A method for extracting direct mode motion vectors of a current macroblock in a B-picture in moving picture processing is disclosed, comprising: determining a co-located block for the current macroblock in a list 1 reference picture; selecting a motion vector from a list 0 motion vector and a list 1 motion vector of the co-located block in the list 1 reference picture; and deriving the motion vectors of the current macroblock in the B-picture from the selected motion vector; wherein the list 1 motion vector of the co-located block in the list 1 reference picture for direct mode is selected as the motion vector for derivation of said direct mode motion vectors only if the co-located block in the list 1 reference picture has only the list 1 motion vector and else the list 0 motion vector of the co-located block in the list 1 reference picture for direct mode is selected as the motion vector for derivation of said direct mode motion vectors; and wherein the step of deriving the motion vectors of the current macroblock in the B-picture from the selected motion vector comprises applying a bit operation to the motion vector of the current macroblock.
Description

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] The present invention relates to a moving picture coding method, and more particularly to a technique for deriving direct mode motion vectors of a B (Bi-predictive) picture defined in a next-generation moving picture compression technique.

Description of the Related Art

[0002] A conventional B picture has five types of predictive modes such as forward mode, backward mode, bi-directional mode, direct mode and intra mode. In the forward mode, backward mode and bi-directional mode, the directions of motion vectors can be recognized from mode names because direction information are involved in the mode names. In the direct mode, two motion vectors of both directions are derived from a motion of a co-located block in a neighboring picture on the basis of a temporal redundancy characteristic that motion continuity is constantly maintained between two adjacent pictures. This direct mode has an advantage in terms of coding efficiency because motion information is not sent to a decoder.

[0003] On the other hand, a B picture proposed in a next-generation moving picture compression technique such as H.264 or MPEG-4 part 10 is characterized in that the B picture is allowed to be used as a reference picture because it can be stored in a reference picture buffer. This B picture is further characterized in that it has five types of predictive modes such as list 0 mode, list 1 mode, bi-predictive mode, direct mode and intra mode.

[0004] The list 0 mode is similar to the conventional forward mode, and motion information such as a reference picture index and motion vector difference are indicated respectively by ref_idx_10 and mvd_10. The list 1 mode is also similar to the conventional backward mode, and motion information such as a reference picture index and motion vector difference are indicated respectively by ref_idx_11 and mvd_11. The bi-predictive mode has two reference pictures, both of which may be located temporally before or after the B picture, or which may be located temporally before and after the B picture, respectively. In this case, two reference picture indexes and two motion vector differences are indicated respectively by ref_idx_10, ref_idx_11, mvd_10, and mvd_11, and each reference picture has picture order count (POC) data which is temporal location information.

[0005] In the direct mode, motion vectors are obtained by selecting any one of a spatial technique and temporal technique. The spatial direct mode technique is to derive list 0 and list 1 reference picture indexes and motion vectors from neighboring blocks of a macroblock to be coded. The temporal direct mode technique is to derive a list 0 motion vector MVF and list 1 motion vector MVB by scaling a list 0 motion vector of a co-located block in a list 1 reference picture for direct mode, which is similar to the conventional B picture. Here, the list 1 reference picture for direct mode is a picture where an index for list 1 prediction is 0, and a list 0 reference picture for direct mode is a list 0 reference picture pointed by a motion vector of a co-located block in the list 1 reference picture for direct mode.

[0006] Figs. 1a to 1c show default indexes for list 0 prediction, default indexes for list 1 prediction and list 1 reference pictures for direct mode of respective B pictures in an IBBBB pattern when the number of available list 0 and list 1 reference pictures (or the size of a short-term buffer) is 6, respectively. Here, the default indexes for list 0 prediction and the default indexes for list 1 prediction are dependant on an output order, or POC value, of a previously decoded reference picture regardless of a decoding order. In Fig. 1, all the B pictures use a temporally following P picture as the list 1 reference picture for direct mode.

[0007] Figs. 2a to 2c show default indexes for list 0 prediction, default indexes for list 1 prediction and list 1 reference pictures for direct mode of respective B pictures in an IBBBB pattern using only the B pictures, respectively. In Fig. 2a, when a B picture to be coded is B8, a temporally preceding B5 with a list 1 index 0 is a list 1 reference picture for direct mode. As shown Fig. 2b, a list 1 reference picture for direct mode of B7 to be subsequently decoded is the temporally following B8. Last, as shown in Fig. 2c, a list 1 reference picture for direct mode of B9 to be subsequently decoded is the temporally preceding B7.

[0008] In conclusion, as seen from Figs. 1a to 2c, a list 1 reference picture for direct mode may be a P or B picture temporally following a B picture to be coded, or a B picture temporally preceding it.

[0009] Figs. 3a to 3h show modes that a co-located block in a list 1 reference picture for direct mode can have when the list 1 reference picture temporally follows a B picture. In this case, because the list 1 reference picture can be a P picture or B picture, the co-located block thereof has one or two motion vectors, or the intra mode. The next-generation moving picture compression technique, such as H.264 or MPEG-4 part 10, permits the reordering of reference picture indexes at a slice level, so an index 0 for list 1 prediction can be assigned to a picture just after a B picture. That is, since the list 1 reference picture can exist just after a B picture, a motion vector of the co-located block can be directed forward.
SUMMARY OF THE INVENTION

[0012] Therefore, the present invention has been made in view of the above problems, and it is an object of the present invention to provide a method for calculating direct mode motion vectors of a B (Bi-predictive) picture defined in a next-generation moving picture compression technique, wherein a technique for deriving the direct mode motion vectors of the B picture is proposed to raise the probability that a direct mode will be selected as a predictive mode of a macroblock, so as to improve a B picture coding efficiency.

[0013] In accordance with one aspect of the present invention, the above and other objects can be accomplished by the provision of a method for calculating direct mode motion vectors of a B (Bi-predictive) picture in a moving picture coding system to extract the direct mode motion vectors of the B picture, comprising the step of, if a co-located block in a list 1 reference picture for direct mode has two motion vectors, selecting any one (a list 0 motion vector or list 1 motion vector) of the two motion vectors, and deriving the direct mode motion vectors of the B picture from the selected motion vector.

[0014] Preferably, the above step may include the step of selecting one of the list 0 and list 1 motion vectors, which points to a picture temporally closer to the list 1 reference picture for direct mode, as a motion vector for derivation of the direct mode motion vectors, selecting the list 0 motion vector as the motion vector for derivation of the direct mode motion vectors if the two motion vectors point to the same reference picture, determining a reference picture pointed by the selected motion vector as a list 0 reference picture for direct mode, and deriving the direct mode motion vectors of the B picture. Alternatively, the above step may include the step of unconditionally selecting the list 0 motion vector as a motion vector for derivation of the direct mode motion vectors regardless of a temporal distance, determining a reference picture pointed by the list 0 motion vector as a list 0 reference picture for direct mode, and deriving the direct mode motion vectors of the B picture.

[0015] In accordance with another aspect of the present invention, there is provided a method for calculating direct mode motion vectors of a B (Bi-predictive) picture in a moving picture coding system to extract the direct mode motion vectors of the B picture, comprising the step of selecting any one of motion vectors of a co-located block in a list 1 reference picture for direct mode as a motion vector for derivation of the direct mode motion vectors regardless of modes (a list 0 mode and/or a list 1 mode) of the motion vectors of the co-located block, determining a reference picture pointed by the selected motion vector as a list 0 reference picture for direct mode, and calculating the direct mode motion vectors of the B picture. A conventional method has been proposed to derive direct mode motion vectors from a list 0 motion vector of a co-located block. If this conventional method is applied to a case where a co-located block in a list 1 reference picture has only one list 1 motion vector, all the direct mode motion vectors become 0 because the list 0 motion vector is 0. However, the present method can overcome this problem.

[0016] In accordance with a further aspect of the present invention, there is provided a method for calculating direct mode motion vectors of a B (Bi-predictive) picture in a moving picture coding system to extract the direct mode motion vectors of the B picture, comprising the step of, if a co-located block in a list 1 reference picture for direct mode has only one list 1 motion vector, considering the co-located block to have a zero motion, determining a decoded picture located temporally just before the B picture as a list 0 reference picture for direct mode, and deriving the direct mode motion vectors of the B picture.

[0017] In accordance with a further aspect of the present invention, there is provided a method for calculating direct mode motion vectors of a B (Bi-predictive) picture in a moving picture coding system to extract the direct mode motion vectors of the B picture, comprising the step of, if a co-located block in a list 1 reference picture for direct mode has only one list 1 motion vector, using the list 1 motion vector of the co-located block as a motion vector for derivation of the direct mode motion vectors, determining a decoded picture located temporally just before the B picture as a list 0 reference picture for direct mode, and deriving the direct mode motion vectors of the B picture.

[0018] In accordance with a further aspect of the present invention, there is provided a method for calculating direct mode motion vectors of a B (Bi-predictive) picture in a moving picture coding system to extract the direct mode motion vectors of the B picture, comprising the step of, if a co-located block in a list 1 reference picture for direct mode has only one list 1 motion vector, using the list 1 motion vector of the co-located block as a motion vector for derivation of the direct mode motion vectors, determining a reference picture pointed by the list 1 motion vector of the co-located block as a list 0 reference picture for direct mode, and deriving the direct mode motion vectors of the B picture.
In accordance with a further aspect of the present invention, there is provided a method for calculating direct mode motion vectors of a B (Bi-predictive) picture in a moving picture coding system to extract the direct mode motion vectors of the B picture, comprising the step of setting a latest decoded picture as a list 1 reference picture for direct mode, scaling a motion vector of a co-located block in the list 1 reference picture for direct mode to derive a list 0 motion vector \(\text{MV}_F \) and a list 1 motion vector \(\text{MV}_B \), and calculating the direct mode motion vectors of the B picture. In a conventional method, a picture having an index 0 for list 1 prediction is defined to be a list 1 reference picture for direct mode. When a different picture is decoded between the B picture and the picture with the index 0, motion information and reference picture information of the picture with the index 0 must be maintained, resulting in additional memory use. However, the present method can save the additional memory use.

In accordance with a further aspect of the present invention, there is provided a method for calculating direct mode motion vectors of a B (Bi-predictive) picture in a moving picture coding system to extract the direct mode motion vectors of the B picture, comprising the step of, if a list 1 reference picture for direct mode temporally precedes the B picture, scaling a motion vector of a co-located block in the list 1 reference picture for direct mode to derive a list 0 motion vector \(\text{MV}_F \) and a list 1 motion vector \(\text{MV}_B \), and calculating the direct mode motion vectors of the B picture.

Preferably, the above step may include the step of, if both a macroblock of the B picture and a co-located macroblock of the list 1 reference picture are in a frame mode and a list 0 reference picture for direct mode temporally precedes the list 1 reference picture, calculating the direct mode motion vectors \(\text{MV}_F \) and \(\text{MV}_B \) of the B picture as follows:

\[
\text{MV}_F = \frac{TD_B \times \text{MV}}{TD_D}
\]

\[
\text{MV}_B = (TD_B - TD_D) \times \text{MV} / TD_D
\]

or

\[
Z = \frac{TD_B \times 256}{TD_D}
\]

\[
\text{MV}_F = (Z \times \text{MV} + 128) >> 8
\]

\[
W = Z - 256
\]

\[
\text{MV}_B = (W \times \text{MV} + 128) >> 8
\]

where, \(TD_B \) represents a temporal distance between a current B frame and a list 0 reference frame, \(TD_O \) represents a temporal distance between a list 1 reference frame and the list 0 reference frame, and \(\text{MV} \) represents a motion vector of the co-located block in the list 1 reference picture for direct mode.

Further, the above step may include the step of, if both a macroblock of the B picture and a co-located macroblock of the list 1 reference picture are in a frame mode and a list 0 reference picture for direct mode temporally follows the list 1 reference picture, calculating the direct mode motion vectors \(\text{MV}_F \) and \(\text{MV}_B \) of the B picture as follows:

\[
\text{MV}_F = -\frac{TD_B \times \text{MV}}{TD_D}
\]

\[
\text{MV}_B = -(TD_B + TD_D) \times \text{MV} / TD_D
\]

or

\[
Z = -\frac{TD_B \times 256}{TD_D}
\]

\[
\text{MV}_F = (Z \times \text{MV} + 128) >> 8
\]
where, \(TD_B \) represents a temporal distance between a current B frame and a list 0 reference frame, \(TD_D \) represents a temporal distance between a list 1 reference frame and the list 0 reference frame, and \(MV \) represents a motion vector of the co-located block in the list 1 reference picture for direct mode.

[0023] Further, the above step may include the step of, if both a macroblock of the B picture and a co-located macroblock of the list 1 reference picture are in a field mode and a list 0 reference picture for direct mode temporally precedes the list 1 reference picture, calculating the direct mode motion vectors \(MV_{F,i} \) and \(MV_{B,i} \) for each field \(i \) of a B frame as follows:

\[
MV_{F,i} = TD_{B,i} \times MV_i / TD_{D,i}
\]

or

\[
MV_{B,i} = (TD_{B,i} - TD_{D,i}) \times MV_i / TD_{D,i}
\]

and

\[
Z = TD_{B,i} \times 256 / TD_{D,i}
\]

\[
W = Z - 256
\]

\[
MV_{F,i} = (Z \times MV_i + 128) >> 8
\]

\[
MV_{B,i} = (W \times MV_i + 128) >> 8
\]

where, \(TD_{B,i} \) represents a temporal distance between a current B field and a list 0 reference field, \(TD_{D,i} \) represents a temporal distance between a list 1 reference field and the list 0 reference field, and \(MV_i \) represents a motion vector of a co-located block in a list 1 reference field for direct mode.

[0024] Further, the above step may include the step of, if both a macroblock of the B picture and a co-located macroblock of the list 1 reference picture are in a field mode and a list 0 reference picture for direct mode temporally follows the list 1 reference picture, calculating the direct mode motion vectors \(MV_{F,i} \) and \(MV_{B,i} \) for each field \(i \) of a B frame as follows:

\[
MV_{F,i} = - TD_{B,i} \times MV_i / TD_{D,i}
\]

or

\[
MV_{B,i} = - (TD_{B,i} + TD_{D,i}) \times MV_i / TD_{D,i}
\]

and

\[
Z = - TD_{B,i} \times 256 / TD_{D,i}
\]

\[
W = Z - 256
\]

\[
MV_{F,i} = (Z \times MV_i + 128) >> 8
\]

\[
MV_{B,i} = (W \times MV_i + 128) >> 8
\]

where, \(TD_{B,i} \) represents a temporal distance between a current B field and a list 0 reference field, \(TD_{D,i} \) represents a temporal distance between a list 1 reference field and the list 0 reference field, and \(MV_i \) represents a motion vector of a co-located block in a list 1 reference field for direct mode.

[0025] Further, the above step may include the step of, if a macroblock of the B picture is in a field mode, a co-located...
A macroblock of the list 1 reference picture is in a frame mode and a list 0 reference picture for direct mode temporally precedes the list 1 reference picture, calculating the direct mode motion vectors $\text{MV}_{F,i}$ and $\text{MV}_{B,i}$ for each field i of a B frame as follows:

$$\text{MV}_{F,i} = \frac{\text{TD}_{B,i} \times \text{MV}}{\text{TD}_D}$$

$$\text{MV}_{B,i} = \frac{(\text{TD}_{B,i} - \text{TD}_D) \times \text{MV}}{\text{TD}_D}$$

or

$$Z = \frac{\text{TD}_{B,i} \times 256}{\text{TD}_D} \quad \text{MV}_{F,i} = (Z \times \text{MV} + 128) \gg 8$$

$$W = Z - 256 \quad \text{MV}_{B,i} = (W \times \text{MV} + 128) \gg 8$$

where, $\text{TD}_{B,i}$ represents a temporal distance between a current B field and a list 0 reference field, TD_D represents a temporal distance between a list 1 reference frame and a list 0 reference frame, and MV represents a motion vector of a co-located block in a list 1 reference frame for direct mode.

[0026] Further, the above step may include the step of, if a macroblock of the B picture is in a field mode, a co-located macroblock of the list 1 reference picture is in a frame mode and a list 0 reference picture for direct mode temporally follows the list 1 reference picture, calculating the direct mode motion vectors $\text{MV}_{F,i}$ and $\text{MV}_{B,i}$ for each field i of a B frame as follows:

$$\text{MV}_{F,i} = \frac{-\text{TD}_{B,i} \times \text{MV}}{\text{TD}_D}$$

$$\text{MV}_{B,i} = \frac{-(\text{TD}_{B,i} + \text{TD}_D) \times \text{MV}}{\text{TD}_D}$$

or

$$Z = -\frac{\text{TD}_{B,i} \times 256}{\text{TD}_D} \quad \text{MV}_{F,i} = (Z \times \text{MV} + 128) \gg 8$$

$$W = Z - 256 \quad \text{MV}_{B,i} = (W \times \text{MV} + 128) \gg 8$$

where, $\text{TD}_{B,i}$ represents a temporal distance between a current B field and a list 0 reference field, TD_D represents a temporal distance between a list 1 reference frame and a list 0 reference frame, and MV represents a motion vector of a co-located block in a list 1 reference frame for direct mode.

[0027] Further, the above step may include the step of, if a macroblock of the B picture is in a frame mode, a co-located macroblock of the list 1 reference picture is in a field mode and a list 0 reference picture for direct mode temporally precedes the list 1 reference picture, calculating the direct mode motion vectors MV_F and MV_B of a B frame from the below equation where motion information of a co-located block in a field 1 of a list 1 reference frame is used for calculation of the direct mode motion vectors:
where, TD_B represents a temporal distance between a current B frame and a list 0 reference frame, TD_{D,1} represents a temporal distance between a field 1 of the list 1 reference frame and a list 0 reference field, and MV_1 represents a motion vector of a co-located block in the field 1 of the list 1 reference frame for direct mode.

Further, the above step may include the step of, if a macroblock of the B picture is in a frame mode, a co-located macroblock of the list 1 reference picture is in a field mode and a list 0 reference picture for direct mode temporally follows the list 1 reference picture, calculating the direct mode motion vectors MV_F and MV_B of a B frame from the below equation where motion information of a co-located block in a field 1 of a list 1 reference frame is used for calculation of the direct mode motion vectors:

\[
MV_F = \frac{TD_B \times MV_1}{TD_{D,1}}
\]

\[
MV_B = \frac{(TD_B - TD_{D,1}) \times MV_1}{TD_{D,1}}
\]

or

\[
Z = TD_B \times 256 / TD_{D,1} \quad MV_F = (Z \times MV_1 + 128) >> 8
\]

\[
W = Z - 256 \quad MV_B = (W \times MV_1 + 128) >> 8
\]

where, TD_B represents a temporal distance between a current B frame and a list 0 reference frame, TD_{D,1} represents a temporal distance between a field 1 of the list 1 reference frame and a list 0 reference field, and MV_1 represents a motion vector of a co-located block in the field 1 of the list 1 reference frame for direct mode.

In accordance with another aspect of the present invention, there is provided a method for calculating direct mode motion vectors of a B (Bi-predictive) picture in a moving picture coding system to extract the direct mode motion vectors of the B picture, comprising the step of, if both a list 0 reference picture and list 1 reference picture for direct mode temporally follow the B picture, scaling a motion vector of a co-located block in the list 1 reference picture for direct mode to derive a list 0 motion vector MV_F and a list 1 motion vector MV_B, and calculating the direct mode motion vectors of the B picture.

Preferably, the above step may include the step of, if both a macroblock of the B picture and a co-located macroblock of the list 1 reference picture are in a frame mode and the list 0 reference picture for direct mode temporally
follows the list 1 reference picture, calculating the direct mode motion vectors MV_F and MV_B of the B picture as follows:

\[
\begin{align*}
MV_F &= TD_B \times MV / TD_D \\
MV_B &= (TD_B - TD_D) \times MV / TD_D
\end{align*}
\]

or

\[
\begin{align*}
Z &= TD_B \times 256 / TD_D \\
MV_F &= (Z \times MV + 128) >> 8 \\
W &= Z - 256 \\
MV_B &= (W \times MV + 128) >> 8
\end{align*}
\]

where, TD_B represents a temporal distance between a current B frame and a list 0 reference frame, TD_D represents a temporal distance between a list 1 reference frame and the list 0 reference frame, and MV represents a motion vector of the co-located block in the list 1 reference picture for direct mode.

[0031] Further, the above step may include the step of, if both a macroblock of the B picture and a co-located macroblock of the list 1 reference picture are in a frame mode and the list 0 reference picture for direct mode temporally precedes the list 1 reference picture, calculating the direct mode motion vectors MV_F and MV_B of the B picture as follows:

\[
\begin{align*}
MV_F &= -TD_B \times MV / TD_D \\
MV_B &= -(TD_B + TD_D) \times MV / TD_D
\end{align*}
\]

or

\[
\begin{align*}
Z &= -TD_B \times 256 / TD_D \\
MV_F &= (Z \times MV + 128) >> 8 \\
W &= Z - 256 \\
MV_B &= (W \times MV + 128) >> 8
\end{align*}
\]

where, TD_B represents a temporal distance between a current B frame and a list 0 reference frame, TD_D represents a temporal distance between a list 1 reference frame and the list 0 reference frame, and MV represents a motion vector of the co-located block in the list 1 reference picture for direct mode.

[0032] Further, the above step may include the step of, if both a macroblock of the B picture and a co-located macroblock of the list 1 reference picture are in a field mode and the list 0 reference picture for direct mode temporally follows the list 1 reference picture, calculating the direct mode motion vectors $MV_{F,i}$ and $MV_{B,i}$ for each field i of a B frame as follows:

\[
MV_{F,i} = TD_{B,i} x MV_i / TD_{D,i}
\]
or

\[\text{MV}_{B,j} = (\text{TD}_{B,j} - \text{TD}_{D,j}) \times \text{MV}_i / \text{TD}_{D,j} \]

\[Z = \text{TD}_{B,j} \times 256 / \text{TD}_{D,j} \]
\[\text{MV}_{D,i} = (Z \times \text{MV}_i + 128) >> 8 \]

\[W = Z - 256 \]
\[\text{MV}_{B,i} = (W \times \text{MV}_i + 128) >> 8 \]

where, \(\text{TD}_{B,j} \) represents a temporal distance between a current B field and a list 0 reference field, \(\text{TD}_{D,j} \) represents a temporal distance between a list 1 reference field and the list 0 reference field, and \(\text{MV}_i \) represents a motion vector of a co-located block in a list 1 reference field for direct mode.

Further, the above step may include the step of, if both a macroblock of the B picture and a co-located macroblock of the list 1 reference picture are in a field mode and the list 0 reference picture for direct mode temporally precedes the list 1 reference picture, calculating the direct mode motion vectors \(\text{MV}_{F,i} \) and \(\text{MV}_{B,i} \) for each field \(i \) of a B frame as follows:

\[\text{MV}_{F,i} = -\text{TD}_{B,j} \times \text{MV}_i / \text{TD}_{D,j} \]

\[\text{MV}_{B,i} = -(\text{TD}_{B,j} + \text{TD}_{D,j}) \times \text{MV}_i / \text{TD}_{D,j} \]

or

\[Z = -\text{TD}_{B,j} \times 256 / \text{TD}_{D,j} \]
\[\text{MV}_{F,i} = (Z \times \text{MV}_i + 128) >> 8 \]

\[W = Z - 256 \]
\[\text{MV}_{B,i} = (W \times \text{MV}_i + 128) >> 8 \]

where, \(\text{TD}_{B,j} \) represents a temporal distance between a current B field and a list 0 reference field, \(\text{TD}_{D,j} \) represents a temporal distance between a list 1 reference field and the list 0 reference field, and \(\text{MV}_i \) represents a motion vector of a co-located block in a list 1 reference field for direct mode.

Further, the above step may include the step of, if a macroblock of the B picture is in a field mode, a co-located macroblock of the list 1 reference picture is in a frame mode and the list 0 reference picture for direct mode temporally follows the list 1 reference picture, calculating the direct mode motion vectors \(\text{MV}_{F,i} \) and \(\text{MV}_{B,i} \) for each field \(i \) of a B frame as follows:

\[\text{MV}_{F,i} = \text{TD}_{B,j} \times \text{MV} / \text{TD}_D \]

\[\text{MV}_{B,i} = (\text{TD}_{B,j} - \text{TD}_D) \times \text{MV} / \text{TD}_D \]

or
where, TD_B,i represents a temporal distance between a current B field and a list 0 reference field, TD_D represents a temporal distance between a list 1 reference frame and a list 0 reference frame, and MV represents a motion vector of a co-located block in a list 1 reference frame for direct mode.

Further, the above step may include the step of, if a macroblock of the B picture is in a field mode, a co-located macroblock of the list 1 reference picture is in a frame mode and the list 0 reference picture for direct mode temporally precedes the list 1 reference picture, calculating the direct mode motion vectors MV_{F,i} and MV_{B,i} for each field i of a B frame as follows:

\[
Z = TD_{B,i} \times 256 / TD_D \quad MV_{F,i} = (Z \times MV + 128) \gg 8
\]

or

\[
W = Z - 256 \quad MV_{B,i} = (W \times MV + 128) \gg 8
\]

Further, the above step may include the step of, if a macroblock of the B picture is in a frame mode, a co-located macroblock of the list 1 reference picture is in a field mode and the list 0 reference picture for direct mode temporally follows the list 1 reference picture, calculating the direct mode motion vectors MV_{F} and MV_{B} of a B frame from the below equation where motion information of a co-located block in a field 0 of a list 1 reference frame is used for calculation of the direct mode motion vectors:

\[
MV_{F} = TD_{B} \times MV_0 / TD_{D,0}
\]

or

\[
MV_{B} = (TD_{B} - TD_{D,0}) \times MV_0 / TD_{D,0}
\]

where, TD_{B,i} represents a temporal distance between a current B field and a list 0 reference field, TD_D represents a temporal distance between a list 1 reference frame and a list 0 reference frame, and MV represents a motion vector of a co-located block in a list 1 reference frame for direct mode.

Further, the above step may include the step of, if a macroblock of the B picture is in a field mode, a co-located macroblock of the list 1 reference picture is in a frame mode and the list 0 reference picture for direct mode temporally follows the list 1 reference picture, calculating the direct mode motion vectors MV_{F} and MV_{B} of a B frame from the below equation where motion information of a co-located block in a field 0 of a list 1 reference frame is used for calculation of the direct mode motion vectors:

\[
MV_{F} = TD_{B} \times MV_0 / TD_{D,0}
\]

or

\[
MV_{B} = (TD_{B} - TD_{D,0}) \times MV_0 / TD_{D,0}
\]

where, TD_{B,i} represents a temporal distance between a current B field and a list 0 reference field, TD_D represents a temporal distance between a list 1 reference frame and a list 0 reference frame, and MV represents a motion vector of a co-located block in a list 1 reference frame for direct mode.

Further, the above step may include the step of, if a macroblock of the B picture is in a field mode, a co-located macroblock of the list 1 reference picture is in a frame mode and the list 0 reference picture for direct mode temporally follows the list 1 reference picture, calculating the direct mode motion vectors MV_{F} and MV_{B} of a B frame from the below equation where motion information of a co-located block in a field 0 of a list 1 reference frame is used for calculation of the direct mode motion vectors:

\[
MV_{F} = TD_{B} \times MV_0 / TD_{D,0}
\]

or

\[
MV_{B} = (TD_{B} - TD_{D,0}) \times MV_0 / TD_{D,0}
\]

where, TD_{B,i} represents a temporal distance between a current B field and a list 0 reference field, TD_D represents a temporal distance between a list 1 reference frame and a list 0 reference frame, and MV represents a motion vector of a co-located block in a list 1 reference frame for direct mode.
where, TD\textsubscript{B} represents a temporal distance between a current B frame and a list 0 reference frame, TD\textsubscript{D,0} represents a temporal distance between a field 0 of the list 1 reference frame and a list 0 reference field, and MV\textsubscript{0} represents a motion vector of a co-located block in the field 0 of the list 1 reference frame for direct mode. Further, the above step may include the step of, if a macroblock of the B picture is in a frame mode, a co-located macroblock of the list 1 reference picture is in a field mode and the list 0 reference picture for direct mode temporally precedes the list 1 reference picture, calculating the direct mode motion vectors MV\textsubscript{F} and MV\textsubscript{B} of a B frame from the below equation where motion information of a co-located block in a field 0 of a list 1 reference frame is used for calculation of the direct mode motion vectors:

$$W = Z - 256$$

$$MV\textsubscript{B} = (W \times MV\textsubscript{0} + 128) \gg 8$$

$$MV\textsubscript{F} = -TD\textsubscript{B} \times MV\textsubscript{0} / TD\textsubscript{D,0}$$

$$MV\textsubscript{B} = -(TD\textsubscript{B} + TD\textsubscript{D,0}) \times MV\textsubscript{0} / TD\textsubscript{D,0}$$

or

$$Z = -TD\textsubscript{B} \times 256 / TD\textsubscript{D,0}$$

$$MV\textsubscript{F} = (Z \times MV\textsubscript{0} + 128) \gg 8$$

$$W = Z - 256$$

$$MV\textsubscript{B} = (W \times MV\textsubscript{0} + 128) \gg 8$$

where, TD\textsubscript{B} represents a temporal distance between a current B frame and a list 0 reference frame, TD\textsubscript{D,0} represents a temporal distance between a field 0 of the list 1 reference frame and a list 0 reference field, and MV\textsubscript{0} represents a motion vector of a co-located block in the field 0 of the list 1 reference frame for direct mode.

[0037] In accordance with another aspect of the present invention, there is provided a method for calculating direct mode motion vectors of a B (Bi-predictive) picture in a moving picture coding system to extract the direct mode motion vectors of the B picture, comprising the step of assigning a sign to an inter-picture temporal distance value, scaling a motion vector of a co-located block in a list 1 reference picture for direct mode regardless of locations of the list 0 and the list 1 reference pictures for direct mode to derive a list 0 motion vector MV\textsubscript{F} and a list 1 motion vector MV\textsubscript{B}, and calculating the direct mode motion vectors of the B picture.

[0038] Preferably, the above step may include the step of, if both a macroblock of the B picture and a co-located macroblock of the list 1 reference picture are in a frame mode, calculating the direct mode motion vectors MV\textsubscript{F} and MV\textsubscript{B} of the B picture as follows:

$$MV\textsubscript{F} = TD\textsubscript{B} \times MV / TD\textsubscript{D}$$

$$MV\textsubscript{B} = (TD\textsubscript{B} - TD\textsubscript{D}) \times MV / TD\textsubscript{D}$$

or

$$Z = TD\textsubscript{B} \times 256 / TD\textsubscript{D}$$

$$MV\textsubscript{F} = (Z \times MV + 128) \gg 8$$
where, TD_B represents a temporal distance between a current B frame and a list 0 reference frame, which is assigned a positive (+) sign if it is measured from the B frame and a negative (-) sign if it is measured from the list 0 reference frame, TD_D represents a temporal distance between a list 1 reference frame and the list 0 reference frame, which is assigned a positive (+) sign if it is measured from the list 1 reference frame and a negative (-) sign if it is measured from the list 0 reference frame, and MV represents a motion vector of the co-located block in the list 1 reference picture for direct mode.

Further, the above step may include the step of, if both a macroblock of the B picture and a co-located macroblock of the list 1 reference picture are in a field mode, calculating the direct mode motion vectors MV_F,i and MV_B,i for each field i of a B frame as follows:

\[
MV_{F,i} = \frac{TD_{B,i} \times MV_i}{TD_{D,i}}
\]

or

\[
MV_{B,i} = \frac{(TD_{B,i} - TD_{D,i}) \times MV_i}{TD_{D,i}}
\]

\[
Z = TD_{B,i} \times 256 / TD_{D,i}
\]

\[
W = Z - 256
\]

\[
MV_{F,i} = (Z \times MV_i + 128) >> 8
\]

\[
MV_{B,i} = (W \times MV_i + 128) >> 8
\]

where, TD_{B,i} represents a temporal distance between a current B field and a list 0 reference field, which is assigned a positive (+) sign if it is measured from the B field and a negative (-) sign if it is measured from the list 0 reference field, TD_{D,i} represents a temporal distance between a list 1 reference field and the list 0 reference field, which is assigned a positive (+) sign if it is measured from the list 1 reference field and a negative (-) sign if it is measured from the list 0 reference field, and MV represents a motion vector of a co-located block in a list 1 reference field for direct mode.

Further, the above step may include the step of, if a macroblock of the B picture is in a field mode and a co-located macroblock of the list 1 reference picture is in a frame mode, calculating the direct mode motion vectors MV_F,i and MV_B,i for each field i of a B frame as follows:

\[
MV_{F,i} = TD_{B,i} \times MV / TD_D
\]

or

\[
Z = TD_{B,i} \times 256 / TD_D
\]

\[
MV_{F,i} = (Z \times MV + 128) >> 8
\]
where, \(TD_{B,i} \) represents a temporal distance between a current B field and a list 0 reference field, which is assigned a positive (+) sign if it is measured from the B field and a negative (-) sign if it is measured from the list 0 reference field, \(TD_{D} \) represents a temporal distance between the list 1 reference frame and the list 0 reference frame, which is assigned a positive (+) sign if it is measured from the list 1 reference frame and a negative (-) sign if it is measured from the list 0 reference frame, and MV represents a motion vector of a co-located block in a list 1 reference frame for direct mode.

[0041] Further, the above step may include the step of, if a macroblock of the B picture is in a frame mode, a co-located macroblock of the list 1 reference picture is in a field mode and the list 1 reference picture temporally follows the B picture, calculating the direct mode motion vectors \(MV_F \) and \(MV_B \) of a B frame from the below equation where motion information of a co-located block in a field 0 of a list 1 reference frame is used for calculation of the direct mode motion vectors:

\[
MV_F = TD_B \times MV_0 / TD_{D,0}
\]

or

\[
MV_B = (TD_B - TD_{D,0}) \times MV_0 / TD_{D,0}
\]

where, \(TD_{D,0} \) represents a temporal distance between a current B frame and a list 0 reference frame, which is assigned a positive (+) sign if it is measured from the B frame and a negative (-) sign if it is measured from the list 0 reference frame, which is assigned a positive (+) sign if it is measured from the field 0 of the list 1 reference frame and a list 0 reference field, which is assigned a positive (+) sign if it is measured from the field 0 of the list 1 reference frame and a negative (-) sign if it is measured from the list 0 reference field, and \(MV_0 \) represents a motion vector of a co-located block in the field 0 of the list 1 reference frame for direct mode.

[0042] Further, the above step may include the step of, if a macroblock of the B picture is in a frame mode, a co-located macroblock of the list 1 reference picture is in a field mode and the list 1 reference picture temporally precedes the B picture, calculating the direct mode motion vectors \(MV_F \) and \(MV_B \) of a B frame from the below equation where motion information of a co-located block in a field 1 of a list 1 reference frame is used for calculation of the direct mode motion vectors:

\[
MV_F = TD_B \times MV_1 / TD_{D,1}
\]

or

\[
MV_B = (TD_B - TD_{D,1}) \times MV_1 / TD_{D,1}
\]

where

Z = TD_B \times 256 / TD_{D,0}

\[MV_F = (Z \times MV_0 + 128) \gg 8 \]

W = Z - 256

\[MV_B = (W \times MV_0 + 128) \gg 8 \]
where, TD_B represents a temporal distance between a current B frame and a list 0 reference frame, which is assigned a positive (+) sign if it is measured from the B frame and a negative (-) sign if it is measured from the list 0 reference frame, TD_D,1 represents a temporal distance between a field 1 of the list 1 reference frame and a list 0 reference field, which is assigned a positive (+) sign if it is measured from the field 1 of the list 1 reference frame and a negative (-) sign if it is measured from the list 0 reference field, and MV_1 represents a motion vector of a co-located block in the field 1 of the list 1 reference frame for direct mode.

In accordance with yet another aspect of the present invention, there is provided a method for calculating direct mode motion vectors of a B (Bi-predictive) picture in a moving picture coding system to extract the direct mode motion vectors of the B picture, comprising the step of, if a co-located macroblock in a list 1 reference picture for direct mode is in an intra mode, predicting and calculating list 0 and list 1 reference pictures and motion vectors from neighboring blocks of a macroblock of the B picture to be coded, on the basis of a spatial redundancy, and calculating the direct mode motion vectors of the B picture.

Preferably, the above step may include the step of, if neighboring blocks A, B and C of the macroblock to be coded refer to different reference pictures, selecting a reference picture with a smallest index as the reference picture for each list.

Further, the above step may include the step of, if two or more ones of neighboring blocks of the macroblock to be coded refer to different reference pictures, selecting a reference picture with a smallest index as the reference picture for each list.

Further, the above step may include the step of, setting its list 0 and list 1 motion vectors to 0 if any one of neighboring blocks A, B and C of the macroblock to be coded is in the intra mode, selecting a motion vector having the same direction as that of a temporal location of the reference picture for each list from a neighboring block, and acquiring the motion vector for each list through a median operation, or selecting only one of the two motion vectors from that block if a neighboring block has two motion vectors with the same directions and acquiring the motion vector for each list through the median operation including the selected motion vector.

Further, the above step may include the step of, if no effective reference picture index for each list mode can be derived, setting list 0 and list 1 reference picture indexes to 0 and setting the motion vector for each list mode to 0.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other objects, features and other advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:

Figs. 1a to 1c are views illustrating list 1 reference pictures for direct mode in a general IBBBP pattern;
Figs. 2a to 2c are views illustrating list 1 reference pictures for direct mode in a general IBBB pattern;
Figs. 3a to 3h are views illustrating cases where a list 1 reference picture for direct mode temporally follows a B picture (L0 MV: list 0 motion vector and L1 MV: list 1 motion vector);
Figs. 4a to 4h are views illustrating cases where a list 1 reference picture for direct mode temporally precedes a B picture (L0 MV: list 0 motion vector and L1 MV: list 1 motion vector);
Fig. 5 is a view illustrating the motion vector prediction of a block E using motion vectors of neighboring blocks A, B and C in consideration of a general spatial redundancy;
Figs. 6a to 6c are views illustrating cases where both a macroblock of a B picture and a co-located macroblock in a list 1 reference picture for direct mode are in a frame mode and the list 1 reference picture temporally follows the B picture;
Figs. 7a to 7d are views illustrating cases where both a macroblock of a B picture and a co-located macroblock in a list 1 reference picture for direct mode are in a field mode and the list 1 reference picture temporally follows the B picture;
Figs. 8a to 8c are views illustrating cases where a macroblock of a B picture is in a field mode, a co-located macroblock in a list 1 reference picture for direct mode is in a frame mode, and the list 1 reference picture temporally follows the B picture;
Figs. 9a to 9c are views illustrating cases where a macroblock of a B picture is in a frame mode, a co-located macroblock in a list 1 reference picture for direct mode is in a field mode, and the list 1 reference picture temporally follows the B picture;
Figs. 10a and 10b are views illustrating cases where both a macroblock of a B picture and a co-located macroblock in a list 1 reference picture for direct mode are in a frame mode and the list 1 reference picture temporally precedes...
the B picture;
Figs. 11a to 11d are views illustrating cases where both a macroblock of a B picture and a co-located macroblock in a list 1 reference picture for direct mode are in a field mode and the list 1 reference picture temporally precedes the B picture;
Figs. 12a and 12b are views illustrating cases where a macroblock of a B picture is in a field mode, a co-located macroblock in a list 1 reference picture for a general direct mode is in a frame mode, and the list 1 reference picture temporally precedes the B picture; and
Figs. 13a and 13b are views illustrating cases where a macroblock of a B picture is in a frame mode, a co-located macroblock in a list 1 reference picture for a general direct mode is in a field mode, and the list 1 reference picture temporally precedes the B picture.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0049] The present invention proposes a method for deriving direct mode motion vectors when a co-located macroblock in a list 1 reference picture for direct mode is in an intra mode, and a method for acquiring the direct mode motion vectors in a case where the list 1 reference picture temporally follows a B picture and in a case where the list 1 reference picture temporally precedes the B picture.

[0050] The present invention further proposes a method for calculating the direct mode motion vectors regardless of the locations of list 0 and list 1 reference pictures for direct mode by assigning a sign to an inter-picture temporal distance value to simplify algorithms used for calculation of the direct mode motion vectors.

[0051] On the other hand, a frame mode and a field mode are switched at a picture level, so the B picture and list 1 reference picture can be coded into frame mode or field mode. As a result, a macroblock of the B picture and a co-located macroblock of the list 1 reference picture have four types of frame/field-coded combinations.

[1] CASE WHERE CO-LOCATED MACROBLOCK OF LIST 1 REFERENCE PICTURE IS IN INTRA MODE

[0052] As shown in Figs. 3f and 4f, a co-located macroblock in a list 1 reference picture for direct mode can be in the intra mode regardless of a temporal location of the reference picture. Because the macroblock in this mode has no motion information, a conventional method simply sets direct mode motion vectors to 0 and defines a list 0 reference picture to be the latest decoded picture. However, the conventional method cannot guarantee a high coding efficiency. Therefore, the present invention predicts and calculates list 0 and list 1 reference pictures and motion vectors from neighboring blocks of a macroblock of a B picture to be coded, on the basis of a spatial redundancy.

[0053] A reference picture index for each list mode is acquired in the following manner. Fig. 5 is a view illustrating the motion vector prediction of a block E using motion vectors of neighboring blocks A, B and C in consideration of a general spatial redundancy.

-- if the neighboring blocks A, B and C have different reference picture indexes, a smallest one of the reference picture indexes is determined to be a reference picture index for the direct mode.
-- if two ones of the neighboring blocks have the same reference picture index, this index is determined to be a reference picture index for the direct mode.
-- if all the neighboring blocks have the same reference picture index, this index is determined to be a reference picture index for the direct mode.

Also, a motion vector for each list mode is acquired through the following motion vector prediction. At this time, if any one of the neighboring blocks A, B and C is in the intra mode, its list 0 and list 1 motion vectors are set to 0.
-- a motion vector having the same direction as that of a temporal location of the above-acquired reference picture for each list mode is selected from a neighboring block and a motion vector for each list mode is acquired through a median operation.
-- if a neighboring block has two motion vectors with the same directions, only one of the two motion vectors is selected in that block and included in the median operation.

[0054] On the other hand, if neither of the effective list 0 and list 1 reference picture indexes can be derived from a neighboring block, they are set to 0 and a motion vector for each list mode is set to 0.

[2] CASE WHERE LIST 1 REFERENCE PICTURE FOR DIRECT MODE TEMPORALLY FOLLOWS B PICTURE
CASE 1: BOTH MACROBLOCK OF B PICTURE AND CO-LOCATED MACROBLOCK OF LIST 1 REFERENCE PICTURE ARE IN FRAME MODE

[0055] As seen from Figs. 3a to 3h, the co-located block in the list 1 reference picture can have one motion vector or two motion vectors. In the present invention, if the co-located block has two motion vectors, one (L0 MV or L1 MV) of the two motion vectors is selected and direct mode motion vectors are derived from the selected motion vector (this will hereinafter be described on the basis of the case where L0 MV (list 0 motion vector) is selected).

[0056] Accordingly, Figs. 3a and 3c can be simply depicted as Fig. 6a, Figs. 3b, 3d and 3e as Fig. 6c, and Figs. 3g and 3h as Fig. 6b, respectively.

[0057] If the list 0 reference picture and list 1 reference picture for direct mode are located temporally before and after the B picture, respectively (Fig. 6a), or if both the list 0 and list 1 reference pictures for the direct mode are located temporally after the B picture and the list 0 reference picture temporally follows the list 1 reference picture (Fig. 6b), direct mode motion vectors MV_F and MV_B are calculated as follows:

\[MV_F = \frac{TD_B \times MV}{TD_D} \]

\[MV_B = \frac{(TD_B - TD_D) \times MV}{TD_D} \]

where, TD_B represents a temporal distance between a current B frame and a list 0 reference frame, and TD_D represents a temporal distance between a list 1 reference frame and the list 0 reference frame.

[0058] Applying a bit operation to the calculation of the direct mode motion vectors MV_F and MV_B for the convenience thereof, the above equation may be expressed as follows:

\[Z = \frac{TD_B \times 256}{TD_D} \]

\[MV_F = (Z \times MV + 128) >> 8 \]

\[W = Z - 256 \]

\[MV_B = (W \times MV + 128) >> 8 \]

[0059] If both the list 0 and list 1 reference pictures for the direct mode are located temporally after the B picture and the list 0 reference picture temporally precedes the list 1 reference picture (Fig. 6c), the direct mode motion vectors MV_F and MV_B are calculated as follows:

\[MV_F = -\frac{TD_B \times MV}{TD_D} \]

\[MV_B = -(TD_B + TD_D) \times MV / TD_D \]

[0060] This equation may be expressed as follows:

\[Z = -\frac{TD_B \times 256}{TD_D} \]

\[MV_F = (Z \times MV + 128) >> 8 \]

\[W = Z - 256 \]

\[MV_B = (W \times MV + 128) >> 8 \]
CASE 2: BOTH MACROBLOCK OF B PICTURE AND CO-LOCATED MACROBLOCK OF LIST 1 REFERENCE PICTURE ARE IN FIELD MODE

[0061] Figs. 7a to 7d show cases where both the macroblock of the B picture and the co-located macroblock of the list 1 reference picture are in the field mode. Each motion vector of the macroblock of the B picture is derived from a motion vector of a co-located block in a list 1 reference field of the same parity.

[0062] If the list 0 and list 1 reference pictures for the direct mode are located temporally before and after the B picture, respectively (Fig. 7a), or if both the list 0 and list 1 reference pictures for the direct mode are located temporally after the B picture and the list 0 reference picture temporally follows the list 1 reference picture (Fig. 7b), direct mode list 0 and list 1 motion vectors $MV_{F,i}$ and $MV_{B,i}$ for each field i of a B frame ($i=0$ signifies a first field and $i=1$ signifies a second field) are calculated as follows:

\[
MV_{F,i} = TD_{B,i} \times MV_i / TD_{D,i}
\]

\[
MV_{B,i} = (TD_{B,i} - TD_{D,i}) \times MV_i / TD_{D,i}
\]

where, MV_i represents a motion vector of a co-located block of a field i in a list 1 reference frame, $TD_{B,i}$ represents a temporal distance between a current B field and a list 0 reference field, and $TD_{D,i}$ represents a temporal distance between a list 1 reference field and the list 0 reference field.

[0063] The above equation may be expressed as follows:

\[
Z = TD_{B,i} \times 256 / TD_{D,i} \quad MV_{F,i} = (Z \times MV_i + 128) >> 8
\]

\[
W = Z - 256 \quad MV_{B,i} = (W \times MV_i + 128) >> 8
\]

[0064] If, because the co-located block of the field i in the list 1 reference frame has a motion vector pointing to a field in a frame temporally following the B picture, both the list 0 and list 1 reference pictures for the direct mode are located temporally after the B picture and the list 0 reference picture temporally precedes the list 1 reference picture (Figs. 7c and 7d), the direct mode list 0 and list 1 motion vectors $MV_{F,i}$ and $MV_{B,i}$ are calculated as follows:

\[
MV_{F,i} = -TD_{B,i} \times MV_i / TD_{D,i}
\]

\[
MV_{B,i} = -(TD_{B,i} + TD_{D,i}) \times MV_i / TD_{D,i}
\]

[0065] The above equation may be expressed as follows:

\[
Z = -TD_{B,i} \times 256 / TD_{D,i} \quad MV_{F,i} = (Z \times MV_i + 128) >> 8
\]

\[
W = Z - 256 \quad MV_{B,i} = (W \times MV_i + 128) >> 8
\]
CASE 3: MACROBLOCK OF B PICTURE IS IN FIELD MODE AND CO-LOCATED MACROBLOCK OF LIST 1 REFERENCE PICTURE IS IN FRAME MODE

[0066] Figs. 8a to 8c show cases where the macroblock of the B picture is in the field mode and the co-located macroblock of the list 1 reference picture is in the frame mode. Here, letting the vertical coordinate of the current macroblock be \(y_{\text{current}} \) and the vertical coordinate of the co-located macroblock of the list 1 reference picture be \(y_{\text{co-located}} \), the relation of \(y_{\text{co-located}} = 2 \times y_{\text{current}} \) is established between the two coordinates. Also, list 0 and list 1 reference fields are present in the same parities of the list 0 and list 1 reference frames, respectively.

[0067] If the list 0 and list 1 reference pictures for the direct mode are located temporally before and after the B picture, respectively (Fig. 8a), or if both the list 0 and list 1 reference pictures for the direct mode are located temporally after the B picture and the list 0 reference picture temporally follows the list 1 reference picture (Fig. 8b), the direct mode list 0 and list 1 motion vectors \(\text{MV}_{F,i} \) and \(\text{MV}_{B,i} \) for each field \(i \) of the B frame are calculated as follows:

\[
\text{MV}_{F,i} = TD_{B,i} \times MV / TD_D
\]

\[
\text{MV}_{B,i} = (TD_{B,i} - TD_D) \times MV / TD_D
\]

[0068] The above equation may be expressed as follows:

\[
Z = TD_{B,i} \times 256 / TD_D
\]

\[
\text{MV}_{F,i} = (Z \times MV + 128) >> 8
\]

\[
W = Z - 256
\]

\[
\text{MV}_{B,i} = (W \times MV + 128) >> 8
\]

[0069] If, because the co-located block in the list 1 reference frame has a motion vector pointing to a frame temporally following the B picture, both the list 0 and list 1 reference pictures for the direct mode are located temporally after the B picture and the list 0 reference picture temporally precedes the list 1 reference picture (Fig. 8c), the direct mode list 0 and list 1 motion vectors \(\text{MV}_{F,i} \) and \(\text{MV}_{B,i} \) for each field \(i \) of the B frame are calculated as follows:

\[
\text{MV}_{F,i} = -TD_{B,i} \times MV / TD_D
\]

\[
\text{MV}_{B,i} = -(TD_{B,i} + TD_D) \times MV / TD_D
\]

[0070] The above equation may be expressed as follows:

\[
Z = -TD_{B,i} \times 256 / TD_D
\]

\[
\text{MV}_{F,i} = (Z \times MV + 128) >> 8
\]

\[
W = Z - 256
\]

\[
\text{MV}_{B,i} = (W \times MV + 128) >> 8
\]

where, \(TD_{B,i} \) represents a temporal distance between the current B field and the list 0 reference field, \(TD_D \) represents a temporal distance between the list 1 reference frame and the list 0 reference frame, and \(MV \) represents a motion vector of the co-located block in the list 1 reference frame for direct mode.
CASE 4: MACROBLOCK OF B PICTURE IS IN FRAME MODE AND CO-LOCATED MACROBLOCK OF LIST 1 REFERENCE PICTURE IS IN FIELD MODE

[0071] Figs. 9a to 9c show cases where the macroblock of the B picture is in the frame mode and the co-located macroblock of the list 1 reference picture is in the field mode. Here, letting the vertical coordinate of the current macroblock be \(y_{\text{current}} \) and the vertical coordinate of the co-located macroblock of the list 1 reference picture be \(y_{\text{co-located}} \), the relation of \(y_{\text{co-located}} = y_{\text{current}} / 2 \) is established between the two coordinates. Also, because the field 0 of the list 1 reference frame is temporally closer to the B picture than the field 1 thereof, motion information of a co-located block of the field 0 is used for calculation of the direct mode motion vectors.

[0072] If the list 0 and list 1 reference pictures for the direct mode are located temporally before and after the B picture, respectively (Fig. 9a), or if both the list 0 and list 1 reference pictures for the direct mode are located temporally after the B picture and the list 0 reference picture temporally follows the list 1 reference picture (Fig. 9b), the direct mode list 0 and list 1 motion vectors \(\text{MV}_F \) and \(\text{MV}_B \) of the B frame are calculated as follows:

\[
\text{MV}_F = \frac{\text{TD}_B \times \text{MV}_0}{\text{TD}_{D,0}}
\]

\[
\text{MV}_B = (\text{TD}_B \times \text{TD}_{D,0}) \times \frac{\text{MV}_0}{\text{TD}_{D,0}}
\]

[0073] The above equation may be expressed as follows:

\[
Z = \frac{\text{TD}_B \times 256}{\text{TD}_{D,0}} \quad \text{MV}_F = (Z \times \text{MV}_0 + 128) >> 8
\]

\[
W = Z - 256 \quad \text{MV}_B = (W \times \text{MV}_0 + 128) >> 8
\]

[0074] If, because the co-located block of the field 0 of the list 1 reference frame has a motion vector pointing to a field of a frame temporally following the B picture, both the list 0 and list 1 reference pictures for the direct mode are located temporally after the B picture and the list 0 reference picture temporally precedes the list 1 reference picture (Fig. 9c), the direct mode list 0 and list 1 motion vectors \(\text{MV}_F \) and \(\text{MV}_B \) are calculated as follows:

\[
\text{MV}_F = -\frac{\text{TD}_B \times \text{MV}_0}{\text{TD}_{D,0}}
\]

\[
\text{MV}_B = -\frac{(\text{TD}_B + \text{TD}_{D,0}) \times \text{MV}_0}{\text{TD}_{D,0}}
\]

[0075] The above equation may be expressed as follows:

\[
Z = -\frac{\text{TD}_B \times 256}{\text{TD}_{D,0}} \quad \text{MV}_F = (Z \times \text{MV}_0 + 128) >> 8
\]

\[
W = Z - 256 \quad \text{MV}_B = (W \times \text{MV}_0 + 128) >> 8
\]

where, \(\text{TD}_B \) represents a temporal distance between the current B frame and the list 0 reference frame, \(\text{TD}_{D,0} \) represents a temporal distance between a field 0 of the list 1 reference frame and the list 0 reference field, and \(\text{MV}_0 \) represents a motion vector of the co-located block in the field 0 of the list 1 reference frame for direct mode.
In this case, both the list 0 and list 1 reference pictures are always located temporally before the B picture.

CASE 1: BOTH MACROBLOCK OF B PICTURE AND CO-LOCATED MACROBLOCK OF LIST 1 REFERENCE PICTURE ARE IN FRAME MODE

As seen from Figs. 4a to 4h, the co-located block in the list 1 reference picture can have one motion vector or two motion vectors. In the present invention, if the co-located block has two motion vectors, one (L0 MV or L1 MV) of the two motion vectors is selected and direct mode motion vectors are derived from the selected motion vector (this will hereinafter be described on the basis of the case where L0 MV (list 0 motion vector) is selected).

Accordingly, Figs. 4a, 4c, 4e, 4g and 4h can be simply depicted as Fig. 10a, and Figs. 4b and 4d as Fig. 10b, respectively.

If the list 0 reference picture for direct mode temporally precedes the list 1 reference picture for direct mode, direct mode motion vectors MV_F and MV_B are calculated as follows (Fig. 10a):

\[MV_F = TD_B \times MV / TD_D \]

\[MV_B = (TD_B - TD_D) \times MV / TD_D \]

where, TD_B represents a temporal distance between a current B frame and a list 0 reference frame, TD_D represents a temporal distance between a list 1 reference frame and the list 0 reference frame, and MV represents a motion vector of the co-located block in the list 1 reference picture for direct mode.

The above equation may be expressed as follows:

\[Z = TD_B \times 256 / TD_D \]

\[MV_F = (Z \times MV + 128) >> 8 \]

\[W = Z - 256 \]

\[MV_B = (W \times MV + 128) >> 8 \]

If the list 0 reference picture temporally follows the list 1 reference picture, the direct mode motion vectors MV_F and MV_B are calculated as follows (Fig. 10b):

\[MV_F = -TD_B \times MV / TD_D \]

\[MV_B = -(TD_B + TD_D) \times MV / TD_D \]

This equation may be expressed as follows:

\[Z = -TD_B \times 256 / TD_D \]

\[MV_F = (Z \times MV + 128) >> 8 \]

\[W = Z - 256 \]

\[MV_B = (W \times MV + 128) >> 8 \]
where, \(\text{TD}_B\) represents a temporal distance between the current B frame and the list 0 reference frame, \(\text{TD}_D\) represents a temporal distance between the list 1 reference frame and the list 0 reference frame, and \(\text{MV}\) represents a motion vector of the co-located block in the list 1 reference picture for direct mode.

CASE 2: BOTH MACROBLOCK OF B PICTURE AND CO-LOCATED MACROBLOCK OF LIST 1 REFERENCE PICTURE ARE IN FIELD MODE

If the list 0 reference picture for direct mode temporally precedes the list 1 reference picture for direct mode, direct mode list 0 and list 1 motion vectors \(\text{MV}_{F,j}\) and \(\text{MV}_{B,j}\) for each field \(i\) of a B frame are calculated as follows (Figs. 11a and 11b):

\[
\text{MV}_{F,j} = \frac{\text{TD}_{B,j} \times \text{MV}_i}{\text{TD}_{D,j}}
\]

\[
\text{MV}_{B,j} = \frac{(\text{TD}_{B,j} - \text{TD}_{D,j}) \times \text{MV}_i}{\text{TD}_{D,j}}
\]

The above equation may be expressed as follows:

\[
Z = \frac{\text{TD}_{B,j} \times 256}{\text{TD}_{D,j}} \quad \text{MV}_{F,j} = (Z \times \text{MV}_i + 128) >> 8
\]

\[
W = Z - 256 \quad \text{MV}_{B,j} = (W \times \text{MV}_i + 128) >> 8
\]

where, \(\text{TD}_{B,j}\) represents a temporal distance between a current B field and a list 0 reference field, \(\text{TD}_{D,j}\) represents a temporal distance between a list 1 reference field and the list 0 reference field, and \(\text{MV}_i\) represents a motion vector of a co-located block in a list 1 reference field for direct mode.

If, because the co-located block of the field \(i\) in the list 1 reference frame has a motion vector pointing to a field in a temporally following frame, the list 0 reference picture temporally precedes the list 1 reference picture, the direct mode list 0 and list 1 motion vectors \(\text{MV}_{F,j}\) and \(\text{MV}_{B,j}\) are calculated as follows (Figs. 11c and 11d):

\[
\text{MV}_{F,j} = -\frac{\text{TD}_{B,j} \times \text{MV}_i}{\text{TD}_{D,j}}
\]

\[
\text{MV}_{B,j} = -\frac{(\text{TD}_{B,j} + \text{TD}_{D,j}) \times \text{MV}_i}{\text{TD}_{D,j}}
\]

The above equation may be expressed as follows:

\[
Z = -\frac{\text{TD}_{B,j} \times 256}{\text{TD}_{D,j}} \quad \text{MV}_{F,j} = (Z \times \text{MV}_i + 128) >> 8
\]

\[
W = Z - 256 \quad \text{MV}_{B,j} = (W \times \text{MV}_i + 128) >> 8
\]

where, \(\text{TD}_{B,j}\) represents a temporal distance between the current B field and the list 0 reference field, \(\text{TD}_{D,j}\) represents a temporal distance between the list 1 reference field and the list 0 reference field, and \(\text{MV}_i\) represents a motion vector of the co-located block in the list 1 reference field for direct mode.
CASE 3: MACROBLOCK OF B PICTURE IS IN FIELD MODE AND CO-LOCATED MACROBLOCK OF LIST 1 REFERENCE PICTURE IS IN FRAME MODE

[0087] If the list 0 reference picture for direct mode temporally precedes the list 1 reference picture for direct mode, the direct mode list 0 and list 1 motion vectors MV_{F,i} and MV_{B,i} for each field i of the B frame are calculated as follows (Fig. 12a):

\[
MV_{F,i} = TD_{B,i} \times MV / TD_D
\]

\[
MV_{B,i} = (TD_{B,i} - TD_D) \times MV / TD_D
\]

[0088] The above equation may be expressed as follows:

\[
Z = TD_{B,i} \times 256 / TD_D \quad MV_{F,i} = (Z \times MV + 128) >> 8
\]

\[
W = Z - 256 \quad MV_{B,i} = (W \times MV + 128) >> 8
\]

where, \(TD_{B,i}\) represents a temporal distance between the current B field and the list 0 reference field, \(TD_D\) represents a temporal distance between the list 1 reference frame and the list 0 reference frame, and \(MV\) represents a motion vector of the co-located block in the list 1 reference frame for direct mode.

[0089] If, because the co-located block in the list 1 reference frame has a motion vector pointing to a temporally following frame, the list 0 reference picture temporally follows the list 1 reference picture, the direct mode list 0 and list 1 motion vectors MV_{F,i} and MV_{B,i} for each field i of the B frame are calculated as follows (Fig. 12b):

\[
MV_{F,i} = -TD_{B,i} \times MV / TD_D
\]

\[
MV_{B,i} = -(TD_{B,i} + TD_D) \times MV / TD_D
\]

[0090] The above equation may be expressed as follows:

\[
Z = -TD_{B,i} \times 256 / TD_D \quad MV_{F,i} = (Z \times MV + 128) >> 8
\]

\[
W = Z - 256 \quad MV_{B,i} = (W \times MV + 128) >> 8
\]

where, \(TD_{B,i}\) represents a temporal distance between the current B field and the list 0 reference field, \(TD_D\) represents a temporal distance between the list 1 reference frame and the list 0 reference frame, and \(MV\) represents a motion vector of the co-located block in the list 1 reference frame for direct mode.

CASE 4: MACROBLOCK OF B PICTURE IS IN FRAME MODE AND CO-LOCATED MACROBLOCK OF LIST 1 REFERENCE PICTURE IS IN FIELD MODE

[0091] Because the field 1 f1 of the list 1 reference frame is temporally closer to the B picture than the field 0 f0 thereof,
If the list 0 reference picture for direct mode temporally precedes the list 1 reference picture for direct mode, the direct mode list 0 and list 1 motion vectors MV_F and MV_B for each field i of the B frame are calculated as follows (Fig. 13a):

\[
MV_F = TDB \times MV_1 / TD_{D,1}
\]

\[
MV_B = (TDB - TD_{D,1}) \times MV_1 / TD_{D,1}
\]

The above equation may be expressed as follows:

\[
Z = TD_B \times 256 / TD_{D,1}
\]

\[\text{MV}_F = (Z \times MV_1 + 128) >> 8
\]

\[
W = Z - 256
\]

\[\text{MV}_B = (W \times MV_1 + 128) >> 8
\]

where, TDB represents a temporal distance between the current B frame and the list 0 reference frame, $TD_{D,1}$ represents a temporal distance between a field 1 of the list 1 reference frame and the list 0 reference field, and MV_1 represents a motion vector of the co-located block in the field 1 of the list 1 reference frame for direct mode.

If, because the co-located block of the field 1 $f1$ of the list 1 reference frame has a motion vector pointing to a field of a temporally following frame, the list 0 reference picture temporally follows the list 1 reference picture, the direct mode list 0 and list 1 motion vectors MV_F and MV_B are calculated as follows (Fig. 13b):

\[
MV_F = -TD_B \times MV_1 / TD_{D,1}
\]

\[
MV_B = -(TD_B + TD_{D,1}) \times MV_1 / TD_{D,1}
\]

The above equation may be expressed as follows:

\[
Z = -TD_B \times 256 / TD_{D,1}
\]

\[\text{MV}_F = (Z \times MV_1 + 128) >> 8
\]

\[
W = Z - 256
\]

\[\text{MV}_B = (W \times MV_1 + 128) >> 8
\]

where, TDB represents a temporal distance between the current B frame and the list 0 reference frame, $TD_{D,1}$ represents a temporal distance between a field 1 of the list 1 reference frame and the list 0 reference field, and MV_1 represents a motion vector of the co-located block in the field 1 of the list 1 reference frame for direct mode.

In case the list 1 reference picture for direct mode is located temporally before or after the B picture, two types
of algorithms are given in each case. Such algorithms can be simply expressed by assigning a sign to an inter-picture temporal distance value, as follows.

CASE 1: BOTH MACROBLOCK OF B PICTURE AND CO-LOCATED MACROBLOCK OF LIST 1 REFERENCE PICTURE ARE IN FRAME MODE

If both the macroblock of the B picture and the co-located macroblock of the list 1 reference picture are in the frame mode, the direct mode motion vectors MV_F and MV_B of the B picture can be calculated as follows:

\[
\text{MV}_F = \frac{\text{TD}_B \times \text{MV}}{\text{TD}_D}
\]

\[
\text{MV}_B = (\text{TD}_B - \text{TD}_D) \times \text{MV} / \text{TD}_D
\]

or

\[
Z = \frac{\text{TD}_B \times 256}{\text{TD}_D}
\]

\[
\text{MV}_F = (Z \times \text{MV} + 128) >> 8
\]

\[
W = Z - 256
\]

\[
\text{MV}_B = (W \times \text{MV} + 128) >> 8
\]

where, TD_B represents a temporal distance between a current B frame and a list 0 reference frame, which is assigned a positive (+) sign if it is measured from the B frame and a negative (-) sign if it is measured from the list 0 reference frame, TD_D represents a temporal distance between a list 1 reference frame and the list 0 reference frame, which is assigned a positive (+) sign if it is measured from the list 1 reference frame and a negative (-) sign if it is measured from the list 0 reference frame, and MV represents a motion vector of the co-located block in the list 1 reference picture for direct mode.

CASE 2: BOTH MACROBLOCK OF B PICTURE AND CO-LOCATED MACROBLOCK OF LIST 1 REFERENCE PICTURE ARE IN FIELD MODE

If both the macroblock of the B picture and the co-located macroblock of the list 1 reference picture are in the field mode, the direct mode motion vectors $\text{MV}_{F,i}$ and $\text{MV}_{B,i}$ for each field i of the B frame can be calculated as follows:

\[
\text{MV}_{F,i} = \frac{\text{TD}_{B,i} \times \text{MV}_i}{\text{TD}_{D,i}}
\]

\[
\text{MV}_{B,i} = (\text{TD}_{B,i} - \text{TD}_{D,i}) \times \text{MV}_i / \text{TD}_{D,i}
\]

or

\[
Z = \frac{\text{TD}_{B,i} \times 256}{\text{TD}_{D,i}}
\]

\[
\text{MV}_{F,i} = (Z \times \text{MV}_i + 128) >> 8
\]

\[
W = Z - 256
\]

\[
\text{MV}_{B,i} = (W \times \text{MV}_i + 128) >> 8
\]
where, TD_B,i represents a temporal distance between a current B field and a list 0 reference field, which is assigned a positive (+) sign if it is measured from the B field and a negative (-) sign if it is measured from the list 0 reference field, TD_D represents a temporal distance between a list 1 reference field and the list 0 reference field, which is assigned a positive (+) sign if it is measured from the list 1 reference field and a negative (-) sign if it is measured from the list 0 reference field, and MV_i represents a motion vector of a co-located block in a list 1 reference field for direct mode.

CASE 3: MACROBLOCK OF B PICTURE IS IN FIELD MODE AND CO-LOCATED MACROBLOCK OF LIST 1 REFERENCE PICTURE IS IN FRAME MODE

[0099] If the macroblock of the B picture is in the field mode and the co-located macroblock of the list 1 reference picture is in the frame mode, the direct mode motion vectors \(MV_{F,i} \) and \(MV_{B,i} \) for each field i of the B frame can be calculated as follows:

\[
MV_{F,i} = TD_B \times MV / TD_D
\]

or

\[
MV_{B,i} = (TD_B - TD_D) \times MV / TD_D
\]

CASE 4: MACROBLOCK OF B PICTURE IS IN FRAME MODE AND CO-LOCATED MACROBLOCK OF LIST 1 REFERENCE PICTURE IS IN FIELD MODE

[0100] If the macroblock of the B picture is in the frame mode, the co-located macroblock of the list 1 reference picture is in the field mode and the list 1 reference picture temporally follows the B picture, the field 0 of the list 1 reference frame is temporally closer to the B picture than the field 1 thereof, so motion information of a co-located block of the field 0 is used for calculation of the direct mode motion vectors. As a result, the direct mode motion vectors \(MV_F \) and \(MV_B \) of the B frame can be obtained from the below equation where the motion information of the co-located block in the field 0 of the list 1 reference frame is used for calculation of the direct mode motion vectors:

\[
MV_F = TD_B \times MV_0 / TD_{D,0}
\]

or

\[
MV_B = (TD_B - TD_{D,0}) \times MV_0 / TD_{D,0}
\]
where, TD_0 represents a temporal distance between the current B frame and the list 0 reference frame, which is assigned a positive (+) sign if it is measured from the B frame and a negative (-) sign if it is measured from the list 0 reference frame, $TD_{D,0}$ represents a temporal distance between a field 0 of the list 1 reference frame and the list 0 reference field, which is assigned a positive (+) sign if it is measured from the field 0 of the list 1 reference frame and a negative (-) sign if it is measured from the list 0 reference field, and MV_0 represents a motion vector of the co-located block in the field 0 of the list 1 reference frame for direct mode.

If the list 1 reference picture temporally precedes the B picture, the field 1 of the list 1 reference frame is temporally closer to the B picture than the field 0 thereof, so motion information of a co-located block of the field 1 is used for calculation of the direct mode motion vectors. As a result, the direct mode motion vectors MV_F and MV_B of the B frame can be obtained from the below equation where the motion information of the co-located block in the field 1 of the list 1 reference frame is used for calculation of the direct mode motion vectors:

$$Z = TD_B \times 256 / TD_{D,1}$$
$$MV_F = (Z \times MV_1 + 128) \gg 8$$

or

$$W = Z - 256$$
$$MV_B = (W \times MV_1 + 128) \gg 8$$

where, TD_0 represents a temporal distance between the current B frame and the list 0 reference frame, which is assigned a positive (+) sign if it is measured from the B frame and a negative (-) sign if it is measured from the list 0 reference frame, $TD_{D,1}$ represents a temporal distance between a field 1 of the list 1 reference frame and the list 0 reference field, which is assigned a positive (+) sign if it is measured from the field 1 of the list 1 reference frame and a negative (-) sign if it is measured from the list 0 reference field, and MV_1 represents a motion vector of the co-located block in the field 1 of the list 1 reference frame for direct mode.

As apparent from the above description, the present invention provides a method for calculating direct mode motion vectors of a B (Bi-predictive) picture defined in a next-generation moving picture compression technique. A technique for extracting the direct mode motion vectors of the B picture is proposed to raise the probability that a direct mode will be selected as a predictive mode of a macroblock, thereby improving a B picture coding efficiency.

Although the preferred embodiments of the present invention have been disclosed for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.
subject matter described in the following paragraphs that are numbered for allowing reference is part of the disclosure of the present application, each of which can be claimed in the present application, and in one of more future divisional applications there from:

(1) A method for calculating direct mode motion vectors of a B (Bi-predictive) picture in a moving picture coding system to extract the direct mode motion vectors of the B picture, comprising the step of selecting any one of motion vectors of a co-located block in a list 1 reference picture for direct mode as a motion vector for derivation of said direct mode motion vectors regardless of modes (a list 0 mode and/or a list 1 mode) of said motion vectors of said co-located block, determining a reference picture pointed by the selected motion vector as a list 0 reference picture for said direct mode, and calculating said direct mode motion vectors of said B picture.

(2) A method for calculating direct mode motion vectors of a B (Bi-predictive) picture in a moving picture coding system to extract the direct mode motion vectors of the B picture, in particular according to item (1), the method comprising the step of, if a co-located block in a list 1 reference picture for direct mode has only one list 1 motion vector, using said list 1 motion vector as a motion vector for derivation of said direct mode motion vectors, determining a reference picture pointed by said list 1 motion vector as a list 0 reference picture for said direct mode, and calculating said direct mode motion vectors of said B picture.

(3) A method for calculating direct mode motion vectors of a B (Bi-predictive) picture in a moving picture coding system to extract the direct mode motion vectors of the B picture, in particular according to item (1) or (2), the method comprising the step of, if a co-located block in a list 1 reference picture for direct mode has only one list 1 motion vector, considering said co-located block to have a zero motion, determining a decoded picture located temporally just before said B picture as a list 0 reference picture for said direct mode, and deriving said direct mode motion vectors of said B picture.

(4) A method for calculating direct mode motion vectors of a B (Bi-predictive) picture in a moving picture coding system to extract the direct mode motion vectors of the B picture, in particular according to one of items (1) to (3), the method comprising the step of, if a co-located block in a list 1 reference picture for direct mode has only one list 1 motion vector, using said list 1 motion vector of said co-located block as a motion vector for derivation of said direct mode motion vectors, determining a decoded picture located temporally just before said B picture as a list 0 reference picture for said direct mode, and deriving said direct mode motion vectors of said B picture.

(5) A method for calculating direct mode motion vectors of a B (Bi-predictive) picture in a moving picture coding system to extract the direct mode motion vectors of the B picture, in particular according to one of items (1) to (4), the method comprising the step of, if a co-located block in a list 1 reference picture for direct mode has two motion vectors, selecting any one (a list 0 motion vector or list 1 motion vector) of said two motion vectors, and deriving said direct mode motion vectors of said B picture from the selected motion vector.

(6) The method according to item (5) above, wherein said step includes the step of unconditionally selecting said list 0 motion vector as a motion vector for derivation of said direct mode motion vectors regardless of a temporal distance, determining a reference picture pointed by said list 0 motion vector as a list 0 reference picture for said direct mode, and deriving said direct mode motion vectors of said B picture.

(7) The method according to item (5) or (6) above, wherein said step includes the step of selecting one of said list 0 and list 1 motion vectors, which points to a picture temporally closer to said list 1 reference picture for said direct mode, as a motion vector for derivation of said direct mode motion vectors, selecting said list 0 motion vector as said motion vector for derivation of said direct mode motion vectors if said two motion vectors point to the same reference, determining a reference picture pointed by the selected motion vector as a list 0 reference picture for said direct mode, and deriving said direct mode motion vectors of said B picture.

(8) A method for calculating direct mode motion vectors of a B (Bi-predictive) picture in a moving picture coding system to extract the direct mode motion vectors of the B picture, in particular according to one of items (1) to (7), the method comprising the step of setting a latest decoded picture as a list 1 reference picture for direct mode, scaling a motion vector of a co-located block in said list 1 reference picture for said direct mode to derive a list 0 motion vector MV_F and a list 1 motion vector MV_B, and calculating said direct mode motion vectors of said B picture.

(9) A method for calculating direct mode motion vectors of a B (Bi-predictive) picture in a moving picture coding system to extract the direct mode motion vectors of the B picture, in particular according to one of items (1) to (8),
the method comprising the step of, if a list 1 reference picture for direct mode temporally precedes said B picture, scaling a motion vector of a co-located block in said list 1 reference picture for said direct mode to derive a list 0 motion vector MV_F and a list 1 motion vector MV_B, and calculating said direct mode motion vectors of said B picture.

(10) The method according to item (9) above, wherein said step includes the step of, if both a macroblock of said B picture and a co-located macroblock of said list 1 reference picture are in a frame mode and a list 0 reference picture for said direct mode temporally precedes said list 1 reference picture, calculating said direct mode motion vectors MV_F and MV_B of said B picture as follows:

$$MV_F = \frac{TD_B \times MV}{TD_0}$$

$$MV_B = (TD_B - TD_0) \times MV / TD_0$$

or

$$Z = TD_B \times 256 / TD_0$$

$$MV_F = (Z \times MV + 128) >> 8$$

$$W = Z - 256$$

$$MV_B = (W \times MV + 128) >> 8$$

where, TD_0 represents a temporal distance between a current B frame and a list 0 reference frame, TD_B represents a temporal distance between a list 1 reference frame and the list 0 reference frame, and MV represents a motion vector of said co-located block in said list 1 reference picture for said direct mode.

(11) The method according to item (9) or (10) above, wherein said step includes the step of, if both a macroblock of said B picture and a co-located macroblock of said list 1 reference picture are in a frame mode and a list 0 reference picture for said direct mode temporally follows said list 1 reference picture, calculating said direct mode motion vectors MV_F and MV_B of said B picture as follows:

$$MV_F = - TD_B \times MV / TD_0$$

$$MV_B = - (TD_B + TD_0) \times MV / TD_0$$

or

$$Z = - TD_B \times 256 / TD_0$$
$MV_y = (Z \times MV + 128) >> 8$

$W = Z - 256$

$MV_B = (W \times MV + 128) >> 8$

where, TD_B represents a temporal distance between a current B frame and a list 0 reference frame, TD_D represents a temporal distance between a list 1 reference frame and the list 0 reference frame, and MV represents a motion vector of said co-located block in said list 1 reference picture for said direct mode.

(12) The method according to one of items (9) to (11) above, wherein said step includes the step of, if both a macroblock of said B picture and a co-located macroblock of said list 1 reference picture are in a field mode and a list 0 reference picture for said direct mode temporally precedes said list 1 reference picture, calculating said direct mode motion vectors $MV_{F,i}$ and $MV_{B,i}$ for each field i of a B frame as follows:

$MV_{F,i} = TD_{B,i} \times MV_i / TD_{B,i}$

$MV_{B,i} = (TD_{B,i} - TD_{D,i}) \times MV_i / TD_{B,i}$

or

$Z = TD_{B,i} \times 256 / TD_{B,i}$

$MV_{F,i} = (Z \times MV_i + 128) >> 8$

$W = Z - 256$

$MV_{B,i} = (W \times MV_i + 128) >> 8$

where, $TD_{B,i}$ represents a temporal distance between a current B field and a list 0 reference field, $TD_{D,i}$ represents a temporal distance between a list 1 reference field and the list 0 reference field, and MV_i represents a motion vector of a co-located block in a list 1 reference field for said direct mode.

(13) The method according to one of items (9) to (12) above, wherein said step includes the step of, if both a macroblock of said B picture and a co-located macroblock of said list 1 reference picture are in a field mode and a list 0 reference picture for said direct mode temporally follows said list 1 reference picture, calculating said direct mode motion vectors $MV_{F,i}$ and $MV_{B,i}$ for each field i of a B frame as follows:
\[MV_{F,i} = - \frac{TD_{B,i} \times MV_i}{TD_{D,i}} \]

\[MV_{B,i} = - \left(TD_{B,i} + TD_{D,i} \right) \times MV_i / TD_{D,i} \]

or

\[Z = -TD_{B,i} \times 256 / TD_{D,i} \]

\[MV_{F,i} = \left(Z \times MV_i + 128 \right) >> 8 \]

\[W = Z - 256 \]

\[MV_{B,i} = \left(W \times MV_i + 128 \right) >> 8 \]

where, \(TD_{B,i} \) represents a temporal distance between a current B field and a list 0 reference field, \(TD_{D,i} \) represents a temporal distance between a list 1 reference field and the list 0 reference field, and \(MV_i \) represents a motion vector of a co-located block in a list 1 reference field for said direct mode.

(14) The method according to one of items (9) to (13) above, wherein said step includes the step of, if a macroblock of said B picture is in a field mode, a co-located macroblock of said list 1 reference picture is in a frame mode and a list 0 reference picture for said direct mode temporally precedes said list 1 reference picture, calculating said direct mode motion vectors \(MV_{F,i} \) and \(MV_{B,i} \) for each field \(i \) of a B frame as follows:

\[MV_{F,i} = TD_{B,i} \times MV / TD_{D} \]

\[MV_{B,i} = (TD_{B,i} - TD_{D}) \times MV / TD_{D} \]

or

\[Z = TD_{B,i} \times 256 / TD_{D} \]

\[MV_{F,i} = \left(Z \times MV + 128 \right) >> 8 \]

\[W = Z - 256 \]
where, $TD_{B,i}$ represents a temporal distance between a current B field and a list 0 reference field, TD_D represents a temporal distance between a list 1 reference frame and a list 0 reference frame, and MV represents a motion vector of a co-located block in a list 1 reference frame for said direct mode.

(15) The method according to one of items (9) to (14) above, wherein said step includes the step of, if a macroblock of said B picture is in a field mode, a co-located macroblock of said list 1 reference picture is in a frame mode and a list 0 reference picture for said direct mode temporally follows said list 1 reference picture, calculating said direct mode motion vectors $MV_{F,i}$ and $MV_{B,i}$ for each field i of a B frame as follows:

\[
MV_{F,i} = (-TD_{B,i} \times MV) / TD_D
\]

or

\[
Z = -TD_{B,i} \times 256 / TD_D
\]

\[
MV_{F,i} = (Z \times MV + 128) >> 8
\]

\[
W = Z - 256
\]

\[
MV_{B,i} = (W \times MV + 128) >> 8
\]

where, $TD_{B,i}$ represents a temporal distance between a current B field and a list 0 reference field, TD_D represents a temporal distance between a list 1 reference frame and a list 0 reference frame, and MV represents a motion vector of a co-located block in a list 1 reference frame for said direct mode.

(16) The method according to one of items (9) to (15) above, wherein said step includes the step of, if a macroblock of said B picture is in a frame mode, a co-located macroblock of said list 1 reference picture is in a field mode and a list 0 reference picture for said direct mode of said B picture temporally precedes said list 1 reference picture, calculating said direct mode motion vectors MV_F and MV_B of a B frame from the below equation where motion information of a co-located block in a field 1 of a list 1 reference frame is used for calculation of said direct mode motion vectors:

\[
MV_F = TD_B \times MV_1 / TD_{b,1}
\]
where, TD_B represents a temporal distance between a current B frame and a list 0 reference frame, $TD_{D,1}$ represents a temporal distance between a field 1 of the list 1 reference frame and a list 0 reference field, and MV_1 represents a motion vector of a co-located block in the field 1 of the list 1 reference frame for said direct mode.

(17) The method according to one of items (9) to (16) above, wherein said step includes the step of, if a macroblock of said B picture is in a frame mode, a co-located macroblock of said list 1 reference picture is in a field mode and a list 0 reference picture for said direct mode of said B picture temporally follows said list 1 reference picture, calculating said direct mode motion vectors MV_F and MV_B of a B frame from the below equation where motion information of a co-located block in a field 1 of a list 1 reference frame is used for calculation of said direct mode motion vectors:

$$MV_F = -TD_B \times MV_1 / TD_{D,1}$$

$$MV_B = - (TD_B + TD_{D,1}) \times MV_1 / TD_{D,1}$$
or

$$Z = - TD_B \times 256 / TD_{D,1}$$

$$MV_F = (Z \times MV_1 + 128) >> 8$$

$$W = Z - 256$$
where, TD\(_B\) represents a temporal distance between a current B frame and a list 0 reference frame, TD\(_D,1\) represents a temporal distance between a field 1 of the list 1 reference frame and a list 0 reference field, and MV\(_1\) represents a motion vector of a co-located block in the field 1 of the list 1 reference frame for said direct mode.

(18) A method for calculating direct mode motion vectors of a B (Bi-predictive) picture in a moving picture coding system to extract the direct mode motion vectors of the B picture, in particular according to one of items (1) to (17), the method comprising the step of, if both a list 0 reference picture and list 1 reference picture for direct mode temporally follow said B picture, scaling a motion vector of a co-located block in said list 1 reference picture for said direct mode to derive a list 0 motion vector MV\(_F\) and a list 1 motion vector MV\(_B\), and calculating said direct mode motion vectors of said B picture.

(19) The method according to item (18) above, wherein said step includes the step of, if both a macroblock of said B picture and a co-located macroblock of said list 1 reference picture are in a frame mode and said list 0 reference picture for said direct mode temporally follows said list 1 reference picture, calculating said direct mode motion vectors MV\(_F\) and MV\(_B\) of said B picture as follows:

\[
\text{MV}_F = \frac{\text{TD}_B \times \text{MV}}{\text{TD}_D} \\
\text{MV}_B = \frac{(\text{TD}_B - \text{TD}_D) \times \text{MV}}{\text{TD}_D}
\]

or

\[
Z = \frac{\text{TD}_B \times 256}{\text{TD}_D} \\
\text{MV}_F = \frac{(Z \times \text{MV} + 128)}{256} \\
\text{MV}_B = \frac{(W \times \text{MV} + 128)}{256}
\]

where, TD\(_B\) represents a temporal distance between a current B frame and a list 0 reference frame, TD\(_D\) represents a temporal distance between a list 1 reference frame and the list 0 reference frame, and MV represents a motion vector of said co-located block in said list 1 reference picture for said direct mode.

(20) The method according to items (18) or (19) above, wherein said step includes the step of, if both a macroblock of said B picture and a co-located macroblock of said list 1 reference picture are in a frame mode and said list 0 reference picture for said direct mode temporally precedes said list 1 reference picture, calculating said direct mode motion vectors MV\(_F\) and MV\(_B\) of said B picture as follows:

\[
\text{MV}_F = -\frac{\text{TD}_B \times \text{MV}}{\text{TD}_D}
\]
$$MV_B = -(TD_B + TD_D) \times MV / TD_D$$

or

$$Z = -TD_B \times 256 / TD_D$$

$$MV_F = (Z \times MV + 128) \gg 8$$

$$W = Z - 256$$

$$MV_B = (W \times MV + 128) \gg 8$$

where, TD_B represents a temporal distance between a current B frame and a list 0 reference frame, TD_D represents a temporal distance between a list 1 reference frame and the list 0 reference frame, and MV represents a motion vector of said co-located block in said list 1 reference picture for said direct mode.

(21) The method according to one of items (18) to (20) above, wherein said step includes the step of, if both a macroblock of said B picture and a co-located macroblock of said list 1 reference picture are in a field mode and said list 0 reference picture for said direct mode temporally follows said list 1 reference picture, calculating said direct mode motion vectors $MV_{F,i}$ and $MV_{B,i}$ for each field i of a B frame as follows:

$$MV_{F,i} = TD_{B,i} \times MV_i / TD_{D,i}$$

$$MV_{B,i} = (TD_{B,i} - TD_{D,i}) \times MV_i / TD_{D,i}$$

or

$$Z = TD_{B,i} \times 256 / TD_{D,i}$$

$$MV_{F,i} = (Z \times MV_i + 128) \gg 8$$

$$W = Z - 256$$

$$MV_{B,i} = (W \times MV_i + 128) \gg 8$$

where, $TD_{B,i}$ represents a temporal distance between a current B field and a list 0 reference field, $TD_{D,i}$ represents
a temporal distance between a list 1 reference field and the list 0 reference field, and MV_i represents a motion vector of a co-located block in a list 1 reference field for said direct mode.

(22) The method according to one of items (18) to (21) above, wherein said step includes the step of, if both a macroblock of said B picture and a co-located macroblock of said list 1 reference picture are in a field mode and said list 0 reference picture for said direct mode temporally precedes said list 1 reference picture, calculating said direct mode motion vectors MV_{F,i} and MV_{B,i} for each field i of a B frame as follows:

\[
MV_{F,i} = -\frac{TD_{B,i} \times MV_i}{TD_{D,i}}
\]

or

\[
MV_{B,i} = -\frac{(TD_{B,i} + TD_{D,i}) \times MV_i}{TD_{D,i}}
\]

(23) The method according to one of items (18) to (22) above, wherein said step includes the step of, if a macroblock of said B picture is in a field mode, a co-located macroblock of said list 1 reference picture is in a frame mode and said list 0 reference picture for said direct mode temporally follows said list 1 reference picture, calculating said direct mode motion vectors MV_{F,i} and MV_{B,i} for each field i of a B frame as follows:

\[
Z = -TD_{B,i} \times 256 \div TD_{D,i}
\]

\[
MV_{F,i} = (Z \times MV_i + 128) \gg 8
\]

\[
W = Z - 256
\]

\[
MV_{B,i} = (W \times MV_i + 128) \gg 8
\]

where, TD_{B,i} represents a temporal distance between a current B field and a list 0 reference field, TD_{D,i} represents a temporal distance between a list 1 reference field and the list 0 reference field, and MV_i represents a motion vector of a co-located block in a list 1 reference field for said direct mode.
where, \(TD_{B,i} \) represents a temporal distance between a current B field and a list 0 reference field, \(TD_D \) represents a temporal distance between a list 1 reference frame and a list 0 reference frame, and MV represents a motion vector of a co-located block in a list 1 reference frame for said direct mode.

(24) The method according to one of items (18) to (23) above, wherein said step includes the step of, if a macroblock of said B picture is in a field mode, a co-located macroblock of said list 1 reference picture is in a frame mode and said list 0 reference picture for said direct mode temporally precedes said list 1 reference picture, calculating said direct mode motion vectors \(MV_{F,i} \) and \(MV_{B,i} \) for each field i of a B frame as follows:

\[
MV_{F,i} = (Z \times MV + 128) >> 8
\]

\[
W = Z - 256
\]

\[
MV_{B,i} = (W \times MV + 128) >> 8
\]

(25) The method according to one of items (18) to (24) above, wherein said step includes the step of, if a macroblock of said B picture is in a frame mode, a co-located macroblock of said list 1 reference picture is in a field mode and said list 0 reference picture for said direct mode temporally follows said list 1 reference picture, calculating said direct mode motion vectors \(MV_F \) and \(MV_B \) of a B frame from the below equation where motion information of a co-

\[
MV_{F,i} = \frac{-TD_{B,i} \times MV}{TD_D}
\]

\[
MV_{B,i} = - \frac{(TD_{B,i} + TD_D) \times MV}{TD_D}
\]

or

\[
Z = \frac{-TD_{B,i} \times 256}{TD_D}
\]

\[
MV_{F,i} = (Z \times MV + 128) >> 8
\]

\[
W = Z - 256
\]

\[
MV_{B,i} = (W \times MV + 128) >> 8
\]
located block in a field 0 of a list 1 reference frame is used for calculation of said direct mode motion vectors:

\[MV_F = \frac{TD_B \times MV_0}{TD_{D,0}} \]

\[MV_B = \frac{(TD_B - TD_{D,0}) \times MV_0}{TD_{D,0}} \]

or

\[Z = \frac{TD_B \times 256}{TD_{D,0}} \]

\[MV_F = (Z \times MV_0 + 128) \gg 8 \]

\[W = Z - 256 \]

\[MV_B = (W \times MV_0 + 128) \gg 8 \]

where, TD_B represents a temporal distance between a current B frame and a list 0 reference frame, TD_{D,0} represents a temporal distance between a field 0 of the list 1 reference frame and a list 0 reference field, and MV_0 represents a motion vector of a co-located block in the field 0 of the list 1 reference frame for said direct mode.

(26) The method according to one of items (18) to (25) above, wherein said step includes the step of, if a macroblock of said B picture is in a frame mode, a co-located macroblock of said list 1 reference picture is in a field mode and said list 0 reference picture for said direct mode temporally precedes said list 1 reference picture, calculating said direct mode motion vectors MV_F and MV_B of a B frame from the below equation where motion information of a co-located block in a field 0 of a list 1 reference frame is used for calculation of said direct mode motion vectors:

\[MV_F = -TD_B \times MV_0 / TD_{D,0} \]

\[MV_B = - (TD_B + TD_{D,0}) \times MV_0 / TD_{D,0} \]

or

\[Z = -TD_B \times 256 / TD_{D,0} \]

\[MV_F = (Z \times MV_0 + 128) \gg 8 \]
(27) A method for calculating direct mode motion vectors of a B (Bi-predictive) picture in a moving picture coding system to extract the direct mode motion vectors of the B picture, in particular according to one of items (1) to (26), comprising the step of assigning a sign to an inter-picture temporal distance value, scaling a motion vector of a co-located block in a list 1 reference picture for direct mode regardless of locations of the list 0 and said list 1 reference pictures for direct mode to derive a list 0 motion vector \(MV_F \) and a list 1 motion vector \(MV_B \), and calculating said direct mode motion vectors of said B picture.

(28) The method according to item (27) above, wherein said step includes the step of, if both a macroblock of said B picture and a co-located macroblock of said list 1 reference picture are in a frame mode, calculating said direct mode motion vectors \(MV_F \) and \(MV_B \) of said B picture as follows:

\[
MV_F = \frac{TD_B \times MV}{TD_D}
\]

\[
MV_B = \frac{(TD_B - TD_D) \times MV}{TD_D}
\]

or

\[
Z = \frac{TD_B \times 256}{TD_D}
\]

\[
MV_F = \frac{(Z \times MV + 128)}{256}
\]

\[
W = Z - 256
\]

\[
MV_B = \frac{(W \times MV + 128)}{256}
\]

where, \(TD_B \) represents a temporal distance between a current B frame and a list 0 reference frame, which is assigned a positive (+) sign if it is measured from the B frame and a negative (-) sign if it is measured from the list 0 reference frame, \(TD_D \) represents a temporal distance between a list 1 reference frame and the list 0 reference frame, which is assigned a positive (+) sign if it is measured from the list 1 reference frame and a negative (-) sign if it is measured from the list 0 reference frame, and \(MV \) represents a motion vector of said co-located block in said list 1 reference picture for said direct mode.

(29) The method according to item (27) or (28) above, wherein said step includes the step of, if both a macroblock of said B picture and a co-located macroblock of said list 1 reference picture are in a field mode, calculating said direct mode motion vectors \(MV_{F,i} \) and \(MV_{B,i} \) for each field \(i \) of a B frame as follows:

\[
W = Z - 256
\]

\[
MV_B = \frac{(W \times MV + 128)}{256}
\]
\[M_{B,i} = \frac{(TD_{B,i} - TD_{D,i}) \times MV_i}{TD_{D,i}} \]

or

\[Z = \frac{TD_{B,i} \times 256}{TD_{D,i}} \]

\[M_{F,i} = \frac{(Z \times MV_i + 128)}{256} \]

\[W = Z - 256 \]

\[M_{B,i} = \frac{(W \times MV_i + 128)}{256} \]

where, \(TD_{B,i} \) represents a temporal distance between a current B field and a list 0 reference field, which is assigned a positive (+) sign if it is measured from the B field and a negative (-) sign if it is measured from the list 0 reference field. \(TD_{D,i} \) represents a temporal distance between a list 1 reference field and the list 0 reference field, which is assigned a positive (+) sign if it is measured from the list 1 reference field and a negative (-) sign if it is measured from the list 0 reference field, and \(MV_i \) represents a motion vector of a co-located block in a list 1 reference field for said direct mode.

(30) The method according to one of items (27) to (29) above, wherein said step includes the step of, if a macroblock of said B picture is in a field mode and a co-located macroblock of said list 1 reference picture is in a frame mode, calculating said direct mode motion vectors \(MV_{F,i} \) and \(MV_{B,i} \) for each field i of a B frame as follows:

\[M_{F,i} = TD_{B,i} \times MV_{i} / TD_{D} \]

\[M_{B,i} = TD_{B,i} \times MV_{i} / TD_{D} \]

or

\[Z = TD_{B,i} \times 256 / TD_{D} \]

\[M_{F,i} = (Z \times MV_i + 128) \gg 8 \]

\[W = Z - 256 \]
where, \(TD_{B,i}\) represents a temporal distance between a current B field and a list 0 reference field, which is assigned a positive (+) sign if it is measured from the B field and a negative (-) sign if it is measured from the list 0 reference field, \(TD_D\) represents a temporal distance between a list 1 reference frame and a list 0 reference frame, which is assigned a positive (+) sign if it is measured from the list 1 reference frame and a negative (-) sign if it is measured from the list 0 reference frame, and \(MV\) represents a motion vector of a co-located block in a list 1 reference frame for said direct mode.

\[(31)\] The method according to one of items (27) to (30) above, wherein said step includes the step of, if a macroblock of said B picture is in a frame mode, a co-located macroblock of said list 1 reference picture is in a field mode and said list 1 reference picture temporally follows said B picture, calculating said direct mode motion vectors \(MV_F\) and \(MV_B\) of a B frame from the below equation where motion information of a co-located block in a field 0 of a list 1 reference frame is used for calculation of said direct mode motion vectors:

\[
MV_F = TD_B \times MV_0 / TD_{D,0}
\]

or

\[
MV_B = (TD_B - TD_{D,0}) \times MV_0 / TD_{D,0}
\]

\[(32)\] The method according to one of items (27) to (31) above, wherein said step includes the step of, if a macroblock of said B picture is in a frame mode, a co-located macroblock of said list 1 reference picture is in a field mode and said list 1 reference picture temporally precedes said B picture, calculating said direct mode motion vectors \(MV_F\) and \(MV_B\) of a B frame from the below equation where motion information of a co-located block in a field 0 of a list 1 reference frame is used for calculation of said direct mode motion vectors:

\[
Z = TD_B \times 256 / TD_{D,0}
\]

\[MV_F = (Z \times MV_0 + 128) >> 8\]

\[W = Z - 256\]

\[MV_B = (W \times MV_0 + 128) >> 8\]

where, \(TD_B\) represents a temporal distance between a current B frame and a list 0 reference frame, which is assigned a positive (+) sign if it is measured from the B frame and a negative (-) sign if it is measured from the list 0 reference frame, \(TD_{D,0}\) represents a temporal distance between a field 0 of the list 1 reference frame and a list 0 reference field, which is assigned a positive (+) sign if it is measured from the field 0 of the list 1 reference frame and a negative (-) sign if it is measured from the list 0 reference field, and \(MV_0\) represents a motion vector of a co-located block in the field 0 of the list 1 reference frame for said direct mode.
or

\[Z = \text{TD}_B \times 256 / \text{TD}_{D,1} \]

\[\text{MV}_B = (Z \times \text{MV}_1 + 128) >> 8 \]

\[W = Z - 256 \]

\[\text{MV}_B = (W \times \text{MV}_1 + 128) >> 8 \]

where, \(\text{TD}_B \) represents a temporal distance between a current B frame and a list 0 reference frame, which is assigned a positive (+) sign if it is measured from the B frame and a negative (-) sign if it is measured from the list 0 reference frame, \(\text{TD}_{D,1} \) represents a temporal distance between a field 1 of the list 1 reference frame and a list 0 reference field, which is assigned a positive (+) sign if it is measured from the field 1 of the list 1 reference frame and a negative (-) sign if it is measured from the list 0 reference field, and \(\text{MV}_1 \) represents a motion vector of a co-located block in the field 1 of the list 1 reference frame for said direct mode.

(33) A method for calculating direct mode motion vectors of a B (Bi-predictive) picture in a moving picture coding system to extract the direct mode motion vectors of the B picture, in particular according to one of items (1) to (32), the method comprising the step of, if a co-located macroblock in a list 1 reference picture for direct mode is in an intra mode, predicting and calculating list 0 and list 1 reference pictures and motion vectors from neighboring blocks of a macroblock of said B picture to be coded, on the basis of a spatial redundancy, and calculating said direct mode motion vectors of said B picture.

(34) The method according to item (33) above, wherein said step includes the step of, if neighboring blocks A, B and C of said macroblock to be coded refer to different reference pictures, selecting a reference picture with a smallest index as said reference picture for each list.

(35) The method according to item (33) or (34) above, wherein said step includes the step of, if two or more ones of neighboring blocks of said macroblock to be coded refer to a reference picture with the same index, selecting that reference picture as said reference picture for each list.

(36) The method according to one of items (33) to (35) above, wherein said step includes the step of, setting its list 0 and list 1 motion vectors to 0 if any one of neighboring blocks A, B and C of said macroblock to be coded is in the intra mode, selecting a motion vector having the same direction as that of a temporal location of said reference picture for each list from a neighboring block, and acquiring said motion vector for each list through a median operation, or selecting only one of the two motion vectors from that block if a neighboring block has two motion vectors with the same directions and acquiring said motion vector for each list through the median operation including the selected motion vector.

(37) The method according to one of items (33) to (36) above,
wherein said step includes the step of, if no effective reference picture index for each list mode can be derived, setting list 0 and list 1 reference picture indexes to 0 and setting said motion vector for each list mode to 0.

Claims

1. A method for extracting direct mode motion vectors of a current macroblock in a B-picture in moving picture processing, comprising:
 - determining a co-located block for the current macroblock in a list 1 reference picture;
 - selecting a motion vector from a list 0 motion vector and a list 1 motion vector of the co-located block in the list 1 reference picture; and
 - deriving the motion vectors of the current macroblock in the B-picture from the selected motion vector;

wherein the list 1 motion vector of the co-located block in the list 1 reference picture for direct mode is selected as the motion vector for derivation of said direct mode motion vectors only if the co-located block in the list 1 reference picture has only the list 1 motion vector and else the list 0 motion vector of the co-located block in the list 1 reference picture for direct mode is selected as the motion vector for derivation of said direct mode motion vectors; and wherein the step of deriving the motion vectors of the current macroblock in the B-picture from the selected motion vector comprises applying a bit operation to the motion vector of the current macroblock.

2. The method according to claim 1, further comprising the step of determining a reference picture pointed to by a motion vector of the co-located block in the list 1 reference picture as a list 0 reference picture for direct mode.

3. The method according to claim 1 or 2, wherein said list 0 and list 1 respectively are in accordance with the H.264 / MPEG-4 part 10 standard.
FIG. 1
(Related Art)

(A)

Output order (POC) 0 1 2 3 4 5 6 7 8
Decoding order (PN) 0 3 2 4 1 6 5
Default index order for list 0 4 3 2 1 0 5
Default index order for list 1 5 4 3 2 1

List 1 reference picture for B6 direct mode

(B)

Output order (POC) 0 1 2 3 4 5 6 7 8
Decoding order (PN) 0 3 2 4 1 7 6 5
Default index order for list 0 4 3 2 1 0 5
Default index order for list 1 5 4 3 2 1

List 1 reference picture for B5 direct mode

(C)

Output order (POC) 0 1 2 3 4 5 6 7 8
Decoding order (PN) 0 3 2 4 1 7 6 8 5
Default index order for list 0 5 4 3 2 1 0
Default index order for list 1 5 4 3 2 1

List 1 reference picture for B7 direct mode
FIG. 2
(Related Art)

(A)

List 1 reference picture for B8
direct mode

Output order(POC) 0 1 2 3 4 5 6 7 8 9
Decoding order(PN) 0 2 1 3 5 4 6 7 8 9
Default index order for list 0 5 4 3 2 1 0
Default index order for list 1 5 4 3 2

(B)

List 1 reference picture for B7
direct mode

Output order(POC) 0 1 2 3 4 5 6 7 8 9
Decoding order(PN) 0 2 1 3 5 4 6 8 7 9
Default index order for list 0 5 4 3 2 1
Default index order for list 1 5 4 3 2

(C)

List 1 reference picture for B9
direct mode

Output order(POC) 0 1 2 3 4 5 6 7 8 9
Decoding order(PN) 0 2 1 3 5 4 6 8 7 9
Default index order for list 0 5 4 3 2 1
Default index order for list 1 5 4 3 2
FIG. 4

(A) L1 ref. B

(B) L1 ref. B

Default index order for list 1 mode

4 3 2 1

4 3 2 1

(C) L1 ref. B

(D) L1 ref. B

Default index order for list 1 mode

4 3 2 1

4 3 2 1

(E) L1 ref. B

(F) L1 ref. B

Default index order for list 1 mode

4 3 2 1

4 3 2 1

(G) L1 ref. B

(H) L1 ref. B

Reordered index order for list 1 mode

4 3 1 2

4 3 1 2
FIG. 6

(A) List 0 reference current B List 1 reference

......

MVF MV MVB

TDa TDb

(B) current B List 1 reference List 0 reference

......

MVb MV MVF

TDb TDa

(C) current B List 0 reference List 1 reference

......

MVf MV MVb

TDb TDa
FIG. 7

(A) List 0 reference current B List 1 reference
\[f_0 \quad f_1 \quad f_0 \quad f_1 \quad f_0 \quad f_1 \]

\[MV_{F,0} \quad MV_{B,0} \quad MV_0 \]

\[TD_{B,0} \quad TD_{D,0} \]

(B) current B List 1 reference List 0 reference
\[f_0 \quad f_1 \quad f_0 \quad f_1 \quad f_0 \quad f_1 \]

\[MV_{F,1} \quad MV_{D,1} \quad MV_1 \]

\[TD_{D,1} \quad TD_{B,1} \]

(C) current B List 0 reference List 1 reference
\[f_0 \quad f_1 \quad f_0 \quad f_1 \quad f_0 \quad f_1 \]

\[MV_{F,0} \quad MV_{D,0} \quad MV_0 \]

\[TD_{B,0} \quad TD_{D,0} \]

(D) current B List 1 reference
\[f_0 \quad f_1 \quad f_0 \quad f_1 \quad f_0 \quad f_1 \]

\[MV_{F,1} \quad MV_{D,1} \quad MV_1 \]

\[TD_{B,1} \quad TD_{D,1} \]
FIG. 10

(A) List 0 reference List 1 reference current B

(B) List 1 reference List 0 reference current B

cot-located block
FIG. 12

(A) List 0 reference List 1 reference current B

(B) List 1 reference List 0 reference current B
FIG. 13

(A) List 0 reference List 1 reference current B

(B) List 1 reference List 0 reference current B
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>"TEXT OF FINAL COMMITTEE DRAFT OF JOINT VIDEO SPECIFICATION (ITU-T REC. H.264 / ISO/IEC 14496-10 AVC)" INTERNATIONAL ORGANIZATION FOR STANDARDIZATION - ORGANISATION INTERNATIONALE DE NORMALISATION, XX, XX, July 2002 (2002-07), pages 1-XY, 1-197, XP001109641 * paragraphs [8.3.6.3], [10.3.2], [10.3.3], [10.3.6], [10.4.2] *</td>
<td>1-3</td>
<td>INV. H04N7/46</td>
</tr>
<tr>
<td>A</td>
<td>EP 0 863 674 A (GEN INSTRUMENT CORP) 9 September 1998 (1998-09-09) * figures 4,5 * * page 2, line 44 - line 58 * * page 3, line 1 - line 17 * * page 5, line 56 - page 11, line 33 *</td>
<td>1-3</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>WO 01/33864 A (KONINKL PHILIPS ELECTRONICS NV) 10 May 2001 (2001-05-10) * page 4, lines 10-23</td>
<td>1-3</td>
<td></td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims

Place of search: Munich
Date of completion of the search: 24 March 2009
Examiner: Kuhn, Peter
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EPO file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

24-03-2009

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AU 5740098 A</td>
<td>10-09-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9800848 A</td>
<td>23-11-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2230562 A1</td>
<td>07-09-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1620145 A</td>
<td>25-05-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 11075191 A</td>
<td>16-03-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 980949 A</td>
<td>08-09-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5991447 A</td>
<td>23-11-1999</td>
</tr>
<tr>
<td>WO 0133864 A</td>
<td>10-05-2001</td>
<td>CN 1336080 A</td>
<td>13-02-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 200313565 T</td>
<td>08-04-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6654420 B1</td>
<td>25-11-2003</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82