is possible when required, by removing one or two screens from the or each module - depending on the configuration of the modules and the fluid feed arrangement. In addition the fluid feed to the apparatus can be arranged to be directed to either or both of the modules (see also further discussion hereinbelow with reference to Fig. 13). With the significantly increased fluid processing capacity of the apparatus (in parallel mode) it will be appreciated that occasions will arise when the fluid feed is insufficient to maintain a high fluid level and short beach length on the screens, which can result in drying of the particulate solids on the beach portion of the screen and damage to the screens therefrom, and/or reduced efficiency of transportation of the particulate solids up the beach for discharge from the screen. In such circumstances damage to the screens can be minimized by restricting the fluid feed to only one of the twin modules.

[0031] A particular advantage of this type of embodiment is that, in its parallel configuration, a more even and controlled distribution of the fluid flow across the width of the module is obtained, thereby providing a more efficient screening. Another significant advantage is a significantly increased fluid screening capacity - which can approach almost 100% greater than with conventional screening apparatus of the same footprint.

[0032] It will also be appreciated that various parameters of the modules may be made further configurable. Thus, for example, the weir height could be configurable for a series of different heights. Also the relative proportions of the central and side, vertical conduits could be selected to accommodate particular desired flow capacity proportions for the different fluid flow parts in parallel mode operation.

[0033] It will further be appreciated that various modifications may be made to the above embodiments. Thus, for example, in place of a flow distributor system based on the use of closure plates and/or flap valves, there could be used one based on proportional valves and the like.

[0034] Figs 11 to 13 show a vibratory screening apparatus 1 with a generally conventional form of static outer housing 2, in which is mounted on springs 3, and a basket 4 with a vibrator device 10. In more detail the static housing 2 has a base support 60 which includes a sump 61 for receiving filtrate 62 from the basket 4, and a feed device support portion 63 mounting a feed device 64. The feed device 64 comprises a header tank 65 for receiving a liquid and solids mixture feed 66, and having a feed chute 67 extending out therefrom above the basket 4 so as to pass said feed 66 into the basket 4. In the case of Fig. 11 not according to the invention, there is provided a static flow distributor 24 mounted on the header tank portion 65 of the static housing 2, and coupled to the floating basket 4 via flexible conduits 26. In the case of Figs 12 and 13, the flow distributor 15 is incorporated in the floating basket 4.

[0035] In the apparatus shown in Fig. 13 it may be seen that the basket 4 has a lateral divider 68 separating the basket into two independently operable basket feed processing modules 69,70, and the (common) housing 2 has two separate feed chutes 71, 72 extending from the header tank 65 and formed and arranged for directing said liquid and solids mixture feed 66A, 66B to respective ones of said basket feed processing modules 69,70. The chutes 71, 72 are provided with respective control gates 73, 74 for controlling supply of feed 66 from the header tank 65, so that the user has the option of using only one or other, or both, of the modules 69,70, when required - as discussed hereinbefore.

Claims

1. A basket (4) suitable for use in a vibratory screening apparatus (1), for use in removing solids from a liquid and solids mixture feed, said basket (4) mounting a stack of at least three screen assemblies (8', 8'', 8'''), with superposed screen assemblies separated from each other by a respective flow directing tray (9', 9'') :
A basket as claimed in claim 7 wherein said weir (39)

5. A basket as claimed in any one of claims 5 to 8 wherein said flow distributor (15) includes at least one wall formed and arranged for defining a plurality of laterally adjacent flow pathways.

10. A basket as claimed in any one of claims 1 to 9 wherein said flow directing trays (9', 9'') are formed and arranged so that substantially the whole of the filtrate from a screen assembly (8) directly above a said flow directing tray can be intercepted thereby, whereby said feed can be substantially fully divided by the flow distributor (15) into parallel first and second feed streams to respective ones of first and second screen assemblies (8', 8'').

11. A vibratory screening apparatus (1) for use in removing solids from a liquid and solids mixture feed, said apparatus comprising a basket according to claim 1 and further comprising a static outer housing (2), said housing comprising: a base support (60) formed and arranged for mounting at least one said basket (4) in a floating manner so as to be vibratable, in use of the apparatus, by a vibrator device (10) formed and arranged for vibrating said basket (4), said base support (60) having a sump (61) for receiving filtrate from said basket (4), and said housing (2) having a feed device (64) formed and arranged for directing said liquid and solids mixture feed to said basket (4) mounted in said base support (60).

12. A vibratory screening apparatus as claimed in claim 11, wherein said basket forms part of a multi-basket assembly comprising a plurality of said baskets, mounted in said static housing, and wherein said housing has a feed distribution device formed and arranged for directing said liquid and solids mixture feed to at least one of said plurality of baskets.

13. A vibratory screening apparatus (1) as claimed in claim 11, wherein said basket further includes a lateral divider (68) defining independent feed processing modules (69, 70), and wherein said housing has a feed distribution device (71-74) formed and arranged for directing said liquid and solids mixture feed to at least one of said basket feed processing modules (69, 70).

Patentansprüche

1. Korb (4), geeignet für eine Verwendung in einer Vibrationsiebvorrichtung (1), zur Verwendung beim Entfernen von Feststoffen aus einem zugeführten Gemisch aus Flüssigkeit und Feststoffen, wobei der Korb (4) einen Stapel von wenigstens drei Siebbaugruppen (8', 8'', 8''') anbringt, wobei die aufeinandergeschichteten Siebbaugruppen durch einen jeweiligen Durchfluss-Leitboden (9', 9'') voneinander

2. A basket (4) as claimed in claim 1 wherein said plurality of flow directing configurations includes a restricted feed capacity configuration in which the whole of the feed is directed onto only one of said first (8') and second (8'') screen assemblies, and the filtrate therefrom exhausted directly from the apparatus (1) without passing through the other one of said first and second screen assemblies (8', 8'').

3. A basket as claimed in claim 1 or claim 2 wherein at least said primary screen assembly (8') has a different mesh size from at least one other said screen assembly (8'', 8''').

4. A basket as claimed in any one of claims 1 to 3 wherein said first and second screen assemblies (8', 8'') have the same mesh size.

5. A basket as claimed in any one of claims 1 to 4 wherein said flow distributor (15) defines a plurality of flow pathways provided with flow control devices (20), for selective opening or at least partial closing of different passages (17, 18).

6. A basket as claimed in any one of claims 1 to 5 wherein at least one said flow control device (20) is selected from the group consisting essentially of flap valves (20', 20'', 20'''), sleeve valves, plug valves, and closure plates.

7. A basket as claimed in claim 5 wherein at least one said flow control device (20) is comprised by a weir (39), formed and arranged for sub-dividing a said feed into a said first feed stream passing over said weir and a said second feed stream not passing over said weir.

8. A basket as claimed in claim 7 wherein said weir (39) comprises a variable height weir.

9. A basket as claimed in any one of claims 1 to 9 wherein said weir (39) comprises a variable height weir.
getrennt sind, wobei der Stapel von wenigstens drei Siebbaugruppen (8', 8'', 8''') mit einem Durchflussverteiler (15) versehen ist, der am Korb (4) angebracht und so geformt und angeordnet ist, dass er zwischen mehreren unterschiedlichen Durchfluss-Leitkonfigurationen umgeschaltet werden kann, einschließlich von:

a) einer Parallelverarbeitungskonfiguration, bei welcher der Durchflussverteiler ein Filtrat von einer primären oberen Siebbaugruppe (8') empfängt und das Filtrat in wenigstens einen ersten Zufuhrstrom und einen zweiten Zufuhrstrom teilt, die Zufuhrströme auf eine jeweilige der ersten (8') bzw. der zweiten (8'') Siebbaugruppe leitet und das Filtrat von den jeweiligen Durchfluss-Leitböden (9') empfängt, und

b) einer Intensivsiebungskonfiguration, bei der die Gesamtheit des Filtrats von einer primären oberen Siebbaugruppe (8') auf eine erste Siebbaugruppe (8') geleitet wird und die Gesamtheit des Filtrats von der ersten Siebbaugruppe auf eine zweite Siebbaugruppe (8'') geleitet wird.

2. Korb (4) nach Anspruch 1, wobei die mehreren Durchfluss-Leitkonfigurationen eine Konfiguration mit eingeschränkter Zufuhrkapazität einschließen, bei der die Gesamtheit der Zufuhr auf nur eine von der ersten (8') und der zweiten (8'') Siebbaugruppe geleitet wird und wobei das Filtrat von derselben ummittelbar aus der Vorrichtung (1) abgesehen wird, ohne durch die andere von der ersten und der zweiten Siebbaugruppe (8'', 8''') hindurchzugehen.

3. Korb nach Anspruch 1 oder Anspruch 2, wobei wenigstens eine Durchfluss-Regelleinrichtung definiert, die mit Durchfluss-Regelleinrichtungen (20), für ein selektives Öffnen oder wenigstens teilweises Schließen von unterschiedlichen Durchgängen (17,18), versehen sind.

4. Korb nach einem der Ansprüche 1 bis 3, wobei die erste und die zweite Siebbaugruppe (8', 8'') die gleiche Maschengröße haben, die sich von wenigstens einer anderen Siebbaugruppe (8'', 8''') unterscheidet.

5. Korb nach einem der Ansprüche 1 bis 4, wobei der Durchflussverteiler (15) mehrere Durchflusswege definiert, die mit Durchfluss-Regelleinrichtungen (20), für ein selektives Öffnen oder wenigstens teilweises Schließen von unterschiedlichen Durchgängen (17,18), versehen sind.

6. Korb nach einem der Ansprüche 1 bis 5, wobei wenigstens eine Durchfluss-Regelleinrichtung (20) aus der Gruppe ausgewählt ist, die im Wesentlichen aus Klappenventilen (20', 20'', 20'''), Hülsenschiebern, Kegelventilen und Verschlussplatten besteht.

7. Korb nach Anspruch 5, wobei wenigstens eine Durchfluss-Regelleinrichtung (20) aus einem Wehr (39) besteht, das dafür geformt und angeordnet ist, eine Zufuhr in einen ersten Zufuhrstrom, der über das Wehr hinweggeht, und einen zweiten Zufuhrstrom, der nicht über das Wehr hinweggeht, zu teilen.

8. Korb nach Anspruch 7, wobei das Wehr (39) ein Wehr mit veränderlicher Höhe umfasst.

9. Korb nach einem der Ansprüche 5 bis 8, wobei der Durchflussverteiler (15) wenigstens eine Wand einschließt, die dafür geformt und angeordnet ist, mehrere seitlich benachbarte Durchflusswege zu definieren.

10. Korb nach einem der Ansprüche 1 bis 9, wobei die Durchfluss-Leitböden (9', 9'') so geformt und angeordnet sind, dass im Wesentlichen die Gesamtheit des Filtrats von einer Siebbaugruppe (8) unmittelbar über einem Durchfluss-Leitboden durch derselben abgefangen werden kann, wodurch die Zufuhr durch den Durchflussverteiler (15) im Wesentlichen vollständig in einen ersten und einen zweiten parallelen Zufuhrstrom zu einer jeweiligen der ersten bzw. der zweiten Siebbaugruppe (8'', 8''') geteilt werden kann.

11. Vibrationssiebvorrichtung (1) zur Verwendung beim Entfernen von Feststoffen aus einem zugeführten Gemisch aus Flüssigkeit und Feststoffen, wobei die Vorrichtung einen Korb nach Anspruch 1 umfasst und ferner ein feststehendes äußeres Gehäuse (2) umfasst, wobei das Gehäuse Folgendes umfasst: eine Basisstütze (60), die dafür geformt und angeordnet ist, wenigstens einen Korb (4) auf einer schwimmende Weise anzubringen, so dass er, bei Anwendung der Vorrichtung, in Vibration versetzt werden kann durch eine Vibrationseinrichtung (10), die dafür geformt und angeordnet ist, den Korb (4) in Vibration zu versetzen, wobei die Basisstütze (60) einen Sammelbehälter (61) zum Aufnehmen von Filtrat von dem Korb (4) hat und das Gehäuse (2) eine Zufuhrreinrichtung (64) hat, die dafür geformt und angeordnet ist, das zugeführte Gemisch aus Flüssigkeit und Feststoffen zu dem in der Basisstütze (60) angebrachten Korb (4) zu leiten.

12. Vibrationssiebvorrichtung nach Anspruch 11, wobei der Korb einen Teil einer Mehrkorbbaugruppe bildet, die mehrere der Körbe umfasst, angebracht in dem feststehenden Gehäuse, und wobei das Gehäuse eine Zufahr-Verteilungseinrichtung hat, die dafür geformt und angeordnet ist, das zugeführte Gemisch aus Flüssigkeit und Feststoffen zu wenigstens einem der mehreren Körbe zu leiten.

13. Vibrationssiebvorrichtung (1) nach Anspruch 11, wobei der Korb (4) ferner eine seitliche Trennwend (68)
Revendications

1. Panier (4) approprié pour être utilisé dans un appareil de criblage à vibrations (2), en vue d’éliminer les solides d’une alimentation d’un mélange de liquides et de solides, ledit panier (4) assurant le montage d’une pile d’au moins trois assemblages de criblage (8', 8'', 8'''), les assemblages de criblage superposés étant séparés les uns des autres par un plateau respectif de direction d’écoulement (9', 9'') ;

ladite pile d’au moins trois assemblages de criblage (8', 8'', 8''') comportant un distributeur de l’écoulement (15), monté sur le panier (4) et formé et agencé de sorte à pouvoir être commuté entre plusieurs configurations différentes de direction d’écoulement ; incluant :

a) une configuration de traitement parallèle, dans laquelle ledit distributeur d’écoulement reçoit un filtrat d’un assemblage de criblage supérieur primaire (8') et divise ledit filtrat en au moins un premier courant d’alimentation et un deuxième courant d’alimentation, dirigé lesdits courants d’alimentation sur des premier (8'') et deuxième (8''') assemblages de criblage respectifs, et reçoit le filtrat desdits plateaux respectifs de direction d’écoulement (9'') ; et

b) une configuration de criblage intensif, dans laquelle l’ensemble du filtrat d’un assemblage de criblage supérieur primaire (8') est dirigé sur un premier assemblage de criblage (8''), l’ensemble du filtrat dudit premier assemblage de criblage étant dirigé sur un deuxième assemblage de criblage (8''').

2. Panier (4) selon la revendication 1, dans lequel ledits plusieurs configurations de direction d’écoulement incluent une configuration à capacité d’alimentation restreinte, dans laquelle l’ensemble de l’alimentation est dirigé vers un seul desdits premier (8') et deuxième (8'') assemblages de criblage, le filtrat correspondant étant évacué directement à partir de l’appareil (1), sans passer à travers l’autre desdits premier et deuxième assemblages de criblage (8'', 8''').

3. Panier selon les revendications 1 ou 2, dans lequel au moins ledit assemblage de criblage primaire (8') a une dimension de maille différente d’au moins un autre desdits assemblages de criblage (8'', 8''').

4. Panier selon l’une quelconque des revendications 1 à 3, dans lequel lesdits premier et deuxième assemblages de criblage (8'', 8''') ont la même dimension de maille.

5. Panier selon l’une quelconque des revendications 1 à 4, dans lequel ledit distributeur de l’écoulement (15) définit plusieurs trajectoires d’écoulement comportant des dispositifs de contrôle d’écoulement (20), en vue d’une ouverture sélective ou d’une fermeture au moins partielle de différents passages (17, 18).

6. Panier selon l’une quelconque des revendications 1 à 5, dans lequel au moins undit dispositif de contrôle de l’écoulement (20) est constitué par un déversoir (39), formé et agencé de sorte à subdiviser une alimentation en undit premier courant d’écoulement passant au-dessus dudit déversoir, et undit deuxième courant d’alimentation, ne passant pas au-dessus dudit déversoir.

7. Panier selon la revendication 5, dans lequel au moins un dit dispositif de contrôle d’écoulement (20) est constitué par un déversoir (39), formé et agencé de sorte à subdiviser une alimentation en undit premier courant d’écoulement passant au-dessus dudit déversoir, et undit deuxième courant d’alimentation, ne passant pas au-dessus dudit déversoir.

8. Panier selon la revendication 7, dans lequel ledit déversoir (39) comprend un déversoir à hauteur variable.

9. Panier selon l’une quelconque des revendications 5 à 8, dans lequel ledit distributeur de l’écoulement (15) inclut au moins une paroi formée et agencée de sorte à définir plusieurs trajectoires d’écoulement latéralement adjacentes.

10. Panier selon l’une quelconque des revendications 1 à 9, dans lequel lesdits plateaux de direction de l’écoulement (9', 9'') sont formés et agencés de sorte que pratiquement l’ensemble du filtrat d’un assemblage de criblage (8), directement au-dessus d’un dit plateau de direction de l’écoulement, peut être intercepté par celui-ci, ladite alimentation pouvant ainsi pratiquement être divisée complètement par le distributeur de l’écoulement (15) en des premier et deuxième courants d’alimentation partiels dirigés vers les premier et deuxième assemblages de criblage respectifs (8'', 8''').

11. Appareil de criblage à vibrations (1) destiné à être utilisé pour éliminer des solides d’une alimentation d’un mélange de liquide et de solides, ledit appareil comprenant un panier selon la revendication 1, et comprenant en outre un boîtier externe statique (2),

...
ledit boîtier comprenant : un support de base (60), formé et agencé de sorte à monter au moins undit panier (4) de manière flottante, pour permettre sa vibration, lors de l’utilisation de l’appareil, par un dispositif vibrateur (10), formé et agencé de sorte à faire vibrer ledit panier (4), ledit support de base (60) comportant un puisard (61) pour recevoir le filtrat dudit panier (4), et ledit boîtier (2) comportant un dispositif d’alimentation (64), formé et agencé de sorte à diriger ladite alimentation du mélange de liquide et de solides vers ledit panier (4) monté dans ledit support de base (60).

12. Appareil de criblage à vibrations selon la revendication 11, dans lequel ledit panier fait partie d’un assemblage à paniers multiples, comprenant plusieurs desdits paniers, montés dans ledit boîtier statique, ledit boîtier comportant un dispositif de distribution de l’alimentation, formé et agencé de sorte à diriger ladite alimentation du mélange de liquide et de solides vers au moins un desdits plusieurs paniers.

13. Appareil de criblage à vibrations (1) selon la revendication 11, dans lequel ledit panier (4) inclut en outre un diviseur latéral (68), définissant des modules de traitement indépendants de l’alimentation (69, 70), ledit boîtier comportant un dispositif de distribution de l’alimentation (71-74), formé et agencé de sorte à diriger ladite alimentation du mélange de liquide et de solides vers au moins un desdits modules de traitement de l’alimentation du panier (69, 70).
Fig. 9

Fig. 10A

Fig. 10B
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 2943679 A [0002]
- US 3452868 A [0004]