Fuel injector assembly

A fuel injector assembly (10) comprising an injector body (12) having a leading end (16), a fuel inlet passage (30), a backleak passage (22) and a trailing end (20) which terminates in an end surface (26); a cap (14) that fits over the trailing end (20) of the injector body (12) to define therebetween a chamber (60) for receiving fuel from said backleak passage (22); and a seal (42) for sealing said chamber (60) to prevent the flow of fuel therefrom, wherein said seal (42) is disposed between said end surface (26) of the trailing end (20) and an inlet end (32) of said fuel inlet passage (30).
Description

Field of the Invention

[0001] The invention relates to fuel injector assemblies and to engines comprising such fuel injector assemblies.

Background to the Invention

[0002] Conventional fuel injectors have an axially extending threaded connection at their trailing end for attachment to a high pressure fuel delivery pipe. The minimum bend radius permitted in this pipe can cause installation problems and limits the height of the assembly.

[0003] It is known to provide fuel injectors which have an injector body provided with an entry projecting from the side of the injector body for connection to the high pressure fuel delivery pipe. This arrangement avoids, or at least reduces, the height problem. However, such side entry fuel injectors give rise to problems where an engine top cover is to be installed over the installed injector. Specifically, such covers include an aperture to allow the cover to be installed over the fuel injector and the aperture is fitted with an aperture seal. If such a cover is fitted over an installed side entry injector, the aperture seal may be damaged or destroyed. If the side entry is not perpendicular to the injector body, it may be possible to avoid this problem by removing the seal prior to installing the engine cover and subsequently fitting and adjusting the seal. However, this increases the installation work required and if the angle of the side inlet is made steeper relative to the injector body to make it easier to install the engine cover, the height reduction benefit obtained by having a side entry is reduced.

Summary of the Invention

[0004] According to a first aspect of the present invention, there is provided a fuel injector assembly comprising:

- an injector body having a trailing end, a fuel inlet passage, a backleak passage and a trailing end which terminates in an end surface;
- a cap that fits over the trailing end of the injector body to define therebetween a chamber for receiving fuel from said backleak passage; and
- a seal for sealing said chamber to prevent the flow of fuel therefrom, wherein said seal is disposed between said end surface of the trailing end and an inlet end of said fuel inlet passage.

[0005] Thus, the present invention provides a fuel injector assembly having a backleak chamber which is of simple construction.

[0006] Preferably, said seal comprises an O-ring. Conveniently, said cap comprises a substantially cylindrical body having a groove formed on an inner surface thereof for seating said O-ring. Alternatively, or in addition, said injector body may comprise a groove for seating said O-ring.

[0007] Preferably, the inlet end of the fuel inlet passage is defined in a sidewall of the injector body, and said cap comprises an opening through which, in use, fuel is supplied to said fuel inlet passage.

[0008] Preferably, the fuel injector assembly comprises an inlet connector having a fuel delivery passage and being securable to said cap such that it extends through said opening and fuel can pass from said fuel delivery passage into said fuel inlet passage.

[0009] Preferably, said cap comprises an outlet that is connectable to a backleak return pipe and in flow communication with said chamber.

[0010] In another aspect, an internal combustion engine fitted with a fuel injector assembly according to the first aspect of the present invention is provided. More preferably, said engine is fitted with a cover and said trailing end of the injector body and said cap are disposed externally of said cover.

[0011] According to a second aspect of the present invention, there is provided a fuel injector assembly substantially as herein described with reference to the drawings.

Brief Description of the Drawings

[0012] Embodiments of the present invention will now be described, by way of example only, with reference to the accompanying drawings, in which:

- Figure 1 is a partial cross-sectional view of a fuel injector installed in an engine top cover looking in the direction of the arrows I in Figure 2;
- Figure 2 is a plan view of the fuel injector looking from above as viewed in Figure 1;
- Figure 3 is a partial cross-sectional view of a fuel injector installed in an engine top cover looking in the direction of the arrows I in Figure 4; and
- Figure 4 is a plan view of the fuel injector looking from above as viewed in Figure 3.

Detailed Description of the Embodiments

[0013] Referring to Figures 1 and 2, a fuel injector 10 comprises an injector body 12 and a fitting in the form of a cap 14 that fits onto the injector body. The injector body 12 is essentially a plain cylinder and has a leading end 16 fitted with a nozzle indicated schematically at 18 and a trailing end 20 on which the cap 14 is fitted. The leading end 16 of the injector body and nozzle components may be of any suitable known type and may include features to assist with fitting and sealing in a port of an engine.

[0014] The injector body 12 is provided with a backleak
passage 22 that extends from an inlet end (not shown) to an outlet end 24 that is located in a transverse end surface 26 of the injector body. The injector body 12 is additionally provided with a fuel inlet passage 30 that extends in the lengthways direction of the injector body parallel to the axis 34 of the injector body. The fuel inlet passage 30 serves to deliver high pressure fuel to the leading end 16 of the injector body for supply to an engine via the nozzle 18. The fuel inlet passage 30 has an inlet end 32 defined by a cross drilling that extends perpendicular to the axis 34 of the injector body 12 through the side of the injector body. The inlet end 32 of the fuel inlet passage includes a conical sealing surface for mating with an inlet connector 36.

[0015] The cap 14 is a metal part comprising a generally cylindrical body 38 that is closed at one end by a transverse wall 40 and is sized to be a clearance fit over the trailing end 20 of the injector body 12. The inside of the cylindrical body 38 is provided with a groove in which an O-ring 42 is seated for sealing against the injector body 12. However, it will be appreciated that the injector body 12 may instead be provided with the groove in which the O-ring 42 is seated for sealing against the inside of the cylindrical body 38. Alternatively, corresponding grooves could be formed in both the cylindrical body 38 and the injector body 12.

[0016] The cap 14 is provided with a generally tubular extension 44 that is formed integrally with the cylindrical body 38 and projects from the body substantially perpendicular to the axis of the body. The tubular extension 44 defines an opening in the cap 14 through which fuel is supplied to the inlet end 32 of the fuel inlet passage 30.

[0017] The inlet connector 36 is a generally cylindrical body provided with an axially extending fuel delivery passage 46 that is made up of a series of drillings. Those drillings may include one that is sized to receive an edge filter 48. The drilling at the upstream end of the fuel delivery passage 46 provides a conical surface 50 for sealingly engaging a suitably shaped end of a high pressure fuel delivery pipe (not shown). At the same end, the inlet connector 36 is provided with external threading 49 by means of which a union nut can be used to couple the high pressure fuel delivery pipe to the inlet connector.

[0018] The leading end of the inlet connector 36 has a conical surface 52 that leads into an externally threaded portion 54 that engages an internal threading 55 provided at the inner end of the tubular extension 44 of the cap 14. A hexagonal formation 56 is provided on the inlet connector 36 so that it can be firmly secured to the cap 14 by screwing the threading 54 into the internal threading 55 of the tubular extension 44. The conical surface 52 is shaped to complement the conical sealing surface of the inlet end 32 of the fuel inlet passage 30 so that when the inlet connector 36 is screwed into position in the tubular extension, the two surfaces mate to form a seal between the inlet connector and the injector body 12. The engagement between the two conical surfaces additionally fixes the cap 14 to the injector body 12 so that relative movement between the two parts is substantially prevented.

[0019] When the cap 14 is secured in place on the leading end 20 of the injector body 12, the transverse wall 40 is disposed opposite and apart from the transverse end surface 26 of the injector body to define a backleak vent chamber 60 therebetween in which fuel from the backleak passage 22 is received. The cap 14 is provided with an outlet connection 62 for connection to a backleak return pipe not shown). In the embodiment, the outlet connection 62 is a push-fit connector on which a backleak return pipe can sealingly engage by push-fitting, although alternative connections (such as, for example, a screwed fitting) can be used. The outlet connection 62 is in fluid communication with the back leak vent chamber 60 so that backleak fuel from the chamber can flow into the backleak return pipe for return to a low pressure fuel reservoir.

[0020] In use, the injector assembly 10 is fitted to an engine (not shown) by first fitting the leading end 16 of the injector body 12 (without the cap 14 and inlet connector 36) into an inlet port in the engine cylinder head. An engine top cover 70 is then fitted over the injector body 12 onto a cover seat provided on the engine such that the trailing end 20 of the injector body projects through an aperture provided in the engine top cover (in practice a multi-cylinder engine will have a plurality of injector bodies fitted in respective inlet ports and the engine top cover will have respective apertures for the injectors). The engine top cover 70 is provided with a sealing element 72 around the aperture, which sealingly engages the injector body 12.

[0021] Once the engine top cover 70 is secured in place, the cap 14 is fitted onto the trailing end 20 of the injector body 12 bringing the O-ring 42 provided on the cylindrical portion 38 of the cap 14 into engagement with injector body 12. It is preferred that prior to fitting the cap 14 the tubular extension 44 is at least roughly aligned with the inlet end 32 of the fuel inlet passage 30. The inlet connector 36 is then inserted into the tubular extension 44 of the cap 14 and rotated to bring the threading 54 into engagement with the internal threading 55 of the tubular extension. When the conical surface 52 of the inlet connector 36 starts to engage the conical sealing surface of the inlet end 32 of the fuel inlet passage 30, any misalignment will be corrected automatically and the inlet connector can be screwed firmly into position by means of a spanner applied to the hexagonal formation 56. If the tubular extension 44 is not well aligned with the inlet end 32 of the fuel inlet passage 30 when the leading end of the inlet connector 36 is screwed in, the cap 14 can be rotated relative to the injector body 12 until the conical surface 52 is felt to engage in the conical sealing surface of the inlet end 32. Once the inlet connector 36 is firmly screwed into position, relative movement between the cap 14 and injector body 12 is substantially prevented and the backleak vent chamber 60 is sealed against leakage between the cap 14 and injector body
It will further be appreciated that the above-described embodiment provides a side entry fuel injector 10 that can easily be installed to an engine fitted with an engine top cover 70. Since the injector body 12 can be installed separately from the cap 14 and inlet connector 36 and is simply a generally cylindrical body, it is relatively easy to fit the engine top cover over the installed injector body without the risk of damaging or destroying the engine top cover aperture seal 72. The cap 14 and inlet connector 36 can easily be fitted to the injector body 12 once the engine top cover is installed. Thus the advantages of height reduction available when side entry fuel injectors are used can be readily obtained even when an engine top cover has to be installed over the fuel injectors.

It will further be appreciated that the above-described embodiment provides an injector assembly having a backleak chamber which can be sealed by means of a single O-ring. Accordingly, the manufacturing cost, assembly time, and associated assembly cost, are minimised.

As mentioned previously, the O-ring 42 is preferably retained in a groove formed on the inside surface of the cylindrical body 38 of the cap 14. Accordingly, during assembly, the O-ring 42 is placed in the groove and the cap 14 is pushed onto the trailing end 20 of the injector body 12. In the case that the groove is formed on the outside surface of the injector body 12, the O-ring 42 is first pressed over the trailing end 20 of the injector body 12 in order to locate it in the groove and, subsequently, the cap 14 is push-fitted in place on the trailing end 20 of the injector body 12. With both of the aforementioned configurations, the fact that the O-ring 42 is disposed between the end surface 26 of the injector body 12 and the inlet end 32 of the fuel inlet passage 30 means that there is no risk of the O-ring being damaged by the edges of the cross drilling at the inlet end 32 of the fuel inlet passage 30 during assembly. Such damage could occur if the O-ring 42 were disposed at a point further along the injector body 12, closer to the nozzle 18, and on the opposite side of the inlet end 32 of the fuel inlet passage 30.

A further advantage of the above-described embodiment is that, by virtue of the fact that the O-ring 42 is disposed between the end surface 26 of the injector body 12 and the inlet end 32 of the fuel inlet passage 30, the high pressure fuel connection between the inlet connector 36 and the injector body 12 is disposed outside of the backleak chamber 60. Accordingly, in the event that the inlet connector 36 is not properly mated with the conical surface at the inlet end 32 of the fuel inlet passage 30, either during assembly or subsequent servicing, any fuel leakage will be visible on the outside of the injector body 12. For example, fuel may leak out from the open end of the cylindrical body 38 of the cap 14. This is convenient since it provides a clear indication that there is a fault with the injector assembly 10. By contrast, if the inlet connector 36 were disposed within the backleak chamber 60, any fuel leakage would flow into the backleak chamber 60 and through the backleak return pipe to the low pressure fuel reservoir. This would mean that any fault may go unrecognised. Thus, in the event of a fault, the injector assembly of the described embodiment increases the chances of the fault being diagnosed.

It will be appreciated that the backleak vent chamber 60 does not have to be provided between the transverse end surface 26 of the injector body 12 and the transverse wall 40 of the cap 14. Instead, a fitting could be provided with a suitably positioned recess such that the backleak vent chamber is defined between the fitting and a sidewall of the injector body.

It will be appreciated that the position of the outlet connection of the cap 14 or fitting can be selected to accord with a particular engine to which it is to be installed so as to provide optimum routing of the backleak return. One alternative position for the outlet connection is indicated by dashed lines in Figure 2. Alternatively, the cap 14 may be provided with two outlet connections 62 in order to facilitate the connection of the backleak chambers of each of a plurality of injectors of the engine in series.

Figure 3 shows an alternative configuration of the engine top cover aperture seal 72. Figure 4 shows alternative positions of the outlet connections 62.

It is envisaged that the cap 14 or fitting will be made of a suitable metal, for example steel. However, it might also be made of a non-metallic material that have the required properties such as ceramics or suitable engineering plastics.

Claims

1. A fuel injector assembly (10) comprising:

- an injector body (12) having a leading end (16), a fuel inlet passage (30), a backleak passage (22) and a trailing end (20) which terminates in an end surface (26);
- a cap (14) that fits over the trailing end (20) of the injector body (12) to define therebetween a chamber (60) for receiving fuel from said backleak passage (22); and
- a seal (42) for sealing said chamber (60) to prevent the flow of fuel therefrom, wherein said seal (42) is disposed between said end surface (26) of the trailing end (20) and an inlet end (32) of said fuel inlet passage (30).
2. A fuel injector assembly according to claim 1, wherein said seal (42) comprises an O-ring.

3. A fuel injector assembly according to claim 2, wherein said cap (14) comprises a substantially cylindrical body (38) having a groove formed on an inner surface thereof for seating said O-ring.

4. A fuel injector assembly according to claim 2 or 3, wherein said injector body (12) comprises a groove for seating said O-ring.

5. A fuel injector assembly according to any preceding claim, wherein the inlet end (32) of the fuel inlet passage (30) is defined in a sidewall of the injector body (12), and said cap (14) comprises an opening through which, in use, fuel is supplied to said fuel inlet passage (30).

6. A fuel injector assembly according to claim 5, comprising an inlet connector (36) having a fuel delivery passage (46) and being securable to said cap (14) such that it extends through said opening and fuel can pass from said fuel delivery passage (46) into said fuel inlet passage (30).

7. A fuel injector assembly according to any preceding claim, wherein said cap (14) comprises an outlet (62) that is connectable to a backleak return pipe and in flow communication with said chamber (60).

8. An internal combustion engine fitted with a fuel injector assembly according to any preceding claim.

9. An internal combustion engine as claimed in claim 8, wherein said engine is fitted with a cover (70) and said trailing end (20) of the injector body (12) and said cap (14) are disposed externally of said cover (70).

10. A fuel injector assembly substantially as herein described with reference to the drawings.

Amended claims in accordance with Rule 137(2) EPC.

1. A fuel injector assembly (10) comprising:
 - an injector body (12) having a leading end (16), a fuel inlet passage (30), a backleak passage (22) and a trailing end (20) which terminates in an end surface (26);
 - a cap (14) that fits over the trailing end (20) of the injector body (12) to define therebetween a chamber (60) for receiving fuel from said backleak passage (22); and
 - a seal (42) for sealing said chamber (60) to prevent the flow of fuel therefrom, wherein said seal (42) is disposed between said end surface (26) of the trailing end (20) and an inlet end (32) of said fuel inlet passage (30).

2. A fuel injector assembly according to claim 1, wherein said seal (42) comprises an O-ring.

3. A fuel injector assembly according to claim 2, wherein said cap (14) comprises a substantially cylindrical body (38) having a groove formed on an inner surface thereof for seating said O-ring.

4. A fuel injector assembly according to claim 2 or 3, wherein said injector body (12) comprises a groove for seating said O-ring.

5. A fuel injector assembly according to any preceding claim, wherein the inlet end (32) of the fuel inlet passage (30) is defined in a sidewall of the injector body (12), and said cap (14) comprises an opening through which, in use, fuel is supplied to said fuel inlet passage (30).

6. A fuel injector assembly according to claim 5, comprising an inlet connector (36) having a fuel delivery passage (46) and being securable to said cap (14) such that it extends through said opening and fuel can pass from said fuel delivery passage (46) into said fuel inlet passage (30).

7. A fuel injector assembly according to claim 5, comprising an inlet connector (36) having a fuel delivery passage (46) and being securable to said cap (14) such that it extends through said opening and fuel can pass from said fuel delivery passage (46) into said fuel inlet passage (30).

8. An internal combustion engine fitted with a fuel injector assembly according to any preceding claim.

9. An internal combustion engine as claimed in claim 8, wherein said engine is fitted with a cover (70) and said trailing end (20) of the injector body (12) and said cap (14) are disposed externally of said cover (70).
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 6 959 878 B1 (O'BRIEN MICHAEL J [US] ET AL) 1 November 2005 (2005-11-01)</td>
<td>1,2,4,7,8</td>
<td>F02M55/00</td>
</tr>
<tr>
<td></td>
<td>* column 1, lines 9-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* column 3, lines 25-38; figures 1,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* column 4, lines 51-67</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* abstract</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>GB 2 332 927 A (PERKINS ENGINES CO LTD [GB]) 7 July 1999 (1999-07-07)</td>
<td>5,6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* paragraphs [0018] - [0022]; figures 1,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* abstract</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>WO 03/071123 A (SIEMENS AG [DE]; DICK JUERGEN [DE]; SCHUERZ WILLIBALD [DE]; SIMMET MAR) 28 August 2003 (2003-08-28)</td>
<td>5,6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* pages 12-13; figures 1,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* abstract</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>DE 100 36 137 A1 (SIEMENS AG [DE]) 7 February 2002 (2002-02-07)</td>
<td>5,6</td>
<td>F02M</td>
</tr>
<tr>
<td></td>
<td>* abstract; figures 1,3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims.

Examiner

The Hague

Date of completion of the search: 24 April 2008

Hermens, Sjoerd

CATEGORY OF CITED DOCUMENTS

- **X**: particularly relevant if taken alone
- **Y**: particularly relevant if combined with another document of the same category
- **A**: technological background
- **O**: non-written disclosure
- **P**: intermediate document

- **T**: theory or principle underlying the invention
- **E**: earlier patent document, but published on, or after the filing date
- **D**: document cited in the application
- **L**: document cited for other reasons

Document

- **&**: member of the same patent family, corresponding document
ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO. EP 07 12 4184

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on 24-04-2008. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 6959878 B1 01-11-2005 NONE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>US 2004231637 A1 25-11-2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE 10036137 A1 07-02-2002 NONE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82.