The present invention discloses a method for processing network communication data, a network communication system and a client for the purpose of shortening the play delay of a selected channel. In the present invention, a client determines a corresponding media server and parent peers of the client in a Peer To Peer (P2P) system according to a channel selected by a user; the client determines a start slice group ID for the current data processing according to related information of the parent peers and sends a message to the media server to request data of the channel, where the message carries the start slice group ID; and the client receives data of the channel transmitted by the media server according to the start slice group ID and receives data of the channel transmitted by the patent peers. With the technical solution of the present invention, the selected channel can be played after a shorter delay and high quality video files can be delivered.
The combination of CDN and P2P technologies shows many advantages in delivering and playing media streams over the Internet. It is an important technique for deploying such services on large scales and also a technical trend in the field.

In a prior P2P live video solution, the start (or channel zapping) play delay, which means the time interval from click on a program to playing of a video program, is normally 20 seconds. This long delay impacts the user experience. When implementing the present invention, the inventor finds that a client in a prior P2P system obtains data of a selected channel from its parent peer, but because clients in the P2P system are peers of one another, the rate scale of data obtained by the client from its parent peer is the same as the bit rate of the selected channel. Furthermore, it is time consuming to select and search for multiple peers. As a result, it is impossible for the prior art to solve the problem of long start (or channel zapping) delay.

In addition, the P2P streaming system takes an IP switching network as the data transmission channel. Due to disturbance or shortage of bandwidths, the quality of data transmission over IP is not assured. User Datagram Protocol, UDP, packets carrying media data slices may be lost during the transmission. The quality of video viewed by the user is therefore lower. The above defect may be rectified by applying the Forward Error Correction, FEC, algorithm at the packet level. The basic principle of FEC is shown in FIG. 1. N data slices are encoded to (N+m) data slices at the transmitting end, where m is the number of added redundant slices. In FIG. 1, N is 4 and m is 2. The (N+m) data slices are transmitted by the MDN. When the receiving end detects a slice hole in the slice group, the receiving end may recover the N original packets by means of redundancy decoding of any N of the (N+m) packets.

The specific stream slice splitting and redundancy coding principle is shown in FIG. 2. Original media data is split to data slices of an equal size at the transmitting source. After redundancy coding, a number of redundant slices of an equal size are generated. The slices are numbered on an inter-group and intra-group basis. Then slice header information is added to the original slices and redundant slices. A slice header includes the slice group serial number where the slice belongs and the number of the slice in the group, as well as time stamp and media metadata information (for example, whether a key frame ID and a frame data offset are included). Finally the slices are delivered to the client. Before playing the data, the client strips the slice header and assembles and recovers the original media data stream, which is fed to a media player. Thus, the playing of live contents is realized.

By adding redundant slices, retransmission can be avoided to a large extent at the cost of a certain extra bandwidth for transmission of the redundant slices. This cost is worthwhile in a streaming system. The inventor, however, finds that FEC algorithm requires complete data of a slice group. The receiving end must receive at
least N slices. If more than m slices in original group are missing at the receiving end, the data cannot be recovered in entirety.

Summary of the Invention

[0012] Embodiments of the present invention provide a method for processing network communication data, a network communication system and a client so as to shorten the play delay of a selected channel.

[0013] A method for processing network communication data includes:

[0014] determining a corresponding media server and parent peers of a client in a P2P system according to a channel selected by a user;

[0015] determining a start slice group ID for current data processing according to related information of the parent peers and sending a message to the media server to request data of the channel, where the message carries the start slice group ID; and

[0016] receiving data of the channel transmitted by the media server according to the start slice group ID and receiving data of the channel transmitted by the parent peers.

[0017] A client includes:

[0018] a channel selector, adapted to determine and output a channel selected by a user;

[0019] a topology manager, adapted to determine a corresponding media server and parent peers of the client in a P2P system according to the selected channel output by the channel selector, determine a start slice group ID for current data processing according to related information of the parent peers, and send a message to the media server to request data of the channel, where the message carries the start slice group ID; and

[0020] a buffer manager, adapted to receive data transmitted by the media server and parent peers to the client.

[0021] A network communication system includes a P2P system and a media server, where the P2P system includes at least one client and at least one parent peer of the client, where:

[0022] the client in the P2P system is adapted to determine a media server according to a channel selected by a user and parent peers of the client in the P2P system, determine a start slice group ID for current data processing according to related information of the parent peers, and send a message to the media server to request data of the channel, where the message carries the start slice group ID, and transmit data to a child peer of the client; and

[0023] the media server is adapted to transmit the data of the channel to the client according to the start slice group ID.

[0024] A computer readable storage medium stores a computer program which enables a processor to execute the following steps:

[0025] determining a corresponding media server and parent peers of a client in a P2P system according to a channel selected by a user;

[0026] determining a start slice group ID for current data processing according to related information of the parent peers and sending a message to the media server to request data of the channel, where the message carries the start slice group ID; and

[0027] receiving data of the channel transmitted by the media server according to the start slice group ID and receiving data of the channel transmitted by the parent peers.

[0028] With the above technical solution, a client gets a section of data starting from a start slice group for one data processing via a media server. The media server can quickly start data transmission to the client. The client can therefore quickly start playing a video file with a shorter play delay of the selected channel. Furthermore, because a media server is adopted on the basis of a P2P system to deliver video files, high-quality video files can be delivered.

Brief Description of the Drawings

[0029] FIG. 1 shows the basic principle of an FEC algorithm at the packet level in a prior art;

[0030] FIG. 2 shows the principle of stream slicing and redundancy coding in a prior art;

[0031] FIG. 3 shows a quick buffering flowchart in a method for processing network communication data in an embodiment of the invention;

[0032] FIG. 4 shows a quick buffering process in a first embodiment of the invention;

[0033] FIG. 5 shows a quick buffering process in a second embodiment of the invention;

[0034] FIG. 6 shows a flowchart of processing a play area in an embodiment of the invention;

[0035] FIG. 7 shows a structure of a client provided in an embodiment of the invention; and

[0036] FIG. 8 shows a network communication system provided in an embodiment of the invention.

Detailed Description of the Invention

[0037] In an embodiment of the invention, a client determines a media server and parent peers of the client in a P2P system according to a channel selected by a user.

[0038] The client determines a start slice group ID for the current data processing according to related information of the parent peers and sends a message to the media server to request data of the channel. The message carries the start slice group ID.

[0039] The client receives data of the channel transmitted by the media server according to the start slice group ID and receives data of the channel transmitted by the parent peers.

[0040] With the above technical solution, a client gets a section of data starting from a start slice group for one
data processing via a media server. The media server can quickly start data transmission to the client, which avoids the situation of taking a long time in searching for and selecting multiple parent peers. The client can therefore quickly start playing a video file. Furthermore, because a media server is adopted on the basis of a P2P system to deliver video files, the method provided in the embodiment of the invention can deliver high-quality video files. In addition, because the media server can transmit data of a selected channel at a rate scale higher than the bit rate of the video channel, a start rate scale for the media server to transmit data of the channel to the client may be determined before the media server transmits data of the channel to the client and this start rate scale may be set to be higher than the bit rate of the channel. Thereby, the client may obtain a section of data starting from a start slice group for one data processing in a short time, so that the client can start playing the data after a short delay. The play delay of the selected channel is therefore further reduced.

[0041] The present invention is hereinafter described in detail with reference to some preferred embodiments and the accompanying drawings.

[0042] FIG. 3 shows a quick buffering flowchart in a method for processing network communication data in an embodiment of the invention. The procedure includes the following steps:

[0043] Step S101: A user selects a channel on a client.

[0044] In this step, the selected channel may be started directly or started by channel zapping.

[0045] Step S102: The topology manager of the client interacts with a Request Routing System for P2P, RRS-P, to determine a media server of the channel and obtain addresses of candidate peers in the topology tree.

[0046] Step S103: The topology manager communicates with the candidate peers randomly to join the P2P live video topology tree, and designates the first admitted peer as a trunk parent peer.

[0047] Step S104: After obtaining related information of the trunk parent peer (such as position information of the transmission point), the topology manager determines the start slice group ID for the current data processing according to the related information.

[0048] The topology manager usually triggers the initialization of a buffer manager after obtaining the related information of the trunk parent peer.

[0049] In practice, the method for determining the start slice group ID may be based on the related information of a designated parent peer (the first designated parent peer) other than the trunk parent peer. For example, the client may initiate connection requests to multiple peers in the obtained peer list and specify that the peer in the list first responding to the connection request is the designated parent peer. In this embodiment of the invention, the trunk parent peer is used.

[0050] Specifically, this step may be implemented as follows: the topology manager calculates the number of slice groups that can be cached in a reserved buffer area based on the bit rate of the channel and the preset size of the reserved buffer area; after obtaining the transmission point currently provided by the trunk parent peer for the client, the topology manager determines the start slice group ID according to the slice group ID of the transmission point and the number of slice groups that can be cached in the reserved buffer area, where the start slice group is ahead of the slice group of the transmission point provided by the parent peer for the client; therefore, the start slice group ID may be ahead of the slice group ID of the transmission point by the number of slice groups that can be cached in the reserved buffer area.

[0051] Step S105: The topology manager sends a message to the media server to request data of the channel. The message carries the start slice group ID.

[0052] Step S106: The media server transmits data of the channel to the client at a rate scale higher than the bit rate of the channel according to the start slice group ID.

[0053] At the initial stage, packets transmitted by the media server to the client include all data substreams of the channel, where a substream is a continuous slice stream composed of slices of the same slice ID.

[0054] In this embodiment of the invention, the start rate scale is higher than the bit rate of the channel. In this step, however, the start rate scale at which the server transmits data to the client is a configurable parameter. Either of the following methods may be used for determining the start rate:

[0055] The media server determines the rate scale according to the locally configured bit rate times and the bit rate of the channel;

[0056] The media server determines the rate scale according to the bit rate of the channel and the bit rate times carried in the request of the client.

[0057] For example, the data transmission rate locally configured at the media server is 1.8 times the bit rate of the channel. When the media server receives the request of the client, the media server will transmit data to the client at a rate scale 1.8 times the bit rate of the channel.

[0058] The data transmission rate should not be larger than the maximum bandwidth of the client.

[0059] Step S107: The parent peers of the client transmit the negotiated substream data to the client.

[0060] In practice, step S106 may be carried out before or after step S107.

[0061] The client receives the data transmitted by the media server and the parent peers via the local buffer, which is usually a winding structure arranged in a form similar to a cyclic queue.

[0062] Step S108: The buffer manager feeds a stream to the media player.

[0063] In practice, the buffer manager may start feeding the stream to the media player when the preset duration expires after the user selects the channel.

[0064] The buffer manager also starts feeding the stream to the media player when a first set duration expires after the client sends a data request to the media server.
In addition, the buffer manager may also check whether the continuous complete data starting from the start slice group received by the local buffer reaches a first threshold and start feeding the stream to the media player when detecting that the data volume reaches the first threshold.

[0066] As in the prior art, the buffer manager releases the buffer area after the stream is fed.

[0067] Step S109: When the buffer manager detects that the latest transmission point of the media server in the buffer is the same as the latest transmission point of a second designated parent peer, the buffer manager notifies the media server to change the data transmission rate to the same as the bit rate of the channel.

[0068] The second designated parent peer may be any parent peer of the client.

[0069] The latest transmission point indicates that the sequence number of the largest slice group of the corresponding parent peer or media server is received. This point grows with the play progress and the reception of slices. Each substream has a latest transmission point.

[0070] Step S110: The media server changes the data transmission rate to the same as the bit rate of the channel according to the notification.

[0071] In the above procedure, when the buffer manager detects that the latest transmission point of the media server in the buffer is the same as the start transmission point of one parent peer, the buffer manager may notify the media server to stop transmitting the data substream corresponding to the parent peer to the client. Specifically, the buffer manager may let the corresponding notification message carry an ID of the substream transmitted by the parent peer and the media server stops transmitting the data substream corresponding to the substream ID upon reception of the notification. Based on the above procedure, the media server only needs to transmit related data at a high rate scale at the initial stage of media buffering after the user selects a channel. Later, the media server can stop transmitting the data substream corresponding to a parent peer when the latest transmission point of the media server is the same as the start transmission point of the parent peer. As the latest transmission point of the media server constantly chases the start transmission point of the parent peers, the media server can gradually stop transmitting data to the parent peers and the client can obtain data of the selected channel from the parent peers.

[0072] In addition, the procedure does not limit that the buffer manager notifies the media server to change the data transmission rate to the same as the bit rate of the channel when detecting that the latest transmission point of the media server in the buffer is the same as the latest transmission point of the second designated parent peer. In practice, the buffer manager may detect the volume of data received from the media server and notify the media server to change the data transmission rate to the same as the bit rate of the channel when detecting that the data volume is larger than a set second threshold; or the buffer manager may detect the idle space of the buffer and notify the media server to change the data transmission rate to the same as the bit rate of the channel when detecting that the idle space in the buffer is smaller than a set third threshold.

[0073] In practice, the downlink bandwidth of a client is limited. When data is transmitted to the client simultaneously over a large number of links, transmission problems like large numbers of slice losing may result. Therefore, it is necessary to limit the number of simultaneous links. Furthermore, because the buffer manager starts feeding the stream to the media player from the start slice group and the media server starts transmission from the start slice group, the effective start transmission point of no parent peer of the client is earlier than the start transmission point of the media server. Therefore, to better reduce the play delay of the selected channel and minimize the possibility of transmission problems, the client should preferably guarantee the effective downlink bandwidth for the media server before the media server changes the data transmission rate to the same as the bit rate of the channel.

[0074] The first embodiment is shown in FIG. 4. Among the parent peers of a client, the start transmission point of the trunk parent peer P1 is ahead of the start transmission points of other parent peers (FIG. 4 shows only the position of the start transmission point of the trunk parent peer) and the trunk parent peer P1 is the first designated parent peer and the second designated parent peer for the current transmission. In addition, the buffer manager starts feeding data to the media player when a set duration expires after the client sends a data request to the media server. The method shown in FIG. 4 includes:

[0075] 1. At time t1, the buffer manager of the client sends a data request to the media server according to the calculated start transmission point of the media server and the media server transmits data to the client at a rate scale 1.8 times the bit rate of the selected channel. The data substream of the trunk parent peer is transmitted simultaneously according to the transmission point of the parent peer. The start position of the buffer (usually the start position of the buffer is the start transmission point of the media server) receives slice data of (N+m) substreams transmitted by the media server. From the start position, after a preset reserved buffer area is full (which means the start transmission point of the trunk parent peer P1 is reached), the buffer starts receiving a single substream transmitted by the trunk parent peer P1.

[0076] 2. At time t2, when a set interval from t1 expires, the buffer manager starts feeding the stream to the media player. The initial stream feed point is the start transmission point of the media server. Later the buffer manager feeds stream data to the media player periodically by means of a certain mechanism such as a timer-driven mechanism, where a stream feed point identifies a data locator according to which the buffer manager of the client feeds stream data to the media player.
3. At time t3, the quick buffering continues. After feeding stream data to the media player, the buffer manager releases the related buffer area, which results in the stream feed release area shown in the figure.

4. At time t4, when the latest transmission point of the media server chases up the start transmission point corresponding to the parent peer P1, the client notifies the media server to stop transmitting the substream with the same ID as the substream corresponding to the P1 peer. This means the media server starts to transmit slice data of only (N+m-1) substreams at time t4.

5. At time t5, the latest transmission point of the media server chases up the latest substream transmission point corresponding to the P1 peer. In this embodiment, because the P1 peer is the second designated parent peer, the buffer manager notifies the media server to change the rate for transmitting the remaining substreams to the normal bit rate of the channel, that is, from 1.8 times the bit rate to the bit rate. The quick buffering process of the client comes to an end.

When the latest transmission point of the media server chases up the start transmission point of another parent peer, the buffer manager also notifies the media server to stop transmitting the substream with the same ID as the substream corresponding to the parent peer. The "chase" process is shown in FIG. 4. Entity 1 chases entity 2, where entity 1 is located at the right border of the black block and entity 2 is located at the right border of the slashed block. Viewed from left to right, the buffer axis of the client shows that, initially, the position of entity 1 is behind the position of entity 2 but the speed of entity 1 is higher. The distance between the two entities is the difference between the right borders of the two blocks. The distance is gradually shorter from t1 to t4 and becomes 0 at t5, indicating that entity 1 chases entity 2 at t5. Here, entity 1 represents the buffer transmission position of the media server and entity 2 represents the buffer transmission position of the P1 peer. Accordingly, "chase up" means subsequent buffer data can be transmitted by P1 alone to the client. At t5, the media server cuts off the transmission of subsequent data of the substream.

The second embodiment of the invention is shown in FIG. 5, where the start transmission point of the parent peer P3 is ahead of the transmission point of the trunk parent peer P3 and the client has four parent peers (P1 to P4) for the current P2P transmission. In this embodiment, P2 is the second designated parent peer for the current transmission. To guarantee the effective bandwidth between the media server and the client in preference, not all parent peers need to transmit their substream slice data immediately upon being connected when the total downlink bandwidth is limited. Instead, all parent peers may be set to the choke state after they are successfully connected. Choke means a parent peer does not transmit data slices upon connection but periodically notifies the client of the value of the transmission point that it can provide for the client. Alternatively, the designated parent peer may be set to transmit data slices while other parent peers are set to the choke state. For example, P3 and P1 may be set to transmit data slices while P2 and P4 are in the choke state. When some parent peers are set to the choke state, after the quick buffering process of the media server is complete (that is, the transmission rate is changed to the bit rate of the channel), the data transmission of the parent peers may be started. Alternatively, the data transmission quality of the media server may be tracked by means of QoS detection on the substream transmission. When the actual rate scale of the stream transmitted by the media server is basically the same as the theoretical rate, data transmission of the choked parent peers is gradually started and data transmission is started from the recorded latest transmission point.

In this embodiment, when the latest transmission point of the media server chases up the start transmission point of P3, the client notifies the media server to stop transmitting the substream with the same ID as the substream corresponding to P3; when the latest transmission point of the media server chases up the start transmission point of P1, the client notifies the media server to stop transmitting the substream with the same ID as the substream corresponding to P1 when the latest transmission point of the media server chases up the start transmission point of P2, the client notifies the media server to stop transmitting the substream with the same ID as the substream corresponding to P2; when the latest transmission point of the media server chases up the latest transmission point of P2, because P2 is the second designated parent peer for the current transmission, the client notifies the media server to change the data transmission rate of the remaining substream to the normal bit rate of the channel, and the quick buffering process of the client comes to an end.

To guarantee the quality and continuity of video playing on the client, it is necessary to guarantee that the buffer feeds sufficient and complete media data to the media player at any time. Therefore, in this embodiment, the buffer manager should further guarantee that data in the play area between the stream feed point and the integrity check point is complete media data. The integrity check point identifies the play area end locator, where the play area is determined by the stream feed point and a set play area length.

In the prior art, because packet level FEC is adopted to transmit slice groups and recover data, even when slice losing occur to the slice groups in a play area, the original slice data can be recovered from N slices provided that N slices of a group of (N+m) slices are received. In an embodiment of the invention, a play area is processed to guarantee data integrity in a scenario where more than m slices are missing in a slice group received at the receiving end and the FEC algorithm cannot recover complete data. As shown in FIG. 6, the process includes the following steps:
Step 5201: The client scans the play area periodically to check whether the number of slices missing in the received slice groups is larger than the number of redundant slices and requests replenishment from the media server when detecting that the number of slices missing in one slice group is larger than the number of redundant slices.

When requesting replenishment from the media server, the client may request the media server to replenish all missing original slices in the group or request the media server to replenish partial missing slices (which may be original slices or redundant slices) according to the number of missing slices in the group.

Step S202: The media server returns the replenished data of the slice group based on the slices in the buffer and the partial missing slices replenished by the media server.

In the above process, if the client requests the media server to replenish all missing original slices, a larger network bandwidth is required and the media server is more heavily loaded. If the client requests the media server to replenish partial missing slices, the client must further process the data by using the FEC algorithm. In practice, the two processing modes may be selected according to actual needs.

The third embodiment of the invention includes:

According to experiments, by obtaining a section of data from a start slice group for one data processing from an MS-P in a CDN, a client can obtain the section of data in a short time and thereby may start to play the data after a short delay. The purpose of shortening the play delay of a selected channel is thus achieved. Normally, the play delay is shorter than 5 seconds.

As shown in FIG. 7, a client in an embodiment of the invention includes:

0100 a topology manager, adapted to determine a corresponding media server and parent peers of the client in a P2P system according to the selected channel output by the channel selector, determine a start slice group ID for the current data processing according to related information of the parent peers, and send a message to the media server to request data of the channel,
where the message carries the start slice group ID; and

[0101] a buffer manager, adapted to receive data transmitted by the media server and parent peers to the client.

[0102] The buffer manager of the client may further include a first function unit, adapted to check whether the latest transmission point of the media server in the buffer manager is the same as the latest transmission point of a designated parent peer and when detecting so, notify the media server to change the data transmission rate to the same as the bit rate of the channel.

[0103] The buffer manager may further include a second function unit, adapted to check whether the latest transmission point of the media server in the buffer manager is the same as the start transmission point of a parent peer, and when detecting that the latest transmission point of the media server is the same as the start transmission point of any parent peer, notify the media server to stop transmitting the data substream corresponding to the parent peer.

[0104] The buffer manager may further include a third function unit, adapted to guarantee an effective downlink bandwidth of the media server in preference.

[0105] The buffer manager may further include a fourth function unit, adapted to scan the play area in the buffer manager periodically, where the play area is determined by a stream feed point and a set play area length, check whether slices missing in slice groups in the play area are more than redundant slices, and when detecting so, request the media server for replenishment.

[0106] The buffer manager may further include a fifth function unit, adapted to periodically check the average data rate of each substream in a cycle, and when detecting that the average data rate of one substream is below a set fifth threshold in a set proportion or number of cycles within a specified time, determine that the substream is exceptional and notify the topology manager;

[0107] Accordingly, the topology manager is adapted to change the source where the client obtains the substream according to the notification.

[0108] As shown in FIG. 8, a network communication system includes a P2P system and a media server, where the P2P system includes at least one client and at least one parent peer of the client.

[0109] The client in the P2P system is adapted to determine a media server according to a channel selected by a user and parent peers of the client in the P2P system, determine a start slice group ID for the current data processing according to related information of the parent peers, and send a message to the media server to request data of the channel, where the message carries the start slice group ID, and transmit data to a child peer of the client.

[0110] The media server is adapted to transmit the data of the channel to the client according to the start slice group ID.

[0111] The media server may further include a start rate scale determining module, adapted to determine the start rate scale at which the media server transmits data of the channel to the client.

[0112] The client may be further adapted to check whether the latest transmission point of the media server in the buffer where the client receives the data is the same as the latest transmission point of a designated parent peer, and when detecting so, notify the media server to change the data transmission rate to the same as the bit rate of the channel.

[0113] The client may be further adapted to check whether the latest transmission point of the media server in the buffer is the same as the start transmission point of a parent peer, and when detecting that the latest transmission point of the media server is the same as the start transmission point of any parent peer, notify the media server to stop transmitting the data substream corresponding to the parent peer.

[0114] The client may be further adapted to scan the play area in the buffer periodically, where the play area is determined by a stream feed point and a set play area length, check whether slices missing in slice groups in the play area are more than redundant slices, and when detecting so, request the media server for replenishment; accordingly, the media server is adapted to transmit slices to the client according to the replenishment request.

[0115] The media server may be a media server in a CDN, and may be further adapted to check whether the volume of data that the media server is able to feed to the client is not above a set fourth threshold when transmitting data to the client, and when detecting that the data volume is not above the fourth threshold, change the data transmission rate to the same as the bit rate of the channel.

[0116] It is understandable to those skilled in the art that all or part of the steps of the foregoing embodiments can be implemented by hardware following instructions of programs. The programs may be stored in a computer readable storage medium, such as a Read-Only Memory, ROM, a Random Access Memory, RAM, a magnetic disk and a compact disk.

[0117] In the embodiments of the invention, a client obtains a section of data starting from a start slice group for one data processing via a media server, and thereby obtains the data in a short time. As a result, the client may start to play the data after a short delay and thus shorten the play delay of a selected channel. Furthermore, in the embodiments of the invention, because the media server is adapted on the basis of a P2P system for delivering video files to the client, high quality video files can be delivered. In addition, the method provided in the embodiments of the invention checks the integrity of the play area and requests the media server for replenishment according to the check result, so that the quality and continuity of video played on the client are assured.

[0118] Although the present invention has been described through some exemplary embodiments, the invention is not limited to such embodiments. It is apparent
that those skilled in the art can make various modifications and variations to the invention without departing from the spirit and scope of the invention. The invention is intended to cover these modifications and variations provided that they fall in the scope of protection defined by the following claims or their equivalents.

Claims

1. A method for processing network communication data, comprising:
 - determining a media server and parent peers of a client in a Peer To Peer, P2P, system according to a channel selected by a user;
 - determining a start slice group ID for current data processing according to related information of the parent peers;
 - sending a message to the media server to request data of the channel, wherein the message carries the start slice group ID; and
 - receiving data of the channel transmitted by the media server according to the start slice group ID and receiving data of the channel transmitted by the parent peers.

2. The method of claim 1, wherein the process of determining the start slice group ID comprises: calculating the number of slice groups that can be cached in a preset reserved buffer area according to bit rate of the selected channel, size of a slice, and size of the reserved buffer area; and determining the start slice group ID with reference to a slice group ID of a current latest transmission point of a first designated parent peer, wherein the start slice group is ahead of the slice group of the current latest transmission point of the first designated parent peer.

3. The method of claim 1, after sending the request message to the media server, further comprising: waiting for a first set duration, and starting feeding a stream to a media player after the first duration expires.

4. The method of claim 1, wherein the client checks whether continuous complete data received starting from the start slice group reaches a set first threshold and starts feeding a stream to a media player when detecting that the first threshold is reached.

5. The method of claim 1, wherein the process of transmitting data of the channel to the client according to the start slice group ID comprises: determining a start rate scale for the media server to transmit data of the channel to the client, wherein the start rate is higher than the bit rate of the channel, and transmitting, by the media server, the data of the channel to the client according to the start slice group ID at the start rate scale.

6. The method of claim 5, wherein when the client detects a latest transmission point of the media server in a local buffer is the same as a latest transmission point of a second designated parent peer, the client notifies the media server to change the data transmission rate to the same as the bit rate of the channel.

7. The method of claim 5, wherein when the client detects a volume of data received from the media server is larger than a set second threshold, the client notifies the media server to change the data transmission rate to the same as the bit rate of the channel.

8. The method of claim 5, wherein when the client detects an idle space of the local buffer is below a set third threshold, the client notifies the media server to change the data transmission rate to the same as the bit rate of the channel.

9. The method of claim 5, wherein the media server is a media server in a Content Delivery Network, CDN, and the media server checks whether a volume of data that the media server is able to feed to the client is not above a set fourth threshold when transmitting data to the client, and when detecting that the data volume is not above the fourth threshold, changes the data transmission rate to the same as the bit rate of the channel.

10. The method of any of claims 6-9, wherein, before the media server changes the data transmission rate to the same as the bit rate of the channel, the client guarantees an effective downlink bandwidth for the media server in preference.

11. The method of claim 5, wherein the process of determining the start rate scale comprises:
 - determining, by the media server, the start rate scale according to locally configured bit rate times and the bit rate of the channel;
 - or determining, by the media server, the start rate scale according to the bit rate of the channel and bit rate times carried in the request of the client.

12. The method of claim 1, 7, 8 or 9, wherein, when the client detects the latest transmission point of the media server in the local buffer is the same as a start transmission point of any parent peer, the client notifies the media server to stop transmitting a data substream corresponding to the parent peer to the client.
13. The method of claim 1, wherein the client scans a play area periodically, wherein the play area is determined by a stream feed point and a set play area length, and checks whether the number of slices missing in a slice group is larger than the number of redundant slices, and when detecting so, requests the media server for replenishment; accordingly, the media server returns replenished slices according to the request.

14. The method of claim 13, wherein the process of requesting the media server for replenishment comprises: requesting, by the client, the media server to replenish all missing original slices in the slice group.

15. The method of claim 13, wherein the process of requesting the media server for replenishment comprises: requesting, by the client, the media server to replenish partial missing slices according to the number of slices missing in the slice group; and accordingly, restoring, by the client, data of the slice group after obtaining the partial missing slices.

16. The method of claim 1, wherein the client periodically checks an average data rate of each substream in a cycle and when detecting that the average data rate of one substream is below a set fifth threshold in a set proportion or number of cycles in a specified time, determines that the substream is exceptional, and changes a source where the client obtains the substream.

17. A client, comprising:

- a channel selector, adapted to determine and output a channel selected by a user;
- a topology manager, adapted to determine a corresponding media server and parent peers of the client in a Peer To Peer, P2P, system according to the selected channel output by the channel selector, determine a start slice group ID for current data processing according to related information of the parent peers, and send a message to the media server to request data of the channel, wherein the message carries the start slice group ID; and
- a buffer manager, adapted to receive data transmitted by the media server and parent peers to the client.

18. The client of claim 17, wherein the buffer manager of the client comprises a first function unit, adapted to check whether a latest transmission point of the media server in the buffer manager is the same as a latest transmission point of a designated parent peer and when detecting so, notify the media server to change the data transmission rate to the same as the bit rate of the channel.

19. The client of claim 17, wherein the buffer manager further comprises a second function unit, adapted to check whether a latest transmission point of the media server in the buffer manager is the same as a start transmission point of a parent peer, and when detecting that the latest transmission point of the media server is the same as the start transmission point of any parent peer, notify the media server to stop transmitting a data substream corresponding to the parent peer to the client.

20. The client of claim 17, wherein the buffer manager comprises a third function unit, adapted to guarantee an effective bandwidth for the media server in preference.

21. The claim of claim 17, wherein the buffer manager further comprises a fourth function unit, adapted to scan a play area in the buffer manager periodically, wherein the play area is determined by a stream feed point and a set play area length, check whether the number of slices missing in a slice group in the play area is larger than the number of redundant slices, and when detecting so, request the media server for replenishment.

22. The client of claim 17, wherein the buffer manager further comprises a fifth function unit, adapted to periodically check an average data rate of each substream in a cycle, and when detecting that the average data rate of one substream is below a set fifth threshold in a set proportion or number of cycles within a specified time, determine that the substream is exceptional and notify the topology manager; and accordingly, the topology manager is adapted to change a source where the client obtains the substream according to the notification.

23. A network communication system, comprising a Peer To Peer, P2P, system and a media server, wherein the P2P system comprises at least one client and at least one parent peer of the client; the client in the P2P system is adapted to determine a media server according to a channel selected by a user and parent peers of the client in the P2P system, determine a start slice group ID for current data processing according to related information of the parent peers, and send a message to the media server to request data of the channel, wherein the message carries the start slice group ID, and transmit data to a child peer of the client; and the media server is adapted to transmit the data of the channel to the client according to the start slice group ID.

24. The system of claim 23, wherein the media server further comprises a start rate determining module,
adapted to determine a start rate for the media server to transmit the data of the channel to the client.

25. The system of claim 24, wherein the client is further adapted to check whether a latest transmission point of the media server in a buffer where the client receives the data is the same as a latest transmission point of a designated parent peer, and when detecting so, notify the media server to change the data transmission rate to the same as the bit rate of the channel.

26. The system of claim 24, wherein the media server is a media server in a Content Delivery Network, CDN, and is further adapted to check whether a volume of data that the media server is able to feed to the client is not above a set fourth threshold when transmitting data to the client, and when detecting that the data volume is not above the fourth threshold, change the data transmission rate to the same as the bit rate of the channel.

27. The system of claim 23, wherein the client is further adapted to check whether a latest transmission point of the media server in the buffer is the same as a start transmission point of a parent peer, and when detecting that the latest transmission point of the media server is the same as the start transmission point of any parent peer, notify the media server to stop transmitting a data substream corresponding to the parent peer.

28. The system of claim 23, wherein the client is further adapted to scan a play area periodically, wherein the play area is determined by a stream feed point and a set play area length, and check whether the number of slices missing in a slice group is larger than the number of redundant slices, and when detecting so, request the media server for replenishment; and the media server is further adapted to transmit slices to the client according to the replenishment request.

29. A computer readable storage medium, storing a computer program that enables a processor to execute the following steps:

determining a corresponding media server and parent peers of a client in a Peer To Peer, P2P, system according to a channel selected by a user;

determining a start slice group ID for current data processing according to related information of the parent peers and sending a message to the media server to request data of the channel, wherein the message carries the start slice group ID; and

receiving data of the channel transmitted by the media server according to the start slice group ID and receiving data of the channel transmitted by the parent peers.
S101
A user selects a channel on a client

S102
The client determines the media server corresponding to the channel and obtains addresses of candidate peers in the topology tree

S103
The client joins the P2P live video topology tree and designates the first admitted peer as a trunk parent peer

S104
The client determines the start slice group ID for the current data processing according to related information of the trunk parent peer

S105
The client sends a request message to the media server, where the message carries the start slice group ID

S106
The media server transmits data of the channel to the client at a rate higher than the bit rate of the channel according to the start slice group ID

S107
The parent peers of the client transmit the negotiated substream data to the client

S108
The buffer manager of the client feeds a stream to the media player

S109
The client notifies the media server when detecting the latest transmission point of the media server is the same as the latest transmission point of the second designated parent peer

S110
The media server changes the data transmission rate to the same as the bit rate of the channel according to the notification

FIG. 3
FIG. 4

FIG. 5
The client requests the media server for replenishment when detecting the number of missing slices in a slice group in the play area is larger than the number of redundant slices.

The media server returns replenished slices according to the request.

The client restores data of the slice group.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both national classification and IPC

H04L29/06 (2006.01)

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: H04L29/- H04L12/- G06F9/- H04J3/- EC: H04L29/08N9P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPDOC,WPI,PAJ,CNPAT,CNKI: P2P PEER CDN IDENTIFIER ID DOWNLOAD+ RATE SERVER FATHER NODE? PACKET

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>CN1889490A (BEIJING SHIYUE NETWORK TECH.CO.LTD) 03 Jan.2007 (03.01.2007) Description Page 2 lines 13-34</td>
<td>1-29</td>
</tr>
<tr>
<td>Y</td>
<td>CN1909509A (HUAWEI TECH.CO.LTD) 07 Feb.2007 (07.02.2007) Description Pages 3-7</td>
<td>1-29</td>
</tr>
</tbody>
</table>

* Further documents are listed in the continuation of Box C.

• See patent family annex.

* Special categories of cited documents:
 “A” document defining the general state of the art which is not considered to be of particular relevance
 “E” earlier application or patent but published on or after the international filing date
 “L” document which may throw doubts on priority claim (S) or which is cited to establish the publication date of another citation or other special reason (as specified)
 “O” document referring to an oral disclosure, use, exhibition or other means
 “P” document published prior to the international filing date but later than the priority date claimed

“T” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

& document member of the same patent family

Date of the actual completion of the international search
18 Aug. 2008 (18.08.2008)

Date of mailing of the international search report
04 Sep. 2008 (04.09.2008)

Name and mailing address of the ISA/CN
The State Intellectual Property Office, the P.R.China 6 Xitucheng Rd., Jimen Bridge, Haidian District, Beijing, China 100088 Facsimile No. 86-10-62019451

Authorized officer
YE Feng
Telephone No. (86-10)62411221

Form PCT/ISA/210 (second sheet) (April 2007)
INTERNATIONAL SEARCH REPORT

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.X</td>
<td>CN101102312A (HUAWEI TECH.CO.LTD) 09 Jan.2008 (09.01.2008) The whole document</td>
<td>1-29</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (continuation of second sheet) (April 2007)
INTERNATIONAL SEARCH REPORT
Information on patent family members

<table>
<thead>
<tr>
<th>Patent Documents referred in the Report</th>
<th>Publication Date</th>
<th>Patent Family</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1889490A</td>
<td>03.01.2007</td>
<td>CN100405773C</td>
<td>23.07.2008</td>
</tr>
<tr>
<td>CN1909509A</td>
<td>07.02.2007</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>CN1937778A</td>
<td>28.03.2007</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>KR20050002457A</td>
<td>07.01.2005</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>CN101102312A</td>
<td>09.01.2008</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (April 2007)
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- CN 200710112366 [0001]