EUROPEAN PATENT SPECIFICATION

4-HYDROXYTHIOBENZAMIDE DERIVATIVES OF DRUGS

4-HYDROXYTHIOBENZAMIDDERIVATE VON ARZNEIMITTELN

DÉRIVÉS DE MÉDICAMENTS DE TYPE 4-HYDROXYTHIOBENZAMIDE

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

Priority: 18.07.2006 US 807639 P
30.01.2007 US 887188 P

Date of publication of application:
01.04.2009 Bulletin 2009/14

Proprietor: Antibe Holdings Inc.
Calgary, AB T2A 6R1 (CA)

Inventors:
• WALLACE, John L.
Cochrane, AB T4C 1A1 (CA)
• CIRINO, Giuseppe
Napoli 80131 (IT)
• SANTAGADA, Vincenzo
87070 Cosenza (IT)
• CALIENDO, Giuseppe
80034 Napoli (IT)

Representative: Gaunt, Robert John et al
Stevens Hewlett & Perkins
1, Pemberton Row
London
EC4A 3BG (GB)

References cited:
US-B1-6869974

• LEFFLER ET AL.: 'Carbamate Antimalarials' JOURNAL OF THE AMERICAN CHEMICAL SOCIETY vol. 70, no. 10, October 1948, pages 3439 - 3442, XP008101022

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
FIELD OF INVENTION

The present invention relates to hydrogen sulfide (H₂S) releasing derivatives of drugs having improved activity and/or reduced side effects. In particular, the present invention relates to drug derivatives comprising the H₂S-releasing moiety 4-hydroxythiobenzamide either covalently linked to a drug or forming a salt with the drug.

BACKGROUND OF THE INVENTION

Nitric oxide (NO) and carbon monoxide (CO) synthesized from L-arginine by NO synthase and from heme by heme oxygenase, respectively, are the well-known neurotransmitters and are also involved in the regulation of vascular tone. Recent studies suggest that hydrogen sulfide (H₂S) is the third gaseous mediator in mammals. H₂S is synthesized from L-cysteine by either cystathionine beta-synthase (CBS) or cystathionine gamma-lyase (CSE), both using pyridoxal 5'-phosphate (vitamin B₆) as a cofactor.

It is believed that H₂S stimulates ATP-sensitive potassium channels (Kₐ₅P) in the vascular smooth muscle cells, neurons, cardiomyocytes and pancreatic beta-cells. In addition, H₂S may react with reactive oxygen and/or nitrogen species limiting their toxic effects but also attenuating their physiological functions, like nitric oxide does.

Recent studies have shown that H₂S is involved in the regulation of vascular tone, myocardial contractility, neurotransmission, and insulin secretion. H₂S deficiency was observed in various animal models of arterial and pulmonary hypertension, Alzheimer’s disease, gastric mucosal injury and liver cirrhosis. It is believed that exogenous H₂S ameliorates myocardial dysfunction associated with ischemia/reperfusion injury and reduces the damage of gastric mucosa induced by anti-inflammatory drugs.

More particularly, it has recently been observed that H₂S exerts anti-inflammatory and analgesic activities. H₂S is an endogenous substance, produced in many tissues and affecting many functions (Wang, Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 2002; 16: 1792-1798). It has also been shown to be a vasodilator and can suppress leukocyte adherence to the vascular endothelium (Wang, 2002; Fiorucci et al., Inhibition of hydrogen sulfide generation contributes to gastric injury caused by anti-inflammatory nonsteroidal drugs. Gastroenterology. 2005; 129: 1210-1224). Further, Fiorucci et al. (2005) have demonstrated that pretreatment with an H₂S donor can diminish the severity of NSAID-induced gastric damage in the rat.

It is believed that the production of endogenous H₂S is altered in many diseases. Furthermore, the levels of H₂S may be effected by currently used drugs. For example, acetylsalic acid and non-steroidal anti-inflammatory drugs (NSAID₉) have been shown to have an inhibitory effect on the CSE-H₂S pathway in gastrointestinal mucosa (Fiorucci, S. et al), This effect may contribute to gastric mucosal injury induced by these drugs. Thus, pharmacological modulation of H₂S levels could be of potential therapeutic value.

It is also thought that H₂S may have a role in cardiovascular pathology and, as such, its level should be examined in patients with various risk factors of atherosclerosis such as arterial hypertension, hyperlipidemia, diabetes mellitus, etc. Given that H₂S is quenched by reactive oxygen species (ROS) (Whiteman, M. et al., The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrate “scavenger”? J Neurochem. 2004; 90: 765-768), and considering the important role of oxidative stress in many diseases such as atherosclerosis, arterial hypertension, Alzheimer’s disease, etc., it is thought that excessive ROS production may cause H₂S deficiency.

Beta-blockers, which used for angina, hypertension and cardiac arrhythmia treatment, show respiratory side effects such as dyspnoea, bronchoconstriction, etc., and therefore may cause problems in patients affected by asthma, bronchitis, and the like. Therefore, beta-blockers further worsen respiratory diseases such as asthma. Hence, in asthmatic patients doses of said drugs must be used reduced in order not to jeopardize even more the respiratory functionality. Thus the efficacy of the beta-blockers is reduced.

Antithrombotics, such as for example dipyridamole, aspirin, etc., used for the prophylaxis of thrombotic phenomena, have a number of side effects such as stomach pain, nausea and other gastrointestinal tract complications. In patients affected by pathologies connected to oxidative stress, the therapeutic action or the tolerability of these drugs, as in the case of aspirin, is greatly reduced.

Bronchodilators, for example, salbutamol, etc., are used in the treatment of asthma and bronchitis and drugs active on the cholinergic system are used in pathologies such as urinary incontinence. Their administration can produce side effects affecting the patient’s cardiovascular system, causing problems both to cardiopathic and to hypertensive patients.

Expectorant and mucolytic drugs, which are used in the therapy of inflammatory states of the respiratory organs, can give rise to heartburn and gastric irritability, particularly in the elderly.

Bone resorption inhibitors, such as diphosphonates (for example alendronate, etc.) are drugs showing high gastrointestinal toxicity.
Phosphodiesterase inhibitors, such as, for example, sildenafil, zaprinast, used in the treatment of cardiovascular and respiratory system diseases, are characterized by similar problems as to tolerability and/or efficacy, in particular, in pathological conditions of oxidative stress.

Anti-allergic drugs, for example, cetirizine, montelukast, etc. show similar problems in the mentioned pathological conditions, particularly with respect to their efficacy.

Anti-angiotensin drugs such as ACE-inhibitors, for example, enalapril, captopril, etc., and receptor inhibitors, for example, losartan, etc., are used in the cardiovascular disease treatment. These drugs may produce respiratory side effects (i.e., cough, etc.), in particular, in pathological conditions of oxidative stress.

Antidiabetic drugs, both of the insulin-sensitizing and of hypoglycaemizing type, such as for example sulphopyrroles, tolbutamide, glypride, glyclazide, glyburide, nicotinamide, etc., are ineffective in the prophylaxis of diabetic complications. Their administration can give side effects, such as, for example, gastric lesions. These phenomena become more intense in pathological conditions of oxidative stress.

Antibiotics, for example, ampicillin, clarithromycin, etc., and antiviral drugs, for example, acyclovir, etc., show problems as regards their tolerability, for example they cause gastro-intestinal irritability.

Antitumoral drugs, for example, doxorubicine, daunorubicin, cisplatinum, etc., have high toxicity, in a number of organs, among which are the stomach and intestines. Said toxicity is further worsened in the above mentioned pathologies of oxidative stress.

Antidementia drugs, for example, nicotine and colinomimetics, are characterized by a poor tolerability especially in pathological conditions of oxidative stress.

Thus, there is a need to have available drugs showing an improved therapeutic performance, i.e., having a lower toxicity and/or higher efficacy, so that they could be administered to patients in morbid conditions of oxidative stress and/or endothelial dysfunctions, without showing the drawbacks of the drugs of the prior art.

US 6869974 discloses simrastatine derivative.

Surprisingly, the present inventors have discovered that 4-hydroxythiobenzamide (also referred to herein as 4-HTB or TBZ) is an effective H₂S releasing moiety in tissues and when either covalently linked to a drug or it forms a salt with a drug, drug derivatives are formed that have reduced side effects. For example, the drug derivatives of the present invention produce significantly less gastrointestinal and/or cardiovascular side effects.

SUMMARY OF THE INVENTION

According to the present invention, a derivative of simvastatin, an anti-hyperlipidemic drug (statin), is provided; said derivative comprising the H₂S-releasing moiety 4-hydroxythiobenzamide (also referred to herein as 4-HTB or TBZ) that is either covalently linked to the drug or forms a salt with the drug. Surprisingly, the compounds of the present invention exhibit enhanced activity when compared to the drug alone, 4-hydroxythiobenzamide alone and the combination of the drug and 4-hydroxythiobenzamide administered separately but concomitantly or exhibit reduced side effects or both.

The compounds of the present invention produce a modest, short-lived increase in plasma H₂S concentrations. Without being bound to theory, the short-lived increase in plasma H₂S concentration, which is still within the physiological range, may contribute to the drug’s enhanced activity, reduced gastrointestinal injury and/or reduced cardiovascular toxicity.

Further, the compounds of the present invention surprisingly induced significantly less of an increase in systolic blood pressure when administered to hypertensive rats than was observed when the drug itself was administered. A reduced propensity to elevate blood pressure may reduce the cardiovascular side effects frequently seen with prolonged use of some of the drugs.

In accordance with the present invention, there is provided the compound succinic acid 2-{2-[8-(2,2-dimethylbutyryloxy)-2,6-dimethyl-1,2,6,7,8,8a-hexahydro-naphthalen-1-yl]-ethyl}-6-oxo-tetrahydro-pyran-4-yl ester 4-thiocarbamoyl-phenyl ester and pharmaceutically acceptable salts thereof.

Pharmaceutically acceptable salts of the compound of the present invention such as, for example, salts with alkaline metals and alkaline earth metals, non-toxic amines and amino acids are also part of the present invention. Preferred salts of the compound of the present invention are the salts with arginine and agmatine. Also included are pharmaceutically acceptable acid addition salts.

The derivative according to the invention can be used in the therapeutic Indications of the precursor drug, allowing to obtain the advantages exemplified hereinafter for the derivative.

Statins are used for preventing and treating atherosclerosis that causes chest pain, heart attacks, strokes, and intermittent claudication in individuals who have or are at risk for atherosclerosis. Risk factors for atherosclerosis include abnormally elevated cholesterol levels, a family history of heart attacks (particularly at a young age), increasing age, and diabetes. Most individuals are placed on statins because of high levels of cholesterol. Though cholesterol reduction is important, heart disease is complex and other factors such as inflammation may play a role. It is known, however, that statins exhibit adverse effects such as, for example, hepatopathy, possible carcinogenic paternal, muscular side
effects and myopathy.

[0030] The statin derivative of the present invention may reduce the side effects associated with statins and/or have improved pharmacological activity. Surprisingly, the simvastatin derivative, succinic acid 2-{2-[8-(2,2-dimethylbutyryloxy)-2,6-dimethyl1,2,6,7,8,8a-hexahydro-naphthalen-1-yl]-ethyl}-6-oxo-tetrahydro-pyran-4-yl ester 4-thiocarbamoyl-phenyl ester, significantly reduced platelet aggregation at concentrations of 3, 40 and 30 pM when compared to the corresponding statin alone. Further, the simvastatin derivative of the present invention caused a significant increase in platelet cAMP when compared to the same concentrations of simvastatin alone.

[0031] Depending on the specific condition or disease state to be treated, subjects may be administered compounds of the present invention at any suitable therapeutically effective and safe dosage, as may be readily determined within the skill of the art. These compounds are, most desirably, administered in dosages ranging from about 1 to about 2000 mg per day, in single or divided doses, although variations will necessarily occur depending upon the weight and condition of the subject being treated and the particular route of administration chosen. It is understood that dosages will be affected by the particular drug used to form the compounds of the present invention. However, a dosage level that is in the range of about 0.1 to about 100 mg/kg, preferably between about 5 and 90 mg/kg, and more preferably between about 5 and 50 mg/kg, is most desirable. Variations may nevertheless occur depending upon the weight and conditions of the persons being treated and their individual responses to said medicament, as well as on the type of pharmaceutical formulation chosen and the time period and interval during which such administration is carried out. In some instances, dosage levels below the lower limit of the aforesaid range may be more than adequate, while in other cases still larger doses may be employed without causing any harmful side effects, provided that such large doses are first divided into several small doses for administration throughout the day.

[0032] The compounds of the present invention can be administered in the form of any pharmaceutical formulation, the nature of which will depend upon the route of administration. These pharmaceutical compositions can be prepared by conventional methods, using compatible, pharmaceutically acceptable excipients or vehicles. Examples of such compositions include capsules, tablets, transdermal patches, lozenges, troches, sprays, syrups, powders, granulates, gels, elixirs, suppositories, and the like, for the preparation of extemporaneous solutions, injectable preparations, rectal, nasal, ocular, vaginal etc. A preferred route of administration is the oral and rectal route.

[0033] For oral administration, tablets containing various excipients such as microcrystalline cellulose, sodium citrate, calcium carbonate, dicalcium phosphate and glycine may be employed along with various disintegrants such as starch (preferably corn, potato or tapioca starch), alginic acid and certain complex silicates, together with granulation binders like polyvinylpyrrolidone, sucrose, gelatin and acacia. Additionally, lubricating agents such as magnesium stearate, sodium lauryl sulfate and talc can be used for tabletting purposes. Solid compositions of similar type may also be employed as fillers in gelatin capsules; preferred materials in this connection also include lactose or milk sugar, as well as high molecular weight polyethylene glycols. When aqueous suspensions and/or elixirs are desired for oral administration the active ingredient may be combined with sweetening or flavoring agents, coloring matter and, if so desired, emulsifying and/or suspending agents, together with such diluents as water, ethanol, propylene glycol, glycerin and various combinations thereof.

[0034] The dosage form can be designed for immediate release, controlled release, extended release, delayed release or targeted delayed release. The definitions of these terms are known to those skilled in the art. Furthermore, the dosage form release profile can be effected by a polymeric mixture composition, a coated matrix composition, a multiparticulate composition, a coated multiparticulate composition, an ion-exchange resin-based composition, an osmosis-based composition, or a biodegradable polymeric composition. Without wishing to be bound by theory; it is believed that the release may be effected through favorable diffusion, dissolution, erosion, ion-exchange, osmosis or combinations thereof.

[0035] For parenteral administration, a solution of an active compound in either sesame or peanut oil or in aqueous propylene glycol can be employed. The aqueous solutions should be suitably buffered (preferably pH greater than 8), if necessary, and the liquid diluent first rendered isotonic. The aqueous solutions are suitable for intravenous injection purposes. The preparation of all these solutions under sterile conditions is readily accomplished by standard pharmaceutical techniques well known to those skilled in the art.

[0036] The following examples further describe and enable a person ordinarily skilled in the art to make and use the invention. It should be appreciated however that these embodiments are for the purpose of illustrating the invention, and are not to be construed as limiting the scope of the invention as defined by the claims.

BRIEF DESCRIPTION OF THE FIGURES

[0037] Figure 1 illustrates the effects of simvastatin and succinic acid 2-{2-[8-(2,2-dimethyl-butyryloxy)-2,6-dimethyl-1,2,6,7,8,8a-hexahydro-naphthalen-1-yl]-ethyl}-6-oxo-tetrahydro-pyran-4-yl ester 4-thiocarbamoyl-phenyl ester (Compound I) on ADP-induced aggregation of human platelets.
EP 2 041 108 B1

Figure 2 illustrates the effects of simvastatin and succinic acid 2-\{8-(2,2-dimethyl-butyryloxy)-2,6-dimethyl-1,2,6,7,8,8a-hexahydro-naphthalen-1-yl\}-ethyl\}-6-oxo-tetrahydro-pyran-4-yl ester 4-thiocarbamoyl-phenyl ester (Compound 1) on human platelet cAMP concentrations.

DETAILED DESCRIPTION OF THE INVENTION

Preparation of Compounds

[0038] Thin layer chromatography was performed on Macherey-Nagel silica gel 50 plates with fluorescent indicator and the plates were visualized with UV light (254 nm). Kieselgel 60 was used for column chromatography. All synthetic reagents were purchased from the Aldrich-Sigma Chemical Company and were used without purification. Solvents were analytical reagent grade or higher purity and were used as supplied. A Buchi R-114 rotavapor was utilized for the removal of the solvents in vacuo. The structures were verified spectroscopically by proton 1H-NMR and 13C-NMR. Spectra were recorded on Varian Mercury Plus 400 instrument. Chemical shifts are referred to Me$_4$Si as internal standard. Mass spectra of the synthesized products were performed on Applied Biosystem API 2000 mass spectrometry. Melting point was performed on Buchi B-540 instrument. The purity of the final compound was determined by RP-HPLC. The column was connected to Rheodyne model 7725 injector, a Waters 600 HPLC system, a Waters 486 tunable absorbance detector set to 215 or 235 nm and a Waters 746 chart recorder. The synthesized compounds gave satisfactory elemental analyses; where analyses are indicated only by the symbols of the elements, results are within ± 0.4 % of theoretical values.

EXAMPLE 1

Synthesis of Succinic acid 2-\{8-(2,2-dimethyl-butyryloxy)-2,6-dimethyl-1,2,6,7,8,8a-hexahydro-naphthalen-1yl\}-ethyl\}-6oxo-tetrahydro-pyran-4-yl ester 4-thiocarbamoyl-phenyl ester (3) (also referred to as Compound I)

[0039]
A solution of 420 mg (0.001 mole) of simvastatin (1) in 3 ml of dichloromethane was treated with 110 mg of succinic anhydride and 10 mg of DMAP. After 36 h, 210 mg (0.001 mole) of EDCI and 170 mg (0.0012 mole) of 4-hydroxy-benzamide was added under stirring.
After 1 h, the solvent was removed under reduced pressure and the crude residue was purified by silica gel column eluting with dichloromethane/methyl alcohol (9.5/0.5) to yield compound 2 as a white solid (350 mg; 55% yield).

MS (EI), m/e 638 (M+);
1H NMR (DMSO) δ 0.831 (m, 6H, 2-Me), 1.075 (m, 9H, 3-Me), 1.53 (m, 6H, 3-Me), 1.97 (m, 2H, 2.27 (m, 5H, 2.52(d, 2H), 2.62(d, 2H), 3.68 (m, 1H), 4.07 (m, 1H), 5.52 (m, 1H), 5.50 (bt, 1H), 5.77(dd, 1H), 5.96 (d, 1H); 7.08 (d, 2H), 7-87(d, 2H), 7.94 (bs, 2H).

Synthesis of succinic acid 2-[2-[8-(2,2-dimethyl-butyryloxy)-2,6-dimethyl-1,2,5,7,8,8a-hexahydro-naphthalen-1-yl]-ethyl]-6-oxo-tetrahydro-pyran-4-yl ester 4-thiocarbamoyl-phenyl ester (3)

Succinic acid 4-carbamoyl-phenyl ester 2-[2-[B-(2,2-dimethyl-butyryloxy)-2,6-dimethyl-1,2,5,7,8,8a-hexahydro-naphthalen-1-yl]-ethyl]-6-oxo-tetrahydro-pyran-4-yl ester (2) (0.35 g, 0.000548 mol) and Lawesson reagent (0.221 g, 0.000548 mol) were dissolved in 30 ml of anhydrous benzene. The reaction was warmed to 50°C and stirred for 6 h. The solvent was removed under reduced pressure; the crude residue was purified by silica gel column (dichloromethane/methyl alcohol 9.5:0.5) to furnish 35 mg of the pure compound 3 (10% yield).

MS (EI), m/e 654 (M+);
1H NMR (DMSO) δ 0.831 (m, 6H, 2-Me), 1.075 (m, 9H, 3-Me), 1.53 (m, 6H, 3-Me), 1.97 (m, 2H, 2.27 (m, 5H, 2.52(d, 2H), 2.62(d, 2H), 3.68 (m, 1H), 4.07 (m, 1H), 5.52 (m, 1H), 5.50 (bt, 1H), 5.77(dd, 1H), 5.96 (d, 1H); 7.11 (d, 2H), 7.9(d, 2H), 9.48(s, 1H), 9.86(s, 1H).

Testing of Compounds

EXAMPLE 2

Effects of Succinic acid 2-[2-[8-(2,2-dimethyl-butyryloxy)-2,6-dimethyl-1,2,5,7,8,8a-hexahydro-naphthalen-1-yl]-ethyl]-6-oxo-tetrahydro-pyran-4-yl ester 4-thiocarbamoyl-phenyl ester (Compound I) and Simvastatin on Human Platelet Aggregation (In Vitro)

Platelet-rich plasma (PRP) was prepared as described in detail previously (Ma L, Elliott SN, Cirino G, Buret A, Ignarro LJ, Wallace JL. Platelets modulate gastric ulcer healing through release of endostatin and VEGF. Proc Natl Acad Sci USA 98: 6470-6475, incorporated herein by reference). The concentration of platelets in the PRP was adjusted to 1 x 10⁸ per mL by diluting with Tyrode’s buffer (pH 7.4). Aliquots (400 μL) of platelets were placed into a glass cuvette and inserted into a ChronoLog Platelet Aggregator. Aggregation in response to addition to the cuvette of adenosine diphosphate (ADP) was monitored over a period of 5 min. A concentration-response curve to ADP was first constructed, and then a concentration of ADP producing 70-80% maximal aggregation was used for all subsequent studies. Suspensions of PRP were pre-incubated for 10 min at 37°C with various concentrations (3-30 μM) of simvastatin or Compound I, or with the vehicle (methanol). The aggregation response to ADP was then assessed. Experiments were repeated 4-6 times for each concentration of each drug.

Figure 1 shows the effects of simvastatin and Compound I on ADP-induced aggregation of human platelets. Simvastatin only reduced platelet aggregation at a concentration of 30 μM, while Compound I significantly reduced platelet aggregation at concentrations of 3, 10 and 30 μM (asterisks indicated a significant reduction of platelet aggregation as compared to the corresponding vehicle-treated group; p<0.05).
EXAMPLE 3

Effects of Compound I and Simvastatin on Human Platelet cAMP (In Vitro)

[0047] Platelet-rich plasma (PRP) was prepared as above. Aliquots of 400 μL of PRP were placed in glass tubes which contained IBMX (isobutyl-1-methylxanthine; 0.5 mM), an non-selective phosphodiesterase inhibitor. Two min later, vehicle (methanol) or various concentrations (3-100 μM) of simvastatin or Compound I were added to the tubes. As a positive control, some aliquots of platelets were treated with forskolin (10 μM), a known stimulus of adenylate cyclase. Ten minutes later, the samples of PRP were centrifuged at 9,000 g for 2 min and the supernatant was discarded. The pellet was resuspended in buffer, sonicated for 2 min, then cAMP concentrations were determined using a specific enzyme-linked immunosorbent assay (Cayman Chemical Co., Ann Arbor, MI, USA). Experiments were repeated 4-6 times for each concentration of each drug.

[0048] Figure 2 shows the effects of simvastatin and Compound I on human platelet cAMP concentrations. The dotted line indicates the cAMP levels in platelets treated with forskolin (10 μM). Simvastatin only significantly increased platelet cAMP at the highest concentration (100 μM), while Compound I caused a significant increase in platelet cAMP at concentrations of 10, 30 and 100 μM. (asterisk indicated a significant reduction of platelet aggregation as compared to the corresponding vehicle-treated group; p<0.05).

Claims

1. The compound succinic acid 2-{2-[8-(2,2-dimethyl-butyryloxy)-2,6-dimethyl-1,2,6,7,8,8a-hexahydro-naphthalen-1-yl]-ethyl}-6-oxo-tetrahydro-pyran-4-yl ester 4-thiocarbamoyl-phenyl ester and/or pharmaceutically acceptable salts thereof.

Patentansprüche

1. Die Verbindung Bernsteinäure-2-{2-[8-(2,2-dimethyl-butyryloxy)-2,6-dimethyl-1,2,6,7,8,8a-hexahydro-naphthalen-1-yl]-ethyl}-6-oxo-tetrahydro-pyran-4-yl-ester-4-thiocarbamoyl-phenylester und/oder pharmazeutisch akzeptable Salze davon.

Revendications

1. Le composé acide succinique d’ester 2- {2-[8-(2,2-diméthyl-butyryloxy)-2,6-diméthyl-1,2,6,7,8,8a-hexahydro-naphthalène-1-yl]-éthyl}-6-oxo-tétrahydro-pyran-4’yl ester 4-thiocarbamoyl-phényle et/ou des sels de qualité pharmaceutique de ce dernier.
FIGURE 1

- Vehicle
- Simvastatin
- Compound I

<table>
<thead>
<tr>
<th>Concentration of Drug (μM)</th>
<th>Aggregation (% of maximal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>~45 ± 5</td>
</tr>
<tr>
<td>10</td>
<td>~40 ± 5</td>
</tr>
<tr>
<td>30</td>
<td>~35 ± 5</td>
</tr>
</tbody>
</table>

* Indicates significant difference compared to Vehicle
FIGURE 2

Vehicle
Simvastatin
Compound I

Platelet [cAMP] (pmol/mL)

Concentration of Drug (μM)

*
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 6869974 B [0021]

Non-patent literature cited in the description

- **WANG.** Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter?. *FASEB J,* 2002, vol. 16, 1792-1798 [0005]
- **MA L; Elliott SN; Cirino G; Buret A; Ignarro LJ; Wallace JL.** Platelets modulate gastric ulcer healing through release of endostatin and VEGF. *Proc Natl Acad Sci USA,* vol. 98, 6470-6475 [0045]