Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The present invention relates to a device for scalding poultry according the preamble of claim 1. The present invention also relates to a method for scalding poultry according the preamble of claim 13.

[0002] The scalding of poultry, and more particularly slaughtered and bled poultry such as chickens, ducks and turkeys, has the purpose of reducing the attachment of the feathers to the carcass, such that removal of the plumage during a subsequent (plucking) process becomes simpler. A prerequisite for scalding is that scalding must be completed shortly after poultry has been slaughtered because of the rapid onset of rigor mortis. Partially because of the desired speed use has heretofore usually been made of a basin with warm water in which the poultry is immersed. After a treatment time of about 3 minutes the poultry is taken out of the basin and the feathers can be removed relatively easily. A drawback of this so-called “immersion scalding” is that the poultry entrains a considerable amount of water from the basin, and there is also the problem of possible transfer of dirt, germs and bacteria from the basin.

[0003] An alternative method of scalding is described in US 3,703,021. Here the poultry is pre-plucked, i.e. a substantial part of the feathers is already removed such that the poultry to be scalded is already almost bald, and that the pre-plucked poultry is then carried through a processing space in a time period of 30 to 40 seconds. Steam-heated liquid is blown into this processing space with air as carrier medium. A uniform temperature, a 100% air humidity and an excess of liquid can thus be maintained in the processing space. The process conditions are monitored and maintained by detection means and control means co-acting therewith. It has been found difficult in practice to obtain a constant and effective scalding result with this method. A main quality criterion is of course the extent to which the feathers are loosened. Other factors determining the quality of scalding are the degree of damage to the epidermis (surface epithelium) and the degree of denaturation (“boiling down”) of proteins in the meat directly under the skin. At least all these aspects must be taken into account in quality control of the scalding process.

[0004] It is the object of the invention to provide an improved method of scalding as well as the means required for this purpose, whereby an effective scalding result can be obtained quickly and without the risk of cross-contamination while retaining the advantages of the prior art.

[0005] The present invention provides for this purpose a device for scalding poultry comprising a full plumage according claim 1. A targeted condensation of the scalding medium will thus occur at the position where the jet of scalding medium strikes the skin of the poultry. The important advantage of condensation is that it allows a very considerable heat transfer in a relatively short time without the risk of (local or other) overheating (“over-scalding”) of the poultry. Excess damage to the epidermis (surface epithelium) of the slaughtered animals can thus be prevented. After all, not only is a great heat transfer realized as a result of the condensation, but the temperature of the poultry will also not exceed the wet bulb temperature, at least as long as the skin has not dried up as a result of evaporation or as long as the liquid on the skin is not heated any further. Both ways of exceeding the wet bulb temperature require a considerable energy transfer which, because of the limited capacity of air heating (since the more rapid heat transfer resulting from condensation is no longer possible), will be less likely to occur. The scalding process according to the present invention thus has a built-in safeguard against excessive heating of the poultry. Dispensing means are very generally understood to mean supply means intended for directed supply of the scalding medium; the dispensing means may optionally be provided with control means if desired. Another significant advantage of the present invention is therefore that the condensation can be performed in targeted manner; the scalding medium will thus be blown at least partially underneath the feathers. To this end the jet (or jets) of scalding medium will in particular have to be brought into contact with the poultry in a manner aimed against the direction of implant of the feathers; the scalding medium will thus penetrate the feathers and at least partially reach the skin. It thus becomes possible to scald poultry without immersion in liquid and without first removing a part of the feathers. Carrying the scalding medium into the transport path (i.e. the path followed by the poultry) in directed manner, which of course implies that the scalding medium is also fed directly targeted at the poultry, results in an unexpectedly great advantage. Targeted condensation resulting from one or more jets of scalding medium makes it possible to obtain a controlled and desired scalding result without pretreatment (pre-plucking) of the poultry, in extremely efficient manner (quickly) and with a process-inherent safeguard against excessive heating of the poultry. This means that sufficient loosening of the feathers can be coupled to acceptable damage to the epidermis which can be classified as “low scald”, “intermediate scald” or “high scald” and a minimal degree of denaturation of the poultry meat.

[0006] The international patent application WO 02/098239 D2 relates to a condensing scalding tunnel for slaughtered animals like pigs. Such animals may not compared to scalding poultry comprising a full plumage as a scalding a hairy animal relates to complete different process conditions. This is also demonstrated in that the scalding medium is fed in the scalding tunnel from the floor. The flow of scalding medium is returned via a inlet in the upper region of the scalding tunnel. There is no referral to a scalding medium with a dew point lying in the range of [49-61]°C in this document whatsoever.

[0007] The European patent application 1297 748 discloses a method and device for scalding poultry wherein an air/water vapour mixture is brought in contact with the
poultry carcasses. Again any disclosure of scalding using a scalding medium with a dew point lying in the range of [49-61]°C. providing advantages as explained before lacks in this document.

[0008] The European patent application 0 140 300 discloses a method and device for scalding a carcass, here again being referred to as a pig carcass using a humid air-flow having a temperature of about 62°C and a relative humidity exceeding about 80%. As mentioned before also this document is silent on any specifics on a dew point of the scalding medium used.

[0009] Another significant advantage is that a very favourable scalding result can thus be obtained; scalding can be performed with the device according to the present invention in “intelligent” manner by targeting determined positions on the skin of the poultry less than other positions, for instance with the intention that the feathers at least substantially come loose everywhere with the same resistance. This is not otherwise essential. If a subsequent process (such as more particularly plucking) requires a specific variation in the attachment of the feathers over the carcass of a poultry animal, this can then be achieved with the device according to the invention. It is possible here to envisage for instance scalding a poultry animal such that, at locations which are less readily accessible for plucking, the feathers are less firmly attached than at locations where plucking is simpler. Partly due to the absence of a basin filled with liquid, the device can moreover be embodied such that it can be cleaned effectively and efficiently.

[0010] In respect of the scalding medium that can be applied, heated air is in the first instance envisaged which has a dew point in the range of [49-61]°C and which is at least partially or almost fully saturated with water. Other carrier gases or gas mixtures can however also be applied. It is also the case for the liquid that alternative liquids or liquid mixtures can be applied instead of water. The device according to the present invention is not limited in respect of the composition of the scalding medium to be applied therein.

[0011] The dispensing means for carrying the scalding medium into the transport path are preferably provided with at least one adjustable outlet opening. Using such an adjustable outlet opening it is possible to select the optimal direction and form of the jet of scalding medium. The form, starting position, length and direction of the jet of scalding medium can be modified subject to situational conditions. The device can thus be adapted to treat different types of poultry, for different batches of the same poultry animal, or even per individual slaughtered animal for scalding. For adjustment of the outlet opening(s) at individual level, and optionally also in the case of adjustment for different group of slaughtered animals, it can be advantageous to automate displacement of the outlet opening, for instance by incorporating at least one sensor (envisage a camera system in particular) and a drive coupled to the sensor and a control system for displacing the outlet opening(s) at the command of the control system. The dispensing means for the scalding medium can here comprise for instance at least one nozzle.

[0012] In order to prevent the scalding medium falling below the condensation temperature on the path which must be covered from the conditioning space to the poultry, it is advantageous if the dispensing means for the scalding medium comprise heating. This can also be advantageous when use of the device temporarily ceases; condensation of the scalding medium in the dispensing means can then be prevented by activating the heating.

[0013] The processing space can be embodied as a substantially tunnel-like space. An overhead conveyor as frequently used in poultry slaughterhouses and provided with poultry holders displaceable along the overhead conveyor can be readily carried through such a processing space. The poultry can be suspended by the legs from the poultry holders and thus pass through a transport path defined by the overhead conveyor, and is readily accessible for the feed of scalding medium. At least a part of the dispensing means is here preferably disposed relative to this transport path such that the dispensing means bring a part of the scalding medium into targeted contact with the wings, in particular the underside of the wings of the poultry. The “underside of the wings” is here understood to mean the part of the wing situated on the underside of the wing when a poultry animal is standing on its legs; since during transport through the processing space the poultry is often suspended upside down from the legs, in this situation the underside of the wing will, conversely, be situated on the top side. Bringing the scalding medium into targeted contact with the wings does not otherwise have to be the case along the whole length of the transport path; it is also possible for the scalding medium to come into targeted contact with the underside of the wings of the poultry along only a part of the length of the transport path. It is found in practice that the feathers on the wings of the poultry are particularly difficult to remove; it is precisely for this reason that scalding is expressly undertaken at the position of the wings.

[0014] The conditioning space for composing the scalding medium is desirably provided with at least one evaporation space with a feed for liquid. The conditioning space for composing the scalding medium can be embodied even more advantageously with at least two evaporation spaces placed in line, both provided with a feed for liquid, wherein the feed for liquid on the first in-line evaporation space is adapted for operation at a higher temperature than the second evaporation space. For the purpose of conditioning the scalding medium, and more particularly for adjusting the dew point, use can be made of for instance a washer as per se known from the prior art. The advantage of two (or even more than two) evaporation spaces running into each other is that an accelerated evaporation process can first be followed at a higher temperature and that the fine adjustment of the dew point takes place only in the final part of the evaporation process.
In order to displace the scalding medium from the conditioning space to the processing space the device can be provided with at least one fan, also referred to as blower or ventilator. It is further desirable that the processing space be provided with discharge means for discharging from the processing space condensation and/or gas/liquid mixture which is not (any longer) correctly conditioned. In order to limit the liquid consumption of the device the discharge means of the processing space can feed back at least partially to the conditioning space. In order to prevent scalding medium flowing outside from the processing space at the position where the poultry enters the processing space or at the position where the poultry leaves the processing space, a sluice construction can be applied. Not only is it thus possible to prevent a substantial quantity of scalding medium disappearing (limiting leakage), but the entry of ambient air into the processing space can also be limited in this way. This results in an improved controllability of the process conditions in the processing space. In a possible embodiment variant of a sluice construction upstream of the processing space the feed track leads upward when entering the processing space and leads downward again when leaving the processing space. At the position of the processing space the transport path thus lies in a higher position than in the vicinity of the processing space; because the warm scalding medium will tend to want to displace upward, leakage of scalding medium out of the processing space can thus be limited.

In order to automate the operation thereof, the device can also be provided at other locations, as already described above with reference to the displacement of the dispensing means for liquid in the processing space, with at least one sensor and a control communicating with the sensor. It is possible here to envisage for instance control of the composition of the scalding medium (time, quality and/or volume), the feed of heated liquid (time, quality and/or volume), the transporting speed of the poultry, the drive of the fan and so forth.

The present invention also relates to a method for discharging from the processing space condensation. In order to limit the treatment time of the poultry, more particularly chickens, in the processing space to [60-180] seconds. It will be apparent that a reduction in the processing duration is also possible in the case of poultry other than chickens, such as for instance turkeys and ducks. In order to obtain a uniform scalding result it can also be advantageous for an airflow to be generated in the processing space. It must also be taken into account here that this can result in a wet bulb temperature of the outer side of the poultry on which condensation, it is still also possible to opt deliberately for operation with a scalding medium having a temperature higher than 60°C, for instance 62°C.

This makes it possible with the method according to the present invention to limit the treatment time of the poultry, more particularly chickens, in the processing space to [60-180] seconds. It will be apparent that a reduction in the processing duration is also possible in the case of poultry other than chickens, such as for instance turkeys and ducks. In order to obtain a uniform scalding result it can also be advantageous for an airflow to be generated in the processing space. It must also be taken into account here that this can result in a wet bulb temperature of the outer side of the poultry on which condensation, it is still also possible to opt deliberately for operation with a scalding medium having a temperature higher than 60°C, for instance 62°C.

The present invention will be further elucidated on the basis of the non-limitative exemplary embodiments shown in the following figures. Herein:

- figure 1A shows a perspective view of a first embodiment variant of a device according to the present invention,
- figure 1B shows a cross-section through the device of figure 1A,
- figure 2A shows a perspective view of a second embodiment variant of a device according to the present invention,
- figure 2B shows a cross-section through the device of figure 2A,
- figure 3 shows a cross-section through a schematically represented third embodiment variant of a device according to the present invention,
- figure 4 shows a view of a slaughtered poultry animal being scalded in accordance with the method ac-
according to the present invention, figure 5 is a schematic representation of a conditioning space for producing a scalding medium with a dew point lying in the range of [49-61]°C, brought by washers 35 and a basin 36 with heating 37 to a desired dew point lying in the range of [49-61]°C and a desired temperature. For this purpose the washers 35 and basin 36 are connected to a hot water boiler 38, and the whole conditioning process is controlled by a control 39. The scalding medium created in conditioning space 34 is blown through conditioning space 34 by a fan 45 and then blown through openings 40 in a plate 41 into blow pipes 42. The scalding medium leaves blow pipes 42 through nozzles 43 arranged for this purpose at specific heights. The position of nozzles 43 is such that the jets of scalding medium leaving nozzles 43 are aimed directly at the paths through which poultry 32 is passing. Since poultry 33 hangs downward by legs 44 and nozzles 43 are also directed downward, the scalding medium will penetrate relatively easily under the feathers of poultry 32. Once it has been in contact with poultry 32, the scalding medium present in processing space 31 will be discharged again by fan 45 and reconditioned in conditioning space 34 to a scalding medium with a desired dew point lying in the range of [49-61]°C and a desired temperature.

[0025] Figure 4 shows a slaughtered chicken 50 which is suspended in a holder 51 on an overhead conveyor 52 in a processing space not further shown in this figure. For the purpose of supplying a scalding medium with a dew point lying in the range of [49-61]°C such that this is aimed directly at chicken 50, spray heads 53, 54 are placed in the processing space, in particular such that the neck 55 and wings 56 of chicken 50 are scalded more intensively than the other parts of chicken 50. The position of spray heads 53, 54 is vertically displaceable (see arrows P_4). Feed conduits 57, 58 for scalding medium coupled to the respective spray heads 53, 54 are slidable in guides 59 for this purpose. The positioning of spray heads 53, 54 can be automatically optimized by means of a camera 60, the signal from which is carried by a signal line 61 to a control unit 62. This control unit 62 subsequently controls the position of spray heads 53, 54 by means of control lines 63.

[0026] Figure 5 shows a schematically represented staged conditioning space 70 which consists of a first chamber 71 to which a gas for saturating is fed as according to arrow P_5. In chamber 71 are placed washers 72 which are operated at a relatively higher temperature than that which the scalding medium ultimately has to have. Before the medium in chamber 71 reaches the operating temperature of washers 72, this preheated scalding medium is carried further as according to arrow P_5 to a second chamber 73 with washers 74. These washers 74 operate at a lower temperature than washers 72 in first chamber 71. A considerable saturation and temperature increase of the medium can thus be rapidly realized in first chamber 71, for instance by steam injection, while the fine adjustment of a precisely determined dew point is brought about in second chamber 73. For supply to washers 72, 74 respective independent circulation systems 75, 76 can be supplied by a combined supply sys-
shown in figure 7 and outflow openings 87, 88 and blower processing space with a combination of blow pipes as rows P8 (see figure 6B) in a direction toward poultry 83. In this way it is also possible in advantageous manner to blow the scalding medium onto poultry 92 from different heights 90. Nozzles 93, 94 are disposed such that they blow medium condenses onto the poultry (9, 25, 32, 50, 83, 92) for processing.

It is noted, perhaps unnecessarily, that a processing space 80, whereby scalding medium exits as according to arrows P8 (see figure 6B) in a direction toward poultry 83. In this way it is also possible in advantageous manner to blow on the socks (i.e. the feathers connecting to the legs) of poultry 83. In similar manner openings 88 are also arranged in the wall of blower unit 85 such that the supplied scalding medium exits as according to arrows P8 (see figure 6B) in a direction toward poultry 83. The supply of scalding medium from standing side walls 82 is advantageous, among other reasons because it is hereby possible to also blow the scalding medium properly onto the wings directed toward these side walls 82; among others, the feathers on the wings are often difficult to remove in prior art scalding. The supply of the scalding medium to openings 88 in standing side walls 82 takes place through intermediate spaces 89 left clear for this purpose in the side walls.

As an alternative to the outflow openings 87, 88 in standing side walls 82 and the blower unit 85, is also possible to arrange separate pipes with nozzles in processing space 80. Such an embodiment variant of a processing space 90 of a device according to the present invention is shown in figure 7. In addition to being provided with the elements already known from foregoing figures, such as two transport paths 91 for poultry 92, processing space 90 is also provided with a number of centrally disposed nozzles 93 and nozzles 94 disposed on the longitudinal sides of processing space 90. Nozzles 93, 94 are disposed such that they blow the scalding medium on poultry 92 from different heights and from different directions. It is optionally also possible to embody processing space 90 such that the position of nozzles 93, 94 is changed subject to the quality of the poultry 92 for processing.

As an alternative variant of a processing space 80, such an alternative embodiment variant of a processing space 80 which is shown only very generally.

Figure 6A shows a perspective view of an alternative embodiment variant of a processing space 80 of a device according to the present invention, while figure 6B shows the cross-section through this processing space 80. Two transport paths 81 for poultry 83 here enter processing space 80 parallel to each other. The standing side walls 82 of processing space 80 are formed such that the volume of processing space 80 is limited without this limiting the possible throughput of poultry 83. A smaller volume of processing space 80 has the advantage that the process conditions in processing space 80 can be better controlled and that the scalding medium is employed more effectively. A blower unit 85 is placed centrally on the upper side 84 of processing space 80 midway between transport paths 81, whereby the volume of processing space 80 is limited still further. The hollow interior 86 of blower unit 85 also functions as feed channel for the scalding medium, and openings 87 are arranged in the wall of blower unit 85 such that the supplied scalding medium exits as according to arrows P7 (see figure 6B) in a direction toward poultry 83. In this way it is also possible in advantageous manner to blow on the socks (i.e. the feathers connecting to the legs) of poultry 83. In similar manner openings 88 are also arranged in the standing side walls 82 of processing space 80, whereby scalding medium exits as according to arrows P8 (see figure 6B) in a direction toward poultry 83. The supply of scalding medium from standing side walls 82 is advantageous, among other reasons because it is hereby possible to also blow the scalding medium properly onto the wings directed toward these side walls 82; among others, the feathers on the wings are often difficult to remove in prior art scalding. The supply of the scalding medium to openings 88 in standing side walls 82 takes place through intermediate spaces 89 left clear for this purpose in the side walls.

As an alternative to the outflow openings 87, 88 in standing side walls 82 and the blower unit 85, is also possible to arrange separate pipes with nozzles in processing space 80. Such an embodiment variant of a processing space 90 of a device according to the present invention is shown in figure 7. In addition to being provided with the elements already known from foregoing figures, such as two transport paths 91 for poultry 92, processing space 90 is also provided with a number of centrally disposed nozzles 93 and nozzles 94 disposed on the longitudinal sides of processing space 90. Nozzles 93, 94 are disposed such that they blow the scalding medium on poultry 92 from different heights and from different directions. It is optionally also possible to embody processing space 90 such that the position of nozzles 93, 94 is changed subject to the quality of the poultry 92 for processing.

Claims

1. Device (1, 20, 30) for scalding poultry (9, 25, 32, 50, 83, 92), comprising:

- a conditioning space (2, 21, 34, 70) for composing a scalding medium,
- a processing space (7, 22, 31, 80, 90) provided with transport means (8, 33, 52) which define a transport path (81, 91) for the poultry (9, 25, 32, 50, 83, 92) leading through the processing space (7, 22, 31, 80, 90), and
- dispensing means (10, 24, 40, 41, 42, 43, 53, 54, 57, 58, 85, 86, 87, 88, 89, 93, 94) for the scalding medium connecting the conditioning space (2, 21, 34, 70) to the processing space (7, 22, 31, 80, 90),

the device (1, 20, 30) is for scalding poultry (9, 25, 32, 50, 83, 92) comprising a full plumage, characterized in that

the conditioning space (2, 21, 34, 70) is for composing a partially or almost fully saturated scalding medium with a dew point lying in the range of [49-61]°C and not exceeding the wet bulb temperature, and

the dispensing means (10, 24, 40, 41, 42, 43, 53, 54, 57, 58, 85, 86, 87, 88, 89, 93, 94) is provided with at least one outlet opening (10, 43, 53, 54, 87, 88) which is directed toward the transport path (81, 91) and with which the composed scalding medium is carried from the conditioning space (2, 21, 34, 70) into the transport path (81, 91), as a result of which liquid from the scalding medium condenses onto the poultry (9, 25, 32, 50, 83, 92).

2. Device (1, 20, 30) as claimed in claim 1, characterized in that the dispensing means (10, 24, 40, 41, 42, 43, 53, 54, 57, 58, 85, 86, 87, 88, 89, 93, 94) for carrying the scalding medium into the transport path (81, 91) are provided with at least one adjustable outlet opening (10, 24, 42, 43, 53, 54).

3. Device (1, 20, 30) as claimed in claim 1 or 2, characterized in that the dispensing means (10, 24, 40, 41, 42, 43, 53, 54, 57, 58, 85, 86, 87, 88, 89, 93, 94) for the scalding medium comprise at least one nozzle (43, 93, 94).

4. Device (1, 20, 30) as claimed in any of the foregoing claims, characterized in that the dispensing means (10, 24, 40, 41, 42, 43, 53, 54, 57, 58, 85, 86, 87, 88, 89, 93, 94) for the scalding medium comprise heating (37).
5. Device (1, 20, 30) as claimed in any of the foregoing claims, characterized in that the processing space (7, 22, 31, 80, 90) consists of a substantially tunnel-like space.

6. Device (1, 20, 30) as claimed in any of the foregoing claims, characterized in that the transport means (8, 33, 52) comprise at least one overhead conveyor (8, 33, 52) provided with poultry holders displaceable along the overhead conveyor (8, 33, 52).

7. Device (1, 20, 30) as claimed in any of the foregoing claims, characterized in that at least a part of the dispensing means (10, 24, 40, 41, 42, 43, 53, 54, 57, 58, 85, 86, 87, 88, 89, 93, 94) is disposed relative to the transport means (8, 33, 52) which define a transport path (81, 91) for the poultry (9, 25, 32, 50, 83, 92) leading through the processing space (7, 22, 31, 80, 90) such that the dispensing means (10, 24, 40, 41, 42, 43, 53, 54, 57, 58, 85, 86, 87, 88, 89, 93, 94) bring a part of the scalding medium in targeted contact with the underside of the wings (56) of the poultry (9, 25, 32, 50, 83, 92).

8. Device (1, 20, 30) as claimed in any of the foregoing claims, characterized in that the conditioning space (2, 21, 34, 70) for composing the scalding medium comprises at least one evaporation space (2, 21, 34, 70) with a feed for liquid (5).

9. Device (1, 20, 30) as claimed in claim 8, characterized in that the conditioning space (2, 21, 34, 70) for composing the scalding medium comprises at least two evaporation spaces (2, 21, 34, 70, 71, 72) placed in line, both provided with a feed for liquid (5), wherein the feed for liquid (5) on the first in-line evaporation space (71) is adapted for operation at a higher temperature than the second evaporation space (73).

10. Device (1, 20, 30) as claimed in claim 9, characterized in that the first in-line evaporation space is provided with a steam supply (35).

11. Device (1, 20, 30) as claimed in any of the foregoing claims, characterized in that the processing space (7, 22, 31, 80, 90) is provided with discharge means (11, 13, 26) for discharging condensation (12) from the processing space (7, 22, 31, 80, 90).

12. Device (1, 20, 30) as claimed in any of the foregoing claims, characterized in that the device (1, 20, 30) is provided with at least one sensor (60) and a control (62), preferably a dew point control, communicating with the sensor (60).

13. Method for scalding poultry (9, 25, 32, 50, 83, 92), comprising the processing steps of:

A) composing a scalding medium;
B) carrying into a processing space (7, 22, 31, 80, 90) poultry (9, 25, 32, 50, 83, 92) for scalding; and
C) supplying the scalding medium to the processing space (7, 22, 31, 80, 90), whereby the scalding medium is partially or almost fully saturated when coming into contact with the poultry and composed with a dew point lying in the range of [49-61]°C and not exceeding the wet bulb temperature;
the poultry (9, 25, 32, 50, 83, 92) are carried in the processing space (7, 22, 31, 80, 90) comprising full plumage, and
the scalding medium is supplied to the processing space (7, 22, 31, 80, 90) such that at least one jet of the scalding medium is formed which is directed at the poultry (9, 25, 32, 50, 83, 92).

14. Method as claimed in claim 13, characterized in that the jet of the scalding medium is directed at the skin of the poultry (9, 25, 32, 50, 83, 92).

15. Method as claimed in claim 13, characterized in that when coming into contact with the skin of the poultry (9, 25, 32, 50, 83, 92), the medium jet has a temperature higher than the dew point.

16. Method as claimed in any of the claims 13-15, characterized in that the dew point of the scalding medium lies in the range of [49-53]°C.

17. Method as claimed in any of the claims 13-15, characterized in that the dew point of the scalding medium lies in the range of [53-57]°C.

18. Method as claimed in any of the claims 13-15, characterized in that the dew point of the scalding medium lies in the range of [57-61]°C.

19. Method as claimed in any of the claims 13-18, characterized in that the scalding medium is 90-100% saturated when it enters into contact with the poultry (9, 25, 32, 50, 83, 92) during processing step C).

20. Method as claimed in any of the claims 13-19, characterized in that the jet of scalding medium is directed particularly at the neck of the poultry (9, 25, 32, 50, 83, 92) during processing step C).

21. Method as claimed in any of the claims 13-20, characterized in that the jet of scalding medium is directed particularly at the wings (56) of the poultry (9, 25, 32, 50, 83, 92) during processing step C).

22. Method as claimed in any of the claims 13-21, characterized in that the jet of scalding medium is directed particularly at the belly of the poultry (9, 25,
23. Method as claimed in any of the claims 13-22, characterized in that the jet of scalding medium is directed particularly at the tail of the poultry (9, 25, 32, 50, 83, 92) during processing step C).

24. Method as claimed in any of the claims 13-23, characterized in that the jet of scalding medium is set per batch of poultry (9, 25, 32, 50, 83, 92) to be processed.

25. Method as claimed in any of the claims 13-24, characterized in that the treatment time of the poultry (9, 25, 32, 50, 83, 92), more particularly chickens, in the processing space (7, 22, 31, 80, 90) lies in the range of [60-180] seconds.

26. Method as claimed in any of the claims 13-25, characterized in that an airflow is generated in the processing space (7, 22, 31, 80, 90).

27. Method as claimed in any of the claims 13-26, characterized in that condensed water is discharged out of the processing space (7, 22, 31, 80, 90).

28. Method as claimed in claim 27, characterized in that the condensed water discharged out of the processing space (7, 22, 31, 80, 90) is reused to compose the scalding medium as according to processing step A).

2. Vorrichtung (1, 20, 30) nach Anspruch 1, dadurch gekennzeichnet, dass die Abgabemittel (10, 24, 40, 41, 42, 43, 53, 54, 57, 58, 85, 86, 87, 88, 89, 93, 94) zur Beförderung des Brühmediums in den Transportpfad (81, 91) über mindestens eine einstellbare Auslassöffnung (10, 24, 42, 43, 53, 54) verfügen.

3. Vorrichtung (1, 20, 30) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Abgabemittel (10, 24, 40, 41, 42, 43, 53, 54, 57, 58, 85, 86, 87, 88, 89, 93, 94) für das Brühmedium mindestens eine Düse (43, 93, 94) umfassen.

4. Vorrichtung (1, 20, 30) nach einem der oben genannten Ansprüche, dadurch gekennzeichnet, dass die Abgabemittel (10, 24, 40, 41, 42, 43, 53, 54, 57, 58, 85, 86, 87, 88, 89, 93, 94) für das Brühmedium ein Heizmittel (37) umfassen.

5. Vorrichtung (1, 20, 30) nach einem der oben genannten Ansprüche, dadurch gekennzeichnet, dass der Verarbeitungsbereich (7, 22, 31, 80, 90) aus einem im Wesentlichen tunnelartigen Bereich besteht.

6. Vorrichtung (1, 20, 30) nach einem der oben genannten Ansprüche, dadurch gekennzeichnet, dass die Transportmittel (8, 33, 52) mindestens einen Hängeförderer (8, 33, 52) mit Geflügelhaltern umfassen, die entlang des Hängeförderers (8, 33, 52) verschiebbar sind.

7. Vorrichtung (1, 20, 30) nach einem der oben genannten Ansprüche, dadurch gekennzeichnet, dass mindestens ein Teil der Abgabemittel (10, 24, 40, 41, 42, 43, 53, 54, 57, 58, 85, 86, 87, 88, 89, 93, 94) relativ zu den Transportmitteln (8, 33, 52) angeordnet ist, die einen Transportpfad (81, 91) für das Geflügel (9, 25, 32, 50, 83, 92) durch den Verarbeitungsbereich (7, 22, 31, 80, 90) festlegen, so dass die Abgabemittel (10, 24, 40, 41, 42, 43, 53, 54, 57, 58, 85, 86, 87, 88, 89, 93, 94) einen Teil des Brühmediums in gezieltem Kontakt mit der Unterseite der Flügel (56) des Geflügels (9, 25, 32, 50, 83, 92) bringen.

8. Vorrichtung (1, 20, 30) nach einem der oben genannten Ansprüche, dadurch gekennzeichnet, dass...
9. Vorrichtung (1, 20, 30) nach Anspruch 8,
dadurch gekennzeichnet, dass
der Aufbereitungsbereich (2, 21, 34, 70) zur Erzeugung des Brühmediums
mindestens einen Verdunstungsbereich (2, 21, 34, 70) mit einer Flüssigkeitszufluhr (5) umfasst.

10. Vorrichtung (1, 20, 30) nach Anspruch 9,
dadurch gekennzeichnet, dass
der Aufbereitungsbereich (2, 21, 34, 70) zur Erzeugung des Brühmediums
mindestens zwei Verdunstungsbereiche (2, 21, 34, 70, 71, 72) in einer Reihe umfasst, die beide über eine Flüssigkeitszufuhr (5) verfügen, wobei die Flüssigkeitszufuhr (5) des ersten Verdunstungsbereichs (71) in der Reihe für den Betrieb bei höherer Temperatur als im zweiten Verdunstungsbereich (73) geeignet ist.

11. Vorrichtung (1, 20, 30) nach einem der oben genannten Ansprüche,
dadurch gekennzeichnet, dass
der erste Verdunstungs bereich in der Reihe über eine Dampfzufuhr (35) verfügt.

12. Vorrichtung (1, 20, 30) nach einem der oben genannten Ansprüche,
dadurch gekennzeichnet, dass
die Verarbeitungsbereiche (7, 22, 31, 80, 90) über Abführmittel (11, 13, 26) zum Abführen der Kondensation (12) aus dem Verarbeitungsbereich (7, 22, 31, 80, 90) verfügt.

13. Verfahren zum Brühen von Geflügel (9, 25, 32, 50, 83, 92), das folgende Verarbeitungsschritte umfasst:
 A) die Erzeugung eines Brühmediums;
 B) die Beförderung von Geflügel (9, 25, 32, 50, 83, 92) in einen Verarbeitungsbereich (7, 22, 31, 80, 90) zum Zweck des Brühens, und
 C) die Zufuhr des Brühmediums in den Verarbeitungsbereich (7, 22, 31, 80, 90),
 wobei das Brühmedium beim Kontakt mit dem Geflügel teilweise oder fast vollständig gesättigt ist sowie einen Taupunkt hat, der im Bereich zwischen [49-61]°C liegt, und die Feuchtigkeitstemperatur nicht überschreitet;
 das Geflügel (9, 25, 32, 50, 83, 92) mit vollständigem Gefieder in den Verarbeitungsbereich (7, 22, 31, 80, 90) befördert wird;
 das Brühmedium dem Verarbeitungsbereich (7, 22, 31, 80, 90) zugeführt wird, so dass mindestens ein Strahl des Brühmediums gebildet wird, der auf das Geflügel (9, 25, 32, 50, 83, 92) gerichtet ist.

21. Verfahren nach einem der Ansprüche 13-20, dadurch gekennzeichnet, dass der Strahl des Brühmediums in Verarbeitungsschritt C) vor allem auf die Flügel (56) des Geflügels (9, 25, 32, 50, 83, 92) gerichtet ist.

22. Verfahren nach einem der Ansprüche 13-21, dadurch gekennzeichnet, dass der Strahl des Brühmediums in Verarbeitungsschritt C) vor allem auf den Bauch des Geflügels (9, 25, 32, 50, 83, 92) gerichtet ist.

25. Verfahren nach einem der Ansprüche 13-24, da-
1. Dispositif (1, 20, 30) pour échauder des volailles (9, 25, 32, 50, 83, 92), comprenant :

- un espace de conditionnement (2, 21, 34, 70) pour composer un milieu d’échaudage ;

- un espace de traitement (7, 22, 31, 80, 90) pourvu de moyens de transport (8, 33, 52) qui définissent un trajet de transport (81, 91) des volailles (9, 25, 32, 50, 83, 92) traversant l’espace de traitement (7, 22, 31, 80, 90), et

- des moyens de distribution (10, 24, 40, 41, 42, 43, 53, 54, 57, 58, 85, 86, 87, 88, 89, 93, 94) du milieu d’échaudage reliant l’espace de conditionnement (2, 21, 34, 70) à l’espace de traitement (7, 22, 31, 80, 90), le dispositif (1, 20, 30) étant prévu pour l’échaudage de volailles (9, 25, 32, 50, 83, 92) comportant un plumage complet, caractérisé en ce que l’espace de conditionnement (2, 21, 34, 70) est prévu pour la composition d’un milieu d’échaudage partiellement ou presque complètement saturé ayant un point de rosée situé dans la fourchette de [49-61]°C et ne dépassant pas la température au thermomètre mouillé, et en ce que les moyens de distribution (10, 24, 40, 41, 42, 43, 53, 54, 57, 58, 85, 86, 87, 88, 89, 93, 94) sont pourvus d’au moins un orifice de sortie (10, 43, 53, 54, 87, 88) qui est dirigé vers le trajet de transport (81, 91) et avec lequel le milieu d’échaudage composé est transporté de l’espace de conditionnement (2, 21, 34, 70) jusqu’au trajet de transport (81, 91), à la suite de quoi du liquide du milieu d’échaudage se con-

dense sur les volailles (9, 25, 32, 50, 83, 92).

2. Dispositif (1, 20, 30) selon la revendication 1, caractérisé en ce que les moyens de distribution (10, 24, 40, 41, 42, 43, 53, 54, 57, 58, 85, 86, 87, 88, 89, 93, 94) prévus pour transporter le milieu d’échaudage jusqu’au trajet de transport (81, 91) sont pourvus d’au moins un orifice de sortie réglable (10, 24, 42, 43, 53, 54).

3. Dispositif (1, 20, 30) selon la revendication 1, caractérisé en ce que les moyens de distribution (10, 24, 40, 41, 42, 43, 53, 54, 57, 58, 85, 86, 87, 88, 89, 93, 94) du milieu d’échaudage comprennent au moins une buse (43, 93, 94).

4. Dispositif (1, 20, 30) selon l’une quelconque des revendications précédentes, caractérisé en ce que les moyens de distribution (10, 24, 40, 41, 42, 43, 53, 54, 57, 58, 85, 86, 87, 88, 89, 93, 94) du milieu d’échaudage comprennent un chauffage (37).

5. Dispositif (1, 20, 30) selon l’une quelconque des revendications précédentes, caractérisé en ce que l’espace de traitement (7, 22, 31, 80, 90) consiste en un espace sensiblement en forme de tunnel.

6. Dispositif (1, 20, 30) selon l’une quelconque des revendications précédentes, caractérisé en ce que les moyens de transport (8, 33, 52) comprennent au moins un convoyeur aérien (8, 33, 52) pourvu de porte-volailles déplaçables le long du convoyeur aérien (8, 33, 52).

7. Dispositif (1, 20, 30) selon l’une quelconque des revendications précédentes, caractérisé en ce qu’au moins une partie des moyens de distribution (10, 24, 40, 41, 42, 43, 53, 54, 57, 58, 85, 86, 87, 88, 89, 93, 94) est disposée par rapport aux moyens de transport (8, 33, 52) qui définissent un trajet de transport (81, 91) des volailles (9, 25, 32, 50, 83, 92) traversant l’espace de traitement (7, 22, 31, 80, 90) de telle sorte que les moyens de distribution (10, 24, 40, 41, 42, 43, 53, 54, 57, 58, 85, 86, 87, 88, 89, 93, 94) amènent une partie du milieu d’échaudage en contact ciblé avec la face inférieure des ailes (56) des volailles (9, 25, 32, 50, 83, 92).

8. Dispositif (1, 20, 30) selon l’une quelconque des revendications précédentes, caractérisé en ce que l’espace de conditionnement (2, 21, 34, 70) pour composer le milieu d’échaudage comprend au moins un espace d’évaporation (10, 24, 31, 80, 90) pourvu de moyens de transport (8, 33, 52) comprenant un chauffage (37).

9. Dispositif (1, 20, 30) selon la revendication 8, caractérisé en ce que l’espace de conditionnement (2, 21, 34, 70) pour composer le milieu d’échaudage...
comprend au moins deux espaces d’évaporation (2, 21, 24, 70, 71, 72) placés en ligne, pourvus tous les deux d’une alimentation en liquide (5), étant entendu que l’alimentation en liquide (5) du premier espace d’évaporation en ligne (71) est adaptée pour fonctionner à une température plus élevée que le second espace d’évaporation (73).

10. Dispositif (1, 20, 30) selon la revendication 9, caractérisé en ce que le premier espace d’évaporation en ligne est pourvu d’une alimentation en vapeur (35).

11. Dispositif (1, 20, 30) selon l’une quelconque des revendications précédentes, caractérisé en ce que l’espace de traitement (7, 22, 31, 80, 90) est pourvu de moyens d’évacuation (11, 13, 26) pour évacuer la condensation (12) de l’espace de traitement (7, 22, 31, 80, 90).

12. Dispositif (1, 20, 30) selon l’une quelconque des revendications précédentes, caractérisé en ce que le dispositif (1, 20, 30) est pourvu d’au moins un capteur (60) et d’une commande (62), de préférence une commande par point de rosée, communiquant avec le capteur (60).

13. Procédé pour échauder des volailles (9, 25, 32, 50, 83, 92), comprenant les étapes de traitement consistant :

A) à composer un milieu d’échaudage ;
B) à transporter jusque dans un espace de traitement (7, 22, 31, 80, 90) des volailles (9, 25, 32, 50, 83, 92) à échauder, et
C) à amener le milieu d’échaudage jusqu’à l’espace de traitement (7, 22, 31, 80, 90), de telle sorte que le milieu d’échaudage soit partiellement ou presque complètement saturé au moment du contact avec les volailles et composé avec un point de rosée situé dans la fourchette de [49-61] °C et ne dépassant pas la température au thermomètre mouillé ; que les volailles (9, 25, 32, 50, 83, 92), comportant un plumage complet, soient transportées dans l’espace de traitement (7, 22, 31, 80, 90), et que le milieu d’échaudage soit amené jusqu’à l’espace de traitement (7, 22, 31, 80, 90) de telle sorte que soit formé au moins un jet du milieu d’échaudage qui est dirigé sur les volailles (9, 25, 32, 50, 83, 92).

14. Procédé selon la revendication 13, caractérisé en ce que, quand il entre en contact avec la peau des volailles (9, 25, 32, 50, 83, 92), le jet de milieu a une température supérieure au point de rosée.

15. Procédé selon la revendication 13, caractérisé en ce que, quand il entre en contact avec la peau des volailles (9, 25, 32, 50, 83, 92), le jet de milieu d’échaudage est dirigé en particulier sur le cou des volailles (9, 25, 32, 50, 83, 92) durant l’étape de traitement C).

17. Procédé selon l’une quelconque des revendications 13-15, caractérisé en ce que le point de rosée du milieu d’échaudage se situe dans la fourchette de [53-57] °C.

19. Procédé selon l’une quelconque des revendications 13-18, caractérisé en ce que le jet de milieu d’échaudage est dirigé en particulier sur les ailes (56) des volailles (9, 25, 32, 50, 83, 92) durant l’étape de traitement C).

20. Procédé selon l’une quelconque des revendications 13-19, caractérisé en ce que le jet de milieu d’échaudage est dirigé en particulier sur le ventre des volailles (9, 25, 32, 50, 83, 92) durant l’étape de traitement C).

21. Procédé selon l’une quelconque des revendications 13-20, caractérisé en ce que le jet de milieu d’échaudage est dirigé en particulier sur les ailes (56) des volailles (9, 25, 32, 50, 83, 92) durant l’étape de traitement C).

22. Procédé selon l’une quelconque des revendications 13-21, caractérisé en ce que le jet de milieu d’échaudage est dirigé en particulier sur le ventre des volailles (9, 25, 32, 50, 83, 92) durant l’étape de traitement C).

23. Procédé selon l’une quelconque des revendications 13-22, caractérisé en ce que le jet de milieu d’échaudage est dirigé en particulier sur la queue des volailles (9, 25, 32, 50, 83, 92) durant l’étape de traitement C).

24. Procédé selon l’une quelconque des revendications 13-23, caractérisé en ce que le jet de milieu d’échaudage est réglé par lot de volailles (9, 25, 32, 50, 83, 92) à traiter.

25. Procédé selon l’une quelconque des revendications 13-24, caractérisé en ce que le temps de traitement des volailles (9, 25, 32, 50, 83, 92), plus particulièrement des poulets, dans l’espace de traitement (7,
22, 31, 80, 90) se situe dans la fourchette de [60-180] secondes.

27. Procédé selon l’une quelconque des revendications 13-26, caractérisé en ce que l’eau condensée est évacuée hors de l’espace de traitement (7, 22, 31, 80, 90).

28. Procédé selon la revendication 27, caractérisé en ce que l’eau condensée évacuée hors de l’espace de traitement (7, 22, 31, 80, 90) est réutilisée pour composer le milieu d’échaudage selon l’étape de traitement A).
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 02098239 D2 [0006]
- EP 0140300 A [0008]