EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 01.08.2012 Bulletin 2012/31

(21) Application number: 09001192.5

(22) Date of filing: 28.01.2009

(54) Motion control device for vehicle

Bewegungssteuerungsvorrichtung für ein Fahrzeug
Dispositif de contrôle des mouvements pour véhicule

(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

(30) Priority: 31.01.2008 JP 2008021627

(43) Date of publication of application: 05.08.2009 Bulletin 2009/32

(73) Proprietor: Aisin AW Co., Ltd. Fujii-cho
Anjo-shi, Aichi 444-1192 (JP)

(72) Inventors:
• Miyajima, Takayuki
Okazaki-shi, Aichi 444-8564 (JP)
• Kondou, Yoshito
Okazaki-shi, Aichi 444-8564 (JP)

(51) Int Cl.:
B60K 31/00 (2006.01)
B60K 31/02 (2006.01)
B60K 31/04 (2006.01)
B60W 10/02 (2006.01)
B60W 10/04 (2006.01)
B60W 10/08 (2006.01)
B60W 10/06 (2012.01)
B60W 10/10 (2012.01)
B60W 10/12 (2012.01)

(74) Representative: Kramer - Barske - Schmidtchen
Landsberger Strasse 300
80687 München (DE)

(56) References cited:
EP-A1- 0 901 929
DE-A1- 10 258 167

• Takeuchi, Atsushi
Anjo-shi, Aichi 444-1192 (JP)
• Yasui, Yoshio
Kariya-shi
Aichi 448-8688 (JP)
• Nakano, Keita
Kariya-shi
Aichi 448-8688 (JP)
• Kuki, Yosuke
Kariya-shi
Aichi 448-8688 (JP)
• Nakano, Keita
Kariya-shi
Aichi 448-8688 (JP)

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The present invention relates to a motion control device for a vehicle. More specifically, the present invention pertains to a motion control device for a vehicle for executing an automatic reduction of a speed of the vehicle (i.e. a speed reduction control) while the vehicle travels through a curve existing ahead of the vehicle on a road on which the vehicle is traveling.

[0002] Disclosed in JP2004-230946A is an example of a motion control device for a vehicle. In the motion control device for the vehicle disclosed in JP2004-230946A, an allowable value of a lateral acceleration (i.e. allowable lateral acceleration), which acts on the vehicle when the vehicle travels through a curve, is determined on the basis of the vehicle speed (i.e. a vehicle speed) and a road surface friction coefficient. An appropriate vehicle speed for the vehicle traveling through the curve is determined on the basis of the calculated allowable lateral acceleration and a radius of curvature of the curve. Then, the motion control device for the vehicle disclosed in JP2004-230946A executes a speed reduction control for reducing the vehicle speed on the basis of the vehicle speed and a position of the vehicle relative to the curve, so that the vehicle travels through the curve at the appropriate vehicle speed.

[0003] In a case where the curve has an increasing gradient, the vehicle speed is expected to be reduced due to an action of gravity. Hence, a sense of security a driver feels (which is hereinafter referred also to as a sense of security of a driver) may be high when the vehicle advances to the curve. On the other hand, in a case where the curve has a decreasing gradient, the vehicle speed is expected to be decreased due to the action of gravity. Hence, the driver may feel less secure (i.e. the sense of security of the driver is low).

[0004] Further, in a case where visibility of the curve is poor because relief of the curve is great, because an elevation of an inner side of the curve is higher than the elevation of the curve, or because of an existence of a tall building at the inner side of the curve, the sense of security of the driver may be low. Furthermore, the level of the sense of security felt by the driver may fluctuate depending on the driving conditions even if the vehicle travels through the curve while receiving a predetermined same level of lateral acceleration. For example, the sense of security of the driver may be high in a case where the vehicle travels the curve having a small curvature radius of the curve at a low speed. On the other hand, the driver may feel less secure when the vehicle travels the curve having a great curvature radius of the curve at a high speed even if the vehicle travels through the curve while receiving the predetermined same level of the lateral acceleration. Accordingly, the sense of security of the driver fluctuates depending on the gradient of the road on the curve, visibility beyond the curve, curvature of the curve (the vehicle speed when traveling through the curve) and the like.

[0005] It is considered to be preferable that the appropriate vehicle speed (or the allowable lateral acceleration), which is set in the above-mentioned speed reduction control, is determined in view of the sense of security of the driver. In other words, the appropriate vehicle speed (or the allowable lateral acceleration) may be preferably set in a manner where the greater the sense of security of the driver is, the greater value the appropriate vehicle speed (or, the allowable lateral acceleration) is set to be. On the other hand, in the motion control device disclosed in JP2004-230946A, the appropriate vehicle speed (or the allowable lateral acceleration) is determined without consideration for the sense of security of the driver.

[0007] A need thus exists to provide a motion control device for a vehicle which is not susceptible to the drawback mentioned above. More specifically, the purpose of the present invention is to provide the motion control device (a speed reduction control device) for the vehicle that executes a speed reduction control in view of a sense of security a driver feels when the vehicle advances to a curve.

[0008] This object is achieved by a motion control device according to claim 1. Further developments of the invention are given in the dependent claims. The foregoing and additional features and characteristics of the present invention will become more apparent from the following detailed description considered with the reference to the accompanying drawings, wherein:

Fig. 1 is a diagram schematically illustrating a structure of a vehicle on which a motion control device for a vehicle according to an embodiment is mounted;
Fig. 2 is a flowchart illustrating a routine for executing a curve travel assistance control, which is executed by an electronic control unit of the motion control device;
Fig. 3 is a graph illustrating an example of a relationship between a position of the vehicle on a road and a vehicle speed;
Fig. 4 is a diagram illustrating an example of a shape of a curve;
Fig. 5 is a graph illustrating a relationship between the position of a node on the road and a curvature radius of the curve;
Fig. 6 is a graph illustrating a relationship between a minimum curvature radius, an allowable lateral acceleration and an appropriate vehicle speed;
Fig. 7 is a diagram for explaining a starting condition of a speed reduction control;
Fig. 8 is a functional block diagram relating to the speed reduction control;
Fig. 9 is a diagram illustrating an example of a case where the curve travel assistance control is executed by the device illustrated in Fig. 1;
an output torque in response to the operation of the actuator FI (an injector). As a result, the engine EG generates a fuel mixture, which is adjusted in response to the opening degree of the throttle valve TV.

An amount of fuel proportional to an inhaled air volume, which is adjusted in response to the opening degree of the throttle valve TV, is injected by a fuel injection actuator FI (an injector). As a result, the engine EG generates an output torque in response to the operation of the acceleration pedal AP by the driver.

A multi-stage automatic transmission having plural shift stages or a continuously variable automatic transmission having no shift stages may be used as the automatic transmission TM. The automatic transmission TM is configured so as to automatically (without being influenced by an operation of a gear lever SF by the driver) change a reduction gear ratio (a rotational speed of an output shaft of the engine EG (i.e., rotational speed of an input shaft of the transmission TM) divided by a rotational speed of an output shaft of the transmission TM) in response to an operation condition of the engine EG and a position of the gear lever SF, which serves as a shift operation member.

The brake actuator BRK has a known configuration in which plural electromagnetic valves, a hydraulic pump, a motor and the like are included. The brake actuator BRK supplies a brake pressure (brake hydraulic pressure) in response to an operation of a brake pedal BP, which serves as a brake operation member, by the driver to a wheel cylinder WC** of each wheel WH** when a brake control is not executed. Further, the brake actuator BRK is configured to individually adjust the brake pressure within the wheel cylinder WC** of each wheel WH** independently from the operation of the brake pedal BP (and the operation of the acceleration pedal AP) when the brake control is executed.

Symbols ‘**’ are used to comprehensively indicate wheels, specifically, ‘fl’ indicates a front-left wheel, ‘fr’ indicate a front-right wheel, ‘rl’ indicates a rear-left wheel, and ‘rr’ indicates a rear-right wheel. Hence, for example, the wheel cylinder WC** comprehensively indicates a front-left wheel cylinder WClf, a front-right wheel cylinder WCfr, a rear-left wheel cylinder WCrl, and a rear-right wheel cylinder WCrn.

The device includes a wheel speed sensor WS** for detecting a wheel speed of the wheel WH**, a brake pressure sensor PW** for detecting the brake pressure within the wheel cylinder WC**, a steering wheel angle sensor SA for detecting a rotational angle (from a neutral position) of a steering wheel SW, a yaw rate sensor YR for detecting a yaw rate of a vehicle body, a longitudinal acceleration sensor GX for detecting an acceleration (a deceleration) generated in a front-rear direction (a longitudinal direction) of the vehicle body, a lateral acceleration sensor GY for detecting an acceleration generated in a lateral direction of the vehicle body, an engine rotational speed sensor NE for detecting a rotational speed of the output shaft of the engine EG, an acceleration operation sensor AS for detecting an operation variable of the acceleration pedal AP, a brake operation sensor BS for detecting an operation variable of the brake pedal BP, a shift position sensor HS for detecting the position of the gear lever SF, and a throttle valve opening degree sensor TS for detecting the opening degree of the throttle valve.

The electronic control unit ECU 20 is a microcomputer that electronically controls a power train system and a chassis system of the vehicle. The electronic control unit ECU 20 is electrically connected to above-described each actuator, above-described each sensor and the automatic transmission TM. Alternatively,
the electronic control unit ECU 20 is configured so as to communicate with above-described each actuator, above-described each sensor and the automatic transmission TM via a network. The electronic control unit ECU 20 is configured with plural control units (ECU 1, ECU 2 and ECU 3), which are connected to one another via a communication bus CB.

[0017] The ECU 1 (a wheel brake control means) included in the electronic control unit ECU 20 is a wheel brake control unit. The ECU 1 is configured so as to execute a brake pressure control (wheel brake control) such as a known anti-skid control (ABS control), a traction control (TCS control), a vehicle stability control (ESC control) and the like by controlling the brake actuator BRK on the basis of signals outputted from the wheel speed sensor WS**, the longitudinal acceleration sensor GX, the lateral acceleration sensor GY, the yaw rate sensor RY and the like.

[0018] The ECU 2 (an engine output reduction means) included in the electronic control unit ECU 20 is an engine control unit. The ECU 2 is configured so as to execute an output torque control (an engine control) of the engine EG by controlling the throttle actuator TH and the fuel injection actuator FI on the basis of a signal outputted from the acceleration operation sensor AS and the like.

[0019] The ECU 3 (a transmission control means) included in the electronic control unit ECU 20 is an automatic transmission control unit. The ECU 3 is configured so as to execute a reduction gear ratio control (a transmission control) by controlling the automatic transmission TM on the basis of a signal outputted from the shift position sensor HS and the like.

[0020] The navigation device NAV includes a navigation processor PRC. The navigation processor PRC is electrically connected to a vehicle position detection means (global positioning system) GPS, a yaw rate gyro GYR, an input portion INP, a storage portion MAP and a display portion (display) MTR. The navigation device NAV is electrically connected to the electronic control unit ECU 20 via radio waves.

[0021] The vehicle position detection means GPS is configured so as to detect a position (latitude, longitude and the like) of the vehicle 10 by using one of known methods utilizing a positioning signal from a satellite. The yaw rate gyro GYR is configured to detect an angular velocity (the yaw rate) of the vehicle body. The input portion INP is configured so as to input therein an operation performed by the driver relating to a navigation function. The storage portion MAP memorizes therein various information, such as map information, road information and the like.

[0022] The navigation processor PRC is configured so as to comprehensively process signals from the vehicle position detection means GPS, the yaw rate gyro GYR, the input portion INP and the storage portion MAP and so as to display the processed results (information relating to the navigation function) on the display portion MTR.

[0023] A curve travel assistance control executed by the device, more specifically by the electronic control unit ECU, which has the above-described configuration, will be described below. The curve travel assistance control is configured with a speed reduction control and an acceleration limit control. The speed reduction control is a control for reducing the vehicle speed (i.e., for decelerating the vehicle) without being influenced by an acceleration operation or a deceleration operation (the operation of the acceleration pedal AP or the operation of the brake pedal BP) by the driver, so that the vehicle appropriately travels through a curve 40 in a case where the vehicle is about to advance to (approaching) the curve 40 at a speed higher than a speed by which the vehicle appropriately travels through the curve 40.

[0024] The acceleration limit control is continuously executed after the speed reduction control. The acceleration limit control is a control for gradually canceling an acceleration limit after maintaining the vehicle speed for a predetermined period of time. The reduction of the vehicle speed is achieved by using at least one of reduction of the output of the engine EG, downshift of the transmission TM and a wheel brake. The acceleration limit is achieved by the reduction of the output of the engine EG.

[0025] In the speed reduction control, a point, at which the speed reduction is started, is determined on the basis of a speed of the vehicle (vehicle speed) Vx, a shape of the curve 40 existing immediately ahead of the vehicle, and a relative position between the curve and the vehicle (i.e. a position of the vehicle relative to the curve, a distance between the curve and the vehicle). The reduction of the vehicle speed is started when the vehicle reaches the point determined. Then, the reduction of the vehicle speed is ended when the vehicle speed Vx becomes appropriate.

[0026] The curve travel assistance control is described in more detail below with reference to a routine illustrated by a flowchart of Fig. 2 and a diagram of Fig. 3 illustrating a relationship between the position of the vehicle on the road 30 and the vehicle speed. The routine illustrated in Fig. 2 is executed at, for example, every predetermined operation period.

[0027] As illustrated in Fig. 4, generally on a road 30, a curve is structured with an advance transition curve zone, a constant curvature radius zone and an exit transition curve zone in this order towards a curve ending point (curve exit) from a curve starting point (curve entrance). The transition curve is, for example, structured by a clothoid curve. The transition curve is provided so that the vehicle smoothly travels through the curve while the driver gradually steers the steering wheel SW and then returns the steering wheel SW without a sudden operation of the steering wheel SW.

[0028] The curve travel assistance control is described
below in a case where the vehicle travels the curve illustrated in Fig. 4 as an example. In this embodiment, a point closer to the vehicle relative to a predetermined point may be referred to as ‘a front side’. A point farther from the vehicle relative to the predetermined point may be referred to as ‘a back side’. Further, a term ‘passing of the curve starting point’ may be expressed as ‘advancing to the curve’. A term ‘passing of the curve ending point’ may be expressed as ‘exiting from the curve’.

Firstly, in step 205, a process for recognizing a curve existing ahead of the vehicle (i.e. a curve recognition process) is executed. The curve recognition process is executed by at least one of the navigation device NAV and an image recognition device. For example, the existence of the curve is recognized once the vehicle reaches a range a predetermined distance away from the curve.

In step 210, the electronic control unit ECU determines whether or not the curve exists. In a case where the existence of the curve is not recognized, the routine illustrated in Fig. 2 is ended. On the other hand, in a case where the existence of the curve is recognized (see a point Pcn (a point N) in Fig. 3), the processes following step 215 are executed.

In step 215, the current vehicle speed Vx is obtained (the vehicle speed obtaining means). More specifically, the vehicle speed is obtained in step 215 by using one of the known methods such as a method using an output of the wheel speed sensor WS** and the like. In step 220, the shape of the curve existing immediately ahead of the vehicle and a shape around the curve are obtained (the curvature obtaining means). For example, the relative position between the vehicle and the curve, whose shape is obtained in step 220, is obtained (the position obtaining means). This information (i.e. the current vehicle speed Vx, the shape of the curve, the shape around the curve, and the relative position between the vehicle and the curve) may be obtained via the network within the vehicle.

More specifically, in step 220, a curvature grade of the curve existing ahead of the vehicle on the traveling road 30 is obtained. A term ‘the curvature grade of the curve is great’ means that a grade of bend of the curve is great on an inner side of the curve surface, which is parallel to (flush with) the road surface (in a horizontal direction, a left-right direction). For example, the curvature grade of the curve being great means that a curvature is great, a curvature radius (1/curvature) is small, a minimum curvature radius is small and the like. The curvature grade (i.e. the curvature) may be obtained from the road information stored in the navigation device NAV, which is mounted on the vehicle.

The shape of the curve includes information related to a curvature radius Rc of the curve, an increasing / decreasing gradient of the road on the curve, an elevation (undulation) on the curve and the like. For example, an area around the curve includes an inner area relative to the curve, an outer area relative to the curve and the like. The shape around the curve includes information relating to an elevation and the like around the curve, specifically the inner area of the curve. This information is included in the map information that is stored in the storage portion MAP.

Positions such as the curve starting point, the curve ending point and the like, and the curvature radius of each position are preliminarily memorized in the map information. Further, positions of plural predetermined points on the road (node points) and a curvature radius of each point are memorized in the map information. As illustrated in Fig. 5, the curvature radius Rc of the curve may be estimated on the basis of an approximated curve formed by geometrically and smoothly connecting the aforementioned plural points. The detailed explanation of estimation of the curvature radius Rc of the curve based on the approximated curve is disclosed in JP3378490B.

A relative position Pc between the curve and the vehicle is obtained by using the vehicle position detection means GPS of the navigation device NAV and the map information. More specifically, the current vehicle position (the latitude, longitude and the like) on the coordinates fixed on the earth (the terrestrial coordinates) is detected by the vehicle position detection means GPS and the detected current vehicle position is set as an initial position of the vehicle. Then, after the initial position of the vehicle is determined by the vehicle position detection means GPS, a relative position of the vehicle from the initial position is sequentially updated on the basis of information obtained from the yaw rate gyro GYR, the longitudinal acceleration sensors GX, the lateral acceleration sensor GY, the wheel speed sensor WS** and the like. Accordingly, the current vehicle position is estimated. The map information includes a position of each road (latitude and longitude). Hence, by referring to the current vehicle position and the position of the road, the relative position Pc between the curve and the vehicle is obtained.

Further, the relative position Pc between the curve and the vehicle, and the shape of the curve (the curvature radius Rc of the curve) may be obtained by using an image processing of a charge-coupled device (CCD) camera mounted on the vehicle. More specifically, a dividing line (a white line) on the road or an edge portion of the road is detected on the basis of an image captured by a stereo camera mounted on the vehicle. Then, a distance distribution on the entire image is calculated on the basis of an offset amount of the corresponding positions in the stereo images and a principle of triangulation. Accordingly, the distance from the vehicle to the curve (i.e. a relative distance Pc between the curve and the vehicle) and the curvature radius Rc of the curve are obtained on the basis of the calculation results. The above-described method of obtaining the relative position between the vehicle and the curve, and the shape of the curve are disclosed in more detail in IP3378490B.

In step 230, an allowable lateral acceleration Gyo or Gyp (an allowable value of the lateral acceleration
In step 235, an appropriate vehicle speed V_q (see Fig. 3) is determined on the basis of the curvature radius R_c of the curve (a minimum curvature radius R_m) and the allowable lateral acceleration (the determination means). The appropriate vehicle speed V_q is a speed appropriate for the vehicle to travel through a reference point, which exists on the curve, i.e., between the curve starting point and the curve ending point. For example, the greater the minimum curvature radius R_m of the curve is, the greater value the appropriate vehicle speed V_q is determined to be. More specifically, the appropriate vehicle speed V_q is determined on the basis of, for example, the following equations (equation 1 and equation 2). In this case, the appropriate vehicle speed V_q is set as illustrated in Fig. 6.

Equation 1:

$$V_q = \sqrt{(G_y \cdot R_m)}$$

Equation 2:

$$V_q = \sqrt{(G_y p \cdot R_m)}$$

In step 240, the reference point P_{cr} is determined. The reference point P_{cr} is a target point for achieving the appropriate vehicle speed V_q. For example, a starting point of a constant curvature radius zone on the curve, i.e., a point nearest to the vehicle within the zone in which the curvature radius remains constant, is specified to be the reference point P_{cr}. The reference point P_{cr} corresponds to a constant curvature radius zone starting point C_s (i.e., an ending point of an advance transition curve zone) in Fig. 4. Further, a point at which the curvature radius R_c becomes minimum on the curve may be set as the reference point P_{cr}.

Additionally, a point C_{s1} in Fig. 5 (i.e., a point corresponding to a node point existing at the front-most side within the constant curvature radius zone that is obtained on the basis of the approximated curve formed by geometrically and smoothly connecting the plural node points) may be specified to be the constant curvature radius zone starting point C_s. Alternatively, a point C_{s2} in Fig. 5 (i.e., a starting point (a peripheral node at the front side) of the constant curvature radius zone obtained from the approximated curve) may be specified to be the constant curvature radius zone starting point C_s.

The reference point P_{cr} may be set at a point existing a predetermined distance closer to the vehicle relative to the constant curvature radius zone starting point C_s (i.e., the ending point of the advance transition curve zone) on the curve in view of a possible delay of speed reduction while the speed reduction control is executed (e.g., a delay of downshift of the automatic transmission TM). As a result, the vehicle speed may be reduced down to the appropriate vehicle speed V_q before the vehicle reaches the reference point P_{cr} in view of a possibility of an error included in the positioning information and the like.

In step 245, as illustrated by a line A-B in Fig. 3, a target vehicle speed characteristic V_t in a case where the vehicle speed is reduced according to a pre-set deceleration characteristic (e.g., decelerated at a deceleration G_x) is calculated on the basis of the appropriate vehicle speed V_q at the reference point P_{cr} as a reference. The deceleration characteristic may be set as a pre-set constant value. Alternatively, the deceleration characteristic may be adjusted on the basis of at least one of the acceleration/deceleration operation by the driver, the curvature radius R_c of the curve, the appropriate vehicle speed V_q, the increasing/decreasing gradient of the curve and a road surface friction coefficient.

As illustrated in Fig. 3, the target vehicle characteristic V_t is a target of a reduction characteristic of the vehicle speed relative to the vehicle position on the road (on the advance transition curve zone). Further, the target vehicle characteristic V_t has a property in which the vehicle speed becomes the appropriate vehicle speed V_q at the reference point P_{cr} and in which the target vehicle characteristic V_t is decreased as being away from the reference point P_{cr} towards the vehicle. Additionally, illustrated in Fig. 3 is a case where the deceleration characteristic is constant. In this case, more properly, the line A-B line is expressed as a straight line in order to facilitate understanding.

In step 250, it is determined whether or not a starting condition for the speed reduction control (which is hereinafter referred to as a speed reduction control starting condition) is satisfied (start determination). As illustrated in Fig. 7, the start determination is performed on the basis of the relative distance P_{cr} between the curve and the vehicle. More specifically, the start determination starts on the basis of a distance V_x between the reference point P_{cr} and the vehicle, and the vehicle speed V_x. The distance V_x being zero ($V_x = 0$) indicates the reference point P_{cr}. A range provided at an upper left side of the target vehicle speed characteristic V_t shown by fine dots indicates a speed reduction control range where the curve speed reduction control is performed.

While the vehicle is approaching the curve, the distance V_x is decreasing and the vehicle speed V_x is changing in response to an operating status of the driver. Accordingly, a point (V_x, V_x) moves on a coordinate plane of Fig. 7. In a case where the point (V_x, V_x) passes over the target vehicle speed characteristic V_t, the speed reduction control starting condition is satisfied and the speed reduction control is started. The speed reduction control is executed without being influenced by the ac-
The speed reduction control is started when the point (Lv, Vx) pass over the target vehicle speed characteristic Vt in any case where the vehicle travels at substantially constant speed (vehicle speed Vxa), where the vehicle decelerates by the driver operating the brake pedal BP (vehicle speed Vxb), and where the vehicle accelerates by the driver operating the acceleration pedal AP (vehicle speed Vxc) in Fig. 7 (see points Aa, Ab and Ac). In Fig. 3, the speed reduction control is started at a point Pcs (point B) at which the line indicating the target vehicle characteristic Vt intersects with the line indicating changes of the vehicle speed Vx.

Accordingly, the speed reduction control is started (the speed reduction control starting condition is satisfied) in the case where the current vehicle speed exceeds the vehicle speed at ‘the current vehicle position Lv relative to the reference point’ with reference to the target vehicle characteristic Vt.

In the case where the speed reduction control starting condition is satisfied, the speed reduction control is started and executed in step 255 (the speed reduction control means B2 obtains the current vehicle speed Vx. A speed reduction control variable calculating means B3 determines a speed reduction control variable Gst on the basis of a deviation ∆Vx between the vehicle speed Vx and the target vehicle speed Vxt (∆Vx = Vx - Vxt, see Fig. 3). The speed reduction control variable Gst is determined to zero (0) in a case where the deviation ∆Vx is negative. On the other hand, in a case where the deviation ∆Vx is positive, the greater the deviation ∆Vx is, the greater value the speed reduction variable Gst is determined to be.

Then, one or more of the reduction of the engine output by the engine output reduction means B4 (at least one of a reduction of the throttle opening degree, a retardation of an ignition timing and a reduction of a fuel injection amount), an increase of the ‘reduction gear ratio’ (the downshift and the like) by the transmission control means B5, and an application of a brake torque (application of the brake pressure) executed by the wheel brake control means B6 by means of the wheel brake, is continued for a predetermined value after the acceleration limit control. Accordingly, the speed reduction control is activated. Accordingly, the speed reduction control is ended when the decreasing vehicle speed Vx reaches a point (a point G) which exists within a small range Hn in which the appropriate vehicle speed Vq is included.

After the speed reduction control is ended, it is determined whether or not to start the acceleration limit control in step 260. Then, the acceleration limit control is started and executed in step 265. In other words, while the wheel brake control is completely ended (the brake torque and the brake pressure are set to zero), a state of limited the acceleration (a limitation of the throttle opening degree) and the downshift of the transmission TM continues through a continuation value Kgs (see Fig. 3). A value in the continuation value Kgs indicates a distance or time.

As the speed reduction control is executed independently of the acceleration/deceleration operation of the driver, the driver may operate the acceleration pedal AP while the speed reduction control is executed. If the acceleration limit is not executed immediately after the end of the speed reduction control in the above-mentioned case, the vehicle may suddenly accelerate (an excessive acceleration slip may occur at a driving wheel). Hence, the acceleration limit control is executed through the predetermined continuation value Ksg.

In the case where the speed reduction control is started and executed in step 255 (the speed reduction control means B2 obtains the current vehicle speed Vx. A speed reduction control variable calculating means B3 determines a speed reduction control variable Gst on the basis of a deviation ∆Vx between the vehicle speed Vx and the target vehicle speed Vxt (∆Vx = Vx - Vxt, see Fig. 3). The speed reduction control variable Gst is determined to zero (0) in a case where the deviation ∆Vx is negative. On the other hand, in a case where the deviation ∆Vx is positive, the greater the deviation ∆Vx is, the greater value the speed reduction variable Gst is determined to be.

Further, the device of the embodiment may be modified so as to immediately end the acceleration limit control when the driver conducts the acceleration operation in the acceleration limit period in order to directly reflect an acceleration intention of the driver. Described above is the curve travel assistance control.

Fig. 9 illustrates an example of a case where the curve travel assistance control is ended when the decreasing vehicle speed Vx reaches the appropriate vehicle speed Vq. More specifically, for example, as illustrated in Fig. 3, the speed reduction control is ended when the decreasing vehicle speed Vx reaches
deceleration gear ratio of the transmission TM (the downshift in which a shift stage Tr is changed to a shift stage Ts), and the application of the brake torque (the brake pressure) are started by the wheel brake.

[0057] The vehicle is gradually decelerated by the speed reduction control. The speed reduction control is ended at the point where the vehicle speed Vx approximately matches the appropriate vehicle speed Vq in the vicinity of the reference point Pcr. Accordingly, while the brake torque of the wheel brake becomes zero (0), the above-described acceleration limit control is continuously started. Therefore, a limit is set for the throttle opening degree (the upper limit value = 0) until the vehicle passes through the point Pca. Then, the acceleration limitation is gradually relaxed and the acceleration limitation is completely cancelled when the vehicle passes through the point Pce. On the other hand, the downshift status (the shift stage = Ts) is maintained at the transmission TM until the vehicle passes a point Pce in preparation for the acceleration operation by the driver. However, in a case where the driver does not conduct the acceleration operation, a shift up in which the shift stage Ts is changed to the shift stage Tr is executed.

[Calculation of allowable lateral acceleration]

[0058] A calculation of the allowable lateral acceleration in step 230 in Fig. 2 will be described more in detail with reference to Figs. 10 and 11. Fig. 10 illustrates a case where the allowable lateral acceleration Gyo is adjusted by multiplying the allowable lateral acceleration reference value Gya by an adjustment coefficient. In a case where the adjustment of the allowable lateral acceleration Gyo is not executed, the adjustment value is set to one (1). Fig. 11 illustrates a case where the allowable lateral acceleration Gyp is adjusted by adding an adjustment value to the reference value Gya. In a case where the adjustment of the allowable lateral acceleration Gyp is not executed, the adjustment value is set to zero (0). The allowable lateral acceleration is adjusted in perspective of the curvature radius Rc of the curve, an increasing/decreasing slope gradient (the increasing/decreasing gradient), a blind curve and a sudden gradient reduction portion 50.

<Curvature radius of curve>

[0059] A curvature radius coefficient Kha is calculated on the basis of the minimum curvature radius Rm of the curve at a calculation portion A1 in Fig. 10. A curvature radius adjustment value Gyha is calculated on the basis of the minimum curvature radius Rm of the curve at a calculation portion A1’ in Fig. 11. Accordingly, the smaller the minimum curvature radius Rm is, the greater value the curvature radius coefficient Kha and the curvature radius adjustment value Gyha are determined to be. As a result, the smaller the minimum curvature radius Rm of the curve is, the greater value the allowable lateral acceleration Gyo (Gyp) is determined to be, because of the following reasons. In a case where the lateral acceleration is constant while the vehicle turns the curve, the smaller a turning radius (i.e. the curvature radius Rc of the curve) is, the lower the vehicle speed becomes. The lower the vehicle speed is, the more the driver may feel secure (i.e. the higher the driver may receive a sense of security becomes). Hence, the higher the sense of security of the driver is, the greater value the allowable lateral acceleration Gyo (Gyp) (i.e. the appropriate vehicle speed Vq) may be set to be. Accordingly, the smaller the minimum curvature radius Rm of the curve is, the greater value the allowable lateral acceleration Gyo (Gyp) is determined to be.

<Increasing/decreasing slope gradient>

[0060] An increasing/decreasing slope gradient coefficient Ktk is calculated on the basis of an increasing/decreasing slope gradient Udw at a calculation portion A2 in Fig. 10. An increasing/decreasing slope gradient adjustment value Gytk is calculated on the basis of the increasing/decreasing slope gradient Udw at a calculation portion A2’ in Fig. 11. The increasing/decreasing slope gradient Udw is determined to be a positive value in a case where the curve has an increasing slope (i.e. the increasing gradient). On the other hand, in a case where the curve has a decreasing slope (i.e. the decreasing gradient), the increasing/decreasing slope gradient Udw is determined to be a negative value. Accordingly, the greater the increasing/decreasing slope gradient Udw (positive value) is, the greater values the increasing/decreasing slope gradient coefficient Ktk and the increasing/decreasing slope gradient adjustment value Gytk are determined to be. As a result, the greater the increasing/decreasing slope gradient Udw (positive value) is, the greater value the allowable lateral acceleration Gyo (Gyp) is determined to be. On the other hand, the smaller the increasing/decreasing slope gradient Udw (negative value) is, the smaller values the increasing/decreasing slope gradient coefficient Ktk and the increasing/decreasing slope gradient adjustment value Gytk are determined to be. As a result, the greater the increasing/decreasing slope gradient Udw (negative value) is, the smaller value the allowable lateral acceleration Gyo (Gyp) is determined to be.

[0061] The above-mentioned determination of the allowable lateral acceleration Gyo (Gyp) is based on the following reasons. In a case where the vehicle travels on the curve having the increasing slope, the steeper the increasing slope is, the more the driver feels secure (the higher the sense of security of the driver becomes) because the vehicle speed is expected to be reduced due to the action of the gravity. Hence, in this case, the steeper the increasing gradient is, the greater value the allow-
able lateral acceleration G_yo (G_{yp}) is determined to be. On the other hand, in a case where the vehicle travels on the curve having the decreasing slope, the steeper the increasing slope is, the less the driver feels secure (the lower the sense of security of the driver becomes) because the vehicle speed is expected to accelerate due to the action of the gravity. Hence, in this case, the steeper the decreasing gradient is, the smaller value the allowable lateral acceleration G_yo (G_{yp}) is determined to be.

[0062] As illustrated in Fig. 12, the increasing/decreasing slope gradient U_{dw} is not calculated on the basis of a gradient of a road surface immediately below the vehicle, but on the basis of the increasing/decreasing slope gradient within a predetermined zone D_{pr} existing ahead of the vehicle. For example, the increasing/decreasing slope gradient U_{dw} may be calculated as an average value of a gradient distribution of the road surface within the zone D_{pr}. Alternatively, the increasing/decreasing slope gradient U_{dw} may be calculated as a value, which is obtained by weighting the gradient by using a weighting factor. The weighting factor is set to be greater towards positions closer to the vehicle on the gradient distribution of the road surface within the zone D_{pr}. Accordingly, the following effects and advantages are obtained.

[0063] As illustrated in Fig. 13, in a case where the vehicle travels on the curve having the decreasing gradient to which a level road surface or the increasing gradient continues, the sense of security felt by the driver may be higher, comparing to a case where the decreasing gradient continues. In this case, the increasing/decreasing slope gradient U_{dw} is calculated to be a greater value comparing to the case where the decreasing gradient continues, so that the allowable lateral acceleration G_yo (G_{yp}) is calculated to be a greater value.

[0064] Similarly, as illustrated in Fig. 14, in a case where the vehicle travels on the curve having the increasing gradient to which the level road surface or the decreasing gradient continues, the sense of security of the driver may be lower, comparing to a case where the increasing gradient continues. In this case, the increasing/decreasing slope gradient U_{dw} is calculated to be a smaller value comparing to the case where the increasing gradient continues, so that the allowable lateral acceleration G_yo (G_{yp}) is calculated to be a smaller value. As described above, even in a case where there are changes in the increasing/decreasing slope gradient ahead of the vehicle, an appropriate allowable lateral acceleration (i.e. the appropriate vehicle speed V_q) is determined in view of a level of the sense of security of the driver.

<Blind curve>

[0065] A curve having poor visibility therebeyond (i.e. in the vicinity of the curve ending point), because of an existence of a shield (i.e. an object) such as a cliff, a building and the like at the inner side of the curve, is generally referred to as a "blind curve". The curve is defined as the blind curve in a case where, for example, as illustrated in Fig. 15, a difference ΔH_{et} between an elevation H_{ei} of the inner side of the curve and an elevation H_e of the curve (i.e. $\Delta H_{et} = H_{ei} - H_e$) is equal to or greater than a predetermined value H_1, or in a case where a building having a height equal to or greater than the predetermined value H_1 exists at the inner side of the curve.

[0066] In the case where the curve has the poor visibility therebeyond because of the above-mentioned shield, the driver may feel less secure (i.e. the sense of security of the driver may decrease). In this case, the longer a curve length L_{cv} (i.e. a distance between the curve starting point and the curve ending point) is, or the longer a distance L_{it} of the constant curvature radius zone at the curve (see Fig. 4) is, or the smaller the minimum curvature radius R_m of the curve is, the poorer visibility beyond the curve becomes, therefore, the less the driver feels secure (i.e. the lower the sense of security becomes).

[0067] In view of the above-mentioned facts, an index J_{bc}, which represents a degree of poor visibility at the blind curve, is introduced. The index J_{bc} is determined on the basis of a table illustrated in Fig. 16 (the index (value) obtaining means). More specifically, in a case where the minimum curvature radius R_m is constant, the longer the length of the curve L_{cv} (L_{it}) becomes, the greater value the index J_{bc} (>0) is set to be. On the other hand, in a case where the vehicle travels under the condition where the road having the same length of the curve L_{cv} (L_{it}), the smaller the minimum curvature radius R_m becomes (i.e. the lower the sense of security of the driver is), the greater value the index J_{bc} (>0) is determined to be.

[0068] In a case where the curve existing immediately ahead of the vehicle is the blind curve ($\Delta H_{et} \geq H_1$), a blind curve coefficient K_{bc} is calculated on the basis of the index J_{bc} at a calculation portion A_3 in Fig. 10, and a blind curve adjustment value G_{ybc} is calculated on the basis of the index J_{bc} at a calculation portion A_3' in Fig. 11. Accordingly, the greater the index J_{bc} is, the smaller values the blind curve coefficient K_{bc} and the blind curve adjustment value G_{ybc} are determined to be. As a result, the poorer the visibility beyond the curve becomes (i.e. the lower the sense of security of the driver is), the smaller value the allowable lateral acceleration G_yo (G_{yp}) is determined to be. Additionally, in the case where the oncoming curve existing immediately ahead of the vehicle is not the blind curve, the blind curve coefficient K_{bc} is set to one (1) and the blind curve adjustment value G_{ybc} is set to zero (0).

<Sudden gradient reduction portion>

[0069] As illustrated in Fig. 17, with regard to a field of vision ahead of the vehicle, a lower end of the field of view of the driver in a vertical direction of the driver is determined on the basis of a relationship between a po-
sition of the driver’s eye level and a position of an upper corner portion of a front end of the vehicle. An angle formed by a line corresponding to the lower end of the field of view and a line horizontal to the road surface is referred to as θ_{dr}. As illustrated in Fig. 17, in a case where, for example, the curve has a portion at which the increasing gradient (a gradient θ_{up}) changes to the decreasing gradient (a gradient θ_{down}) and at which an angular variation ΔU_{dw} of the gradient ($\Delta U_{dw} = \theta_{up} - \theta_{down}$) is greater than the angle θ_{dr}, the visibility beyond the sudden gradient reduction portion of the curve becomes poor.

[0070] Accordingly, in the case where the visibility of the curve is poor because of the gradient sudden reduction portion, the driver may feel less secure (i.e. the sense of security of the driver may decrease). In this case, the greater the angular variation ΔU_{dw} of the gradient at the sudden gradient reduction portion is, the less the driver may feel secure (i.e. the lower the sense of security of the driver becomes) because the visibility beyond the curve is poor.

[0071] Considering the above-mentioned facts, in a case where the sudden gradient reduction portion exists on the curve (i.e. $\Delta U_{dw} > \theta_{dr}$), a sudden gradient reduction coefficient K_{mt} is calculated at a calculation portion A4 in Fig. 10 on the basis of the angular variation ΔU_{dw}, and a sudden gradient reduction adjustment value G_{ymt} is calculated at a calculation portion A4’ in Fig. 11 on the basis of the angular variation ΔU_{dw}. Accordingly, the greater the angular variation $\Delta U_{dw} (> \theta_{dr})$ is, the smaller values the sudden gradient reduction coefficient K_{mt} and the sudden gradient reduction adjustment value G_{ymt} are determined to be. As a result, the poorer the visibility beyond the curve becomes due to the existence of the sudden gradient reduction portion (i.e. the less the driver feels secure), the smaller value the allowable lateral acceleration G_{yo} (Gyp) is determined to be. Additionally, in a case where the curve does not have the sudden gradient reduction portion, the sudden gradient reduction coefficient K_{mt} is set to one ($K_{mt} = 1$) and the sudden gradient reduction adjustment value G_{ymt} is set to zero ($G_{ymt} = 0$).

[0072] According to the motion control device of the embodiment, the allowable lateral acceleration G_{yo} (Gyp) is calculated in view of the curvature radius R_c of the curve, the increasing/decreasing slope gradient (the increasing/decreasing gradient), the blind curve and the sudden gradient reduction portion, which influence the sense of security of the driver. The appropriate vehicle speed V_q is determined on the basis of the allowable lateral acceleration G_{yo} (Gyp) and the curvature radius R_c of the curve (see Fig. 6). Then, once the above-described speed reduction control starting condition is satisfied, the speed reduction control is started and executed without being influenced by the acceleration/deceleration operation performed by the driver, so that the vehicle speed V_x is reduced down to the appropriate vehicle speed V_q.

[0073] Accordingly, the driver may not feel discomfort while the speed reduction control is executed, because the allowable lateral acceleration G_{yo} (Gyp) (i.e. the appropriate vehicle speed V_q) is determined in view of the sense of security of the driver when the vehicle advances to the curve.

[0074] Further, the present invention is not limited to the above-described embodiment, and various modification and changes may be applied without departing from the spirit of the present invention. For example, in the above-described embodiment, the appropriate vehicle speed V_q is determined by using the allowable lateral acceleration G_{yo} (Gyp) that is calculated in view of the sense of security of the driver. However, the appropriate vehicle speed V_q may be directly determined in view of the sense of security of the driver but without using the allowable lateral acceleration G_{yo} (Gyp).

[0075] In this case, for example, the appropriate vehicle speed V_q is determined in the following manner: firstly, a reference value of the appropriate vehicle speed (which is a value corresponding to the allowable lateral acceleration reference value G_{ya} (Gypa)) is determined on the basis of the curvature radius R_c of the curve (i.e. the minimum curvature radius R_m), and then, the reference value of the appropriate vehicle speed is adjusted by the adjustment coefficient indicated in Fig. 10 (specifically, K_{tk}, K_{bc}, K_{mt}) or by the adjustment value indicated in Fig. 11 (specifically, G_{ytk}, G_{ybc}, G_{ymt}).

[0076] Further, in the above-described embodiment, the allowable lateral acceleration is calculated in view of the four adjustment coefficients indicated in Fig. 10 or in view of four adjustment values indicated in Fig. 11. However, the allowable lateral acceleration may be calculated in view of any one of, two of, or three of the four adjustment coefficients indicated in Fig. 10 or the four of adjustment values indicated in Fig. 11.

[0077] Further, a point (zone) where the shield (the cliff, the building and the like) exists at the inner side of the curve may be preliminarily memorized in the map information as the blind curve point (zone), so that the appropriate vehicle speed V_q (or the allowable acceleration speed G_{yo} (Gyp)) is determined (adjusted) to be a smaller value on the basis of the memorized map information when the vehicle passes through the blind curve point (zone). A point (zone) where the visibility beyond the curve is poor because of the sudden gradient reduction portion may be preliminarily memorized in the map information as the hidden curve point (zone), so that the appropriate vehicle speed V_q (or the allowable acceleration speed G_{yo} (Gyp)) is determined (adjusted) to be a smaller value on the basis of the memorized map information when the vehicle passes through the hidden curve point (zone). Accordingly, by preliminarily memorizing the point (zone) at which the visibility beyond the curve is poor at the map information, the calculation process of determining the degree of the poor visibility may be omitted and the calculation process may be simplified.
Additionally, in the embodiment, the above-described curve travel assistance control is started and executed independently of the acceleration/deceleration operation by the driver. However, the motion control device of the embodiment may be modified so that the curve travel assistance control is started and executed only in the case where the driver conducts the deceleration operation. It is determined that the deceleration operation is conducted by the driver in a case where an acceleration pedal operation variable As detected by the acceleration operation sensor AS becomes equal to or less than a predetermined value (including zero (0)), and in a case there a brake pedal operation variable Bs detected by the brake operation sensor BS becomes equal to or greater than a predetermined value (not including zero (0)). Accordingly, in the case where the curve travel assistance control is started and executed only in the case where the driver conducts the deceleration operation, the acceleration limit control executed after the deceleration operation by the driver. However, the motion control device for the vehicle is configured on the basis of the above-described findings. More specifically, the appropriate vehicle speed Vq is determined in the appropriate view of the low sense of security of the driver, and the speed reduction control is started and executed only in the case where the elevation Hei of the inner side of the curve relative to the elevation Her of the curve is equal to or greater than the predetermined value H1, or in the case where the object having the height equal to or higher than the predetermined value H1 exists at the inner side of the curve, and wherein the electronic control unit ECU determines the appropriate vehicle speed Vq at steps 230 and 235 in the manner where the longer the length of the curve is, the smaller value the appropriate vehicle speed Vq is determined to be, and/or the greater the curvature of the curve is, the smaller value the appropriate vehicle speed Vq is determined to be, and/or the greater the curvature of the curve is (e.g. the smaller the minimum curvature radius), the less the driver feels secure (i.e. the lower the sense of security of the driver becomes). The motion control device for the vehicle is configured based on the above-described findings. Accordingly, the appropriate vehicle speed Vq may be determined in the appropriate view of the low sense of security of the driver caused due to the blind curve.
reduction portion exists on the curve, the sudden gradient reduction portion is a portion whose gradient changes for equal to or more than the predetermined angle θ in a decreasing direction on the curve, and wherein the electronic control unit ECU determines the appropriate vehicle speed V_q at steps 230 and 235 in the manner where the greater the angular variation $\Delta U_{dw} = U_{up} - U_{dw}$ of the gradient of the sudden gradient reduction portion is, the smaller value the appropriate vehicle speed V_q is determined to be in the case where the sudden gradient reduction portion exists on the curve ($A4, A4'$).

[0089] If the sudden gradient reduction portion exists on the curve, the visibility of the curve becomes poor. Accordingly, in the case where the visibility of the curve is poor because of the sudden gradient reduction portion, the greater the angular variation ΔU_{dw} of the gradient of the sudden gradient reduction portion is, the less the driver may feel secure (i.e. the lower the sense of security of the driver may becomes). The motion control device for the vehicle is configured based on the above-described findings. Accordingly, the appropriate vehicle speed V_q may be determined in the appropriate view of the low sense of the security of the driver caused due to the sudden gradient reduction portion.

[0090] Accordingly, the appropriate vehicle speed V_q is determined on the basis of the curvature of the curve, which greatly affects the sense of security the driver feels when the vehicle advances to the curve. In other words, the allowable lateral acceleration $G_y (Gyp)$ (i.e. the appropriate vehicle speed V_q) is determined in view of the sense of security of the driver, and the deceleration control is executed on the basis of the calculated allowable lateral acceleration $G_y (Gyp)$.

[0091] Accordingly, the electronic control unit ECU calculates the allowable lateral acceleration $G_y (Gyp)$ at step 230 in the manner where the greater the curvature of the curve is, the greater value the allowable lateral acceleration $G_y (Gyp)$ is calculated to be ($A1, A1'$), and/or the smaller the curvature of the curve is, the smaller value the allowable lateral acceleration $G_y (Gyp)$ is calculated to be ($A1', A1$).

[0092] In a case where the vehicle moves while receiving a predetermined lateral acceleration, the smaller the curvature radius of the curve is, the lower the vehicle speed becomes. The lower the vehicle speed is, the more the driver may feel secure (i.e. the greater the sense of security of the driver becomes). The motion control device for the vehicle is configured based on the above-described findings. Accordingly, the allowable lateral acceleration $G_y (Gyp)$ (i.e. the appropriate vehicle speed V_q) may be determined in the appropriate view of the sense of security of the driver that fluctuates depending on the curvature of the curve.

[0093] According to the embodiment, the electronic control unit ECU determines the allowable lateral acceleration (G_y, Gyp) at step 230 in the manner where the greater the increasing gradient, which is obtained by the gradient obtaining means, is, the greater value the allowable lateral acceleration (G_y, Gyp) is determined to be ($A2, A2'$), and/or the greater an decreasing gradient, which is obtained by the gradient obtaining means, is, the smaller value the allowable lateral acceleration (G_y, Gyp) is determined to be ($A2, A2'$).

[0094] Accordingly, the allowable lateral acceleration $G_y (Gyp)$ (i.e. the appropriate vehicle speed V_q) may be determined in the appropriate view of the sense of security of the driver that fluctuates depending on the gradient of the curve (the acceleration/deceleration action based on the gravity).

[0095] According to the embodiment, the electronic control unit ECU determines the allowable lateral acceleration $G_y (Gyp)$ at step 230 in the manner where the greater the degree of the poor visibility of the curve, which is indicated by the index ($J_{bc}, \Delta U_{dw}$), is, the smaller value the allowable lateral acceleration (G_y, Gyp) is determined to be ($A3, A3', A4, A4'$).

[0096] Accordingly, the allowable lateral acceleration $G_y (Gyp)$ (i.e. the appropriate vehicle speed V_q) may be determined in the appropriate view of the low sense of the security of the driver caused due to the poor visibility of the curve.

[0097] According to the embodiment, the electronic control unit ECU (the index (value) obtaining means) obtains the length L_{cv} of the curve and/or the curvature of the curve as the index ($J_{bc}, \Delta U_{dw}$) in the case where the elevation H_{ei} of the inner side of the curve relative to the elevation H_{er} of the curve is equal to or greater than the predetermined value H_1, or in the case where the object having the height equal to or higher than the predetermined value H_1 exists at the inner side of the curve, and wherein the electronic control unit ECU calculates the allowable lateral acceleration (G_y, Gyp) at step 230 in the manner where the greater the length of the curve is, the smaller value the allowable lateral acceleration (G_y, Gyp) is calculated to be, and/or the greater the curvature of the curve is, the smaller value the allowable lateral acceleration (G_y, Gyp) is calculated to be in the case where the elevation H_{ei} of the inner side of the curve relative to the elevation H_{er} of the curve is equal to or greater than the predetermined value H_1, or in the case where the object having the height equal to or higher than the predetermined value H_1 exists at the inner side of the curve ($A3, A3'$).

[0098] Accordingly, the allowable lateral acceleration $G_y (Gyp)$ (i.e. the appropriate vehicle speed V_q) may be determined in the appropriate view of the low sense of security of the driver caused due to the blind curve.

[0099] According to the embodiment, the electronic control unit EUC (the index (value) obtaining means) obtains the angular variation $\Delta U_{dw} = U_{up} - U_{dw}$ of the gradient of the sudden gradient reduction portion as the index ($J_{bc}, \Delta U_{dw}$) in the case where the sudden gradient reduction portion exists on the curve, the sudden gradient reduction portion is the portion whose gradient changes for equal to or more than a predetermined angle θ in the decreasing direction on the curve, and wherein the
A motion control device for a vehicle (10) comprising:

1. The principles, preferred embodiment and mode of operation of the present invention have been described in the foregoing specification. How ever, the invention which is intended to be protected is not to be construed as limited to the particular embodiments disclosed. Further, the embodiments described herein are to be regarded as illustrative rather than restrictive. Variations and changes may be made by others, and equivalents employed, without departing from the scope of the present invention as defined in the claims.

Claims

1. A motion control device for a vehicle (10) comprising:
 a vehicle speed obtaining means (20, B2) for obtaining a speed (Vx, Vxa, Vxb, Vxc) of the vehicle;
 a curvature obtaining means (20) for obtaining a curvature of a curve (40) existing ahead of the vehicle (10) on a road (30) on which the vehicle (10) travels;
 a position obtaining means (20) for obtaining a relative position (Pcn, Pcs, Pcr, Pca, Pco) of the vehicle (10) relative to the curve (40); a determination means (20) for determining an appropriate vehicle speed (Vq) for the vehicle (10) passing through the curve (40) on the basis of the curvature of the curve (40); a speed reduction control means (20) for executing a speed reduction control for reducing the speed (Vx, Vxa, Vxb, Vxc) of the vehicle (10) on the basis of the speed (Vx, Vxa, Vxb, Vxc) of the vehicle (10) and the relative position (Pcn, Pcs, Pcr, Pca, Pco) so that the vehicle (10) passes through the curve (40) at the appropriate vehicle speed (Vq);
 a gradient obtaining means (20) for obtaining a gradient (Udw) of the curve (40) on the road (30) in a traveling direction of the vehicle (10); and an index value obtaining means (20) for obtaining an index (Jbc, ∆Udw) that indicates a degree of poor visibility of the curve to the driver, wherein

2. The motion control device for the vehicle (10) according to Claim 1, wherein the determination means (20) is adapted to determine the appropriate vehicle speed (Vq) in a manner where the greater an increasing gradient (Udw), which is obtained by the gradient obtaining means (20), is, the greater the appropriate vehicle speed (Vq) is determined to be, and/or the greater a decreasing gradient (Udw), which is obtained by the gradient obtaining means (20), is, the smaller the appropriate vehicle speed (Vq) is determined to be.

3. The motion control device for the vehicle according to Claim 1 or 2, wherein the determination means (20) is adapted to determine the appropriate vehicle speed (Vq) in a manner where the greater the degree of the poor visibility of the curve (40), which is indicated by the index (Jbc, ∆Udw), is, the smaller the appropriate vehicle speed (Vq) is determined to be.

4. The motion control device for the vehicle (10) according to one of Claims 1 to 3, wherein the index value obtaining means (20) is adapted to obtain a length (Lcv, Lit) of the curve (40) and/or the curvature of the curve (40) as the index (Jbc, ∆Udw) in a manner where the longer the length (Lcv, Lit) of the curve (40) is, the smaller the
Bewegungssteuerungsvorrichtung für ein Fahrzeug

1. Patentansprüche

Kurve (40) vorhanden ist, angepasst ist, wobei der mittlere Gradientenreduktionsbereich (50) auf der vermittelten Gradientenreduktionsbereichs (50) als Winkelvariation eines Gradienten (Udw) eines unvermittelten Gradientenreduktionsbereichs (50) ein Bereich ist, dessen Gradient (Udw) sich um einen vorbestimmten Winkel oder mehr in einer fallenden Richtung der Kurve (40) verändert, und wobei das Bestimmungsmittel (20) die angemessene Fahrzeuggeschwindigkeit (Vq) auf eine Weise bestimmt, bei der, je größer die Winkelveränderung des Gradienten (Udw) des unvermittelten Gradientenreduktionsbereichs (50) ist, umso kleiner wird die angemessene Fahrzeuggeschwindigkeit (Vq) bestimmt, zu sein, für den Fall, dass der unvermittelte Gradientenreduktionsbereich (50) auf der Kurve (40) vorhanden ist.

2. Bewegungssteuerungsvorrichtung für das Fahrzeug (10) nach Anspruch 1, bei der das Bestimmungsmittel (20) angepasst ist, die angemessene Fahrzeuggeschwindigkeit (Vq) auf eine Weise zu bestimmen, bei der, je größer ein ansteigender Gradient (Udw), der durch das Gradienten-Erhaltemittel (20) erhalten wird, ist, umso größer wird die angemessene Fahrzeuggeschwindigkeit (Vq) bestimmt, zu sein, und/oder je größer ein fallender Gradient (Udw), der von dem Gradientenerhaltemittel (20) erhalten wird, ist, umso kleiner wird die angemessene Fahrzeuggeschwindigkeit (Vq) bestimmt, zu sein.

3. Bewegungssteuerungsvorrichtung für das Fahrzeug (10) nach Anspruch 1 oder 2, bei der das Bestimmungsmittel (20) angepasst ist, die angemessene Fahrzeuggeschwindigkeit (Vq) auf eine Weise zu bestimmen, bei der, je größer der Schlechte-Sicht-Grad der Kurve (40), der durch den Index (Jbc, ∆Udw) angegeben wird, ist, umso kleiner wird die angemessene Fahrzeuggeschwindigkeit (Vq) bestimmt, zu sein.

4. Bewegungssteuerungsvorrichtung für das Fahrzeug (10) nach einem der Ansprüche 1 bis 3, bei der das Indexwert-Erhaltemittel (20) zum Erhalten einer Länge (Lcv, Lit) der Kurve (40) und/oder der Krümmung der Kurve (40) als den Index (Ibc) angepasst ist, in einem Fall, in dem eine Höhe (Hei) einer Innenseite der Kurve (40) relativ zu einer Höhe (Her) der Kurve (40) gleich oder größer als ein vorbestimmter Wert ist, oder in einem Fall, in dem ein Objekt, das eine Höhe gleich oder höher als der vorbestimmte Wert an der Innenseite der Kurve (40) vorhanden ist, und bei der das Bestimmungsmittel (20) angepasst ist, die angemessene Fahrzeuggeschwindigkeit (Vq) auf eine Weise zu bestimmen, bei der, je größer die Krümmung der Kurve (40) ist, umso kleiner wird die angemessene Fahrzeuggeschwindigkeit (Vq) bestimmt, zu sein, und/oder je größer die Länge (Lcv, Lit) der Kurve (40) ist, umso kleiner wird die angemessene Fahrzeuggeschwindigkeit (Vq) bestimmt, zu sein, für den Fall, dass die Höhe (Hei) der Innenseite
1. Dispositif de contrôle de mouvement pour un véhicule (10) comprenant :

- un moyen d’obtention de vitesse de véhicule (20, B2) permettant d’obtenir une vitesse (Vx, Vxa, Vxb, Vxc) du véhicule ;
- un moyen d’obtention de courbure (20) permettant d’obtenir une courbure d’une courbe (40) existant à l’avant du véhicule (10) sur une route (30) sur laquelle le véhicule (10) se déplace ;
- un moyen d’obtention de position (20) permettant d’obtenir une position relative (Pcn, Pcs, Pcr, Pca, Pco) du véhicule (10) par rapport à la courbe (40) ;
- un moyen de détermination (20) permettant de déterminer une vitesse de véhicule appropriée (Vq) pour le véhicule (10) passant par la courbe (40) en se basant sur la courbure de la courbe (40) ;
- un moyen de contrôle de réduction de vitesse (20) permettant d’exécuter un contrôle de réduction de vitesse permettant de réduire la vitesse (Vx, Vxa, Vxb, Vxc) du véhicule (10) en se basant sur la vitesse (Vx, Vxa, Vxb, Vxc) du véhicule (10) et la position relative (Pcn, Pcs, Pcr, Pca, Pco) de sorte que le véhicule (10) passe par la courbe (40) à la vitesse de véhicule appropriée (Vq) ;
- un moyen d’obtention de gradient (20) permettant d’obtenir un gradient (Udw) de la courbe (40) sur la route (30) dans une direction de déplacement du véhicule (10) ; et
- un moyen d’obtention de valeur d’indice (20) permettant d’obtenir un indice (Jbc, Udw) qui indique un degré de visibilité de la courbe médiocre pour le conducteur, où le moyen de détermination (20) est adapté pour déterminer la vitesse de véhicule appropriée (Vq) en se basant sur le gradient (Udw) de la route (30) et en se basant sur l’indice (Jbc, Udw) en plus de la courbure de la courbe (40),

caractérisé en ce que

le moyen d’obtention de valeur d’indice (20) est adapté pour obtenir une variation angulaire d’un gradient (Udw) d’une portion de réduction de gradient soudaine (50) comme l’indice (Udw) dans un cas où la portion de réduction de gradient soudaine (50) existe sur la courbe (40), la portion de réduction de gradient soudaine (50) est une portion dont le gradient (Udw) change pour une valeur égale ou supérieure à un angle prédéterminé dans une direction décroissante sur la courbe (40), et où le moyen de détermination (20) détermine la vitesse de véhicule appropriée (Vq) d’une manière où plus la variation angulaire du gradient (Udw) de la portion de réduction de gradient soudaine (50) est grande, plus la vitesse de véhicule appropriée (Vq) est déterminée comme étant petite dans le cas où la portion de réduction de gradient soudaine (50) existe sur la courbe (40).
à la valeur prédéterminée, ou dans le cas où l'objet ayant la hauteur supérieure ou égale à la valeur prédéterminée existe au niveau du côté interne de la courbe (40).
FIG. 2

Curve travel assistance control

Recognize curve existing ahead of vehicle ~ 205

Curve exists? ~ 210

No

Yes

Obtain vehicle speed ~ 215

Obtain shape of curve and shape around curve ~ 220

Obtain relative position between curve and vehicle ~ 225

Calculate allowable lateral acceleration ~ 230

Determine appropriate vehicle speed ~ 235

Determine reference point ~ 240

Calculate target vehicle speed characteristic ~ 245

Speed reduction control? ~ 250

No

Yes

Speed reduction control ~ 255

Acceleration limit control? ~ 260

No

Yes

Acceleration limit control ~ 265

Return
FIG. 7

[Diagram showing vehicle speed vs. distance LV between reference point Pcr and vehicle. Key points include Ab, Ac, Vt, Vxa, Vxb, Vxc, and shaded area indicating speed reduction control range.]
FIG. 8

Target vehicle speed characteristic obtaining means

Vehicle speed obtaining means

\(V_{xt} \) → \(\Delta V_x \)

Speed reduction control variable calculating means

\(G_{st} \)

Engage output reduction means

Transmission control means

Wheel brake control means
FIG. 9

Limitation of throttle opening degree (upper limit value)

Shift stage T_s

Brake torque (Brake pressure)

P_{cr}, P_{ca}, P_{co}, P_{ce}

Position (Distance)

P_{cs}
FIG. 11

Gya
(Reference value)

Calculate curvature
radius adjustment
value Gyha

Gyha

Rm

Rm1

A1'

Calculate increasing/
decreasing slope gradient
adjustment value Gytk

Gytk

0

Udw

Decreasing slope
Increasing slope

A2'

Calculate blind curve
adjustment value Gybc

Gybc

Jbo

A3'

Calculate sudden
gradient reduction
adjustment value Gymt

Gymt

0

ΔUdw

θ dr

A4'

Gyp
(After adjustment)
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- JP 2004230946 A [0002] [0005]
- US 20050004743 A1 [0006]
- JP 3378490 B [0033]