DIHYDROPYRIMIDINE COMPOUNDS AND THEIR USES IN PREPARATION OF MEDICAMENTS FOR TREATING AND PREVENTING ANTIVIRAL DISEASES

The present invention relates to a compound of formula (I) or a pharmaceutically acceptable salt or hydrate thereof, to a process for preparing the compound of formula (I), and to use of the compound of formula (I) or a pharmaceutically acceptable salt or hydrate thereof as a medicament, in particular as a medicament for the treatment and prevention of type B hepatitis.
Description

Technical Field

[0001] The present invention relates to a dihydropyrimidine compound of formula (I) and a process for preparing the same, a pharmaceutical composition comprising the same, as well as use of said compound or a pharmaceutically acceptable salt or a hydrate thereof as a medicament, in particular as a medicament for the treatment and prevention of type B hepatitis (HB).

Background Art

[0002] Chronic type B hepatitis is a serious infectious disease caused by hepatitis B virus (HBV) and prevalent throughout the world, and is closely relevant to the occurrence of hepatic cirrhosis and liver cancer. China is a high-risk area of HB. The results of seroepidemiological survey of viral hepatitis in China from 1992 to 1995 indicated that the persons carrying the surface antigen (HBsAg) of hepatitis B virus in China accounted for 9.7% of the population, and it was estimated that about 130 millions persons were HBV carriers. A study on the epidemiological situation of viral hepatitis in China demonstrated that the annual reported incidence of HB was increased from 21.9/100 thousands in 1990 to 53.3/100 thousands in 2003, showing an obvious ascending tendency (Wang Xiaojun, Zhang Rongzhen, Hu Yuansheng, et al, Monitoring of Diseases, 2004, 19(8): 290-292). Chronic HB not only seriously affects human health, but also imposes heavy economic burden on a family and society. Therefore, Chronic HB has become one of significant public health concerns in China.

[0003] The drugs useful for treating chronic HB mainly include two types - immunomodulator and nucleoside inhibitor of DNA polymerase (Loomba R., Liang T. J., Antivir. Ther. , 2006, 11(1) : 1-15). The former includes: interferon-α2b (IFN-α2b, Intron®) and PEGylated interferon-α2a (peg-IFN-α2a, Pegasys®); the latter includes: Lamivudine (Epivir-HBV®), Adefovir Dipivoxil (Hepsera®) and Entecavir (Baraclude®). Comparatively, the number and type of drugs available for treating HB in clinic are still limited. Thus, it is extremely important to continuously research and develop new safe and effective anti-virus drugs, in particular those having a completely new mechanism of action.

Contents of the Invention

[0005] The present invention relates to a new dihydropyrimidine compound of formula (I)

\[
\text{(I)}
\]

or a pharmaceutically acceptable salt or hydrate thereof, wherein

\[\text{R}^1\text{ represents hydrogen, (C}_1\text{-C}_4\text{-alkyl, (C}_2\text{-C}_4\text{-alkenyl, (C}_2\text{-C}_6\text{-acyl or benzoyl,} \]
R² represents a mono- or multi-substituted, the same or different substituent selected from: hydrogen, halogen, hydroxyl, cyano, trifluoromethyl, nitro, benzyl, (C₁₋C₆)-alkyl, (C₁₋C₆)-alkoxy, (C₁₋C₆)-alkoxy-carbonyl, (C₁₋C₆)-acetoxy, amino, (C₁₋C₆)-alkylamino or (C₁₋C₆)-dialkylamino, (C₁₋C₆)-acylamino,

R³ represents a mono- or multi-substituted, the same or different substituent selected from: hydrogen, halogen, trifluoromethyl, trifluoromethoxy, trifluoromethylsulfonyl, nitro, cyano, carboxy, hydroxyl, (C₁₋C₆)-alkoxy, (C₁₋C₆)-alkoxycarbonyl and (C₁₋C₆)-alkyl, wherein said alkyl may be substituted by aryl having from 6 to 10 carbon atoms, halogen, or a group presented by formulae -S-R₆, NR₇R₈, CO-NR₉R₁₀ and -A-CH₂-R¹¹,

wherein

R⁶ represents phenyl optionally substituted by halogen,
R⁷, R⁸, R⁹ and R¹₀, the same or different, respectively represent hydrogen, phenyl, hydroxyl-substituted phenyl, hydroxyl, (C₁₋C₆)-acyl or (C₁₋C₆)-alkyl, wherein said alkyl may be substituted by hydroxyl, halogen, (C₁₋C₆)-alkoxycarbonyl, phenyl or hydroxyl-substituted phenyl,
A represents O, S, SO or SO₂,
R¹¹ represents phenyl optionally mono- or multi-substituted by a same or different group selected from: halogen, nitro, trifluoromethyl, (C₁₋C₆)-alkyl and (C₁₋C₆)-alkoxy, wherein said alkyl may be substituted by hydroxyl, halogen, nitro, cyano, hydroxyl, aryl having from 6 to 10 carbon atoms, aralkyl, heteroaryl or a group represented by formula -XR¹₂ or -NR¹₃R¹₄,

wherein

X represents oxygen or a bond,
R¹² represents hydrogen, a straight or branched (C₁₋C₆)-alkoxycarbonyl, or a straight, branched or cyclic saturated or unsaturated (C₁₋C₆)-hydrocarbyl, wherein said hydrocarbyl optionally comprises one or two identical or different heterochain unit(s) selected from the group consisting of O, CO, NH, -NH(C₁₋C₆)-alkyl, -N((C₁₋C₆)-alkyl)₂, S and SO₂, and is optionally substituted by halogen, nitro, cyano, hydroxyl, aryl having from 6 to 10 carbon atoms, aralkyl, heteroaryl or a group represented by formula -NR¹⁵R¹⁶,

wherein

R¹⁵ and R¹⁶, the same or different, respectively represent hydrogen, benzyl or (C₁₋C₆)-alkyl,
R¹³ and R¹⁴, the same or different, respectively represent hydrogen, benzyl, (C₁₋C₆)-alkyl, or cycloalkyl having from 3 to 6 carbon atoms,
R⁵ represents hydrogen, benzyl, (C₁₋C₆)-alkyl, wherein said alkyl may be substituted by hydroxyl, halogen, (C₁₋C₆)-alkoxycarbonyl, phenyl or substituted phenyl.

[0006] The term "(C₂₋C₆)-alkeny" as used herein refers to a straight or branched alkenyl having from 2 to 6 carbon atoms, preferably a straight or branched alkenyl having from 3 to 5 carbon atoms, including, but not limited to, vinyl, propenyl, n-pentenyl, n-hexenyl.
[0007] The term "(C₂₋C₆)-acyl" as used herein refers to a straight or branched acyl having from 2 to 6 carbon atoms, preferably a straight or branched acyl having from 2 to 4 carbon atoms.
[0008] The term "aryl" as used herein usually refers to a 5- to 14-membered substituted or unsubstituted aryl ring system, or an aryl ring system comprising a fused bicycle or tricycle, including, but not limited to, phenyl and naphthyl.
[0009] The term "(C₁₋C₆)-alkyl" as used herein refers to a straight or branched radical having from 1 to 6 carbon atoms, including, but not limited to methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, t-butyl, and the like.
[0010] The term "(C₁₋C₆)-alkoxy" as used herein refers to a straight or branched alkoxy having from 1 to 6 carbon atoms, preferably a straight or branched alkoxy having from 1 to 4 carbon atoms, including, but not limited to methoxy, ethoxy, propoxy, isoproxy, butoxy, isobutoxy, t-butoxy, and the like.
[0011] The term "(C₁₋C₆)-alkylthio" as used herein refers to a straight or branched alkylthio having from 1 to 6 carbon atoms, preferably a straight or branched alkylthio having from 1 to 4 carbon atoms.
[0012] The term "(C₁₋C₆)-alkoxycarbonyl" as used herein refers to a straight or branched alkoxy carbonyl having from 1 to 6 carbon atoms, preferably a straight or branched alkoxy carbonyl having from 1 to 4 carbon atoms, including, but not limited to methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isoproxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, t-butoxycarbonyl, and the like.
[0013] The compound of the present invention includes a compound of formula (I) and its isomer Ia and a mixture thereof. If R¹ is hydrogen, isomers I and Ia exist in tautomeric equilibrium:
The compound of the present invention may exist in a stereomeric form, and said stereomeric forms are in enantiomeric or diastereoisomeric relationship. The present invention relates to these enantiomers or diastereoisomers or a mixture thereof. Like a diastereoisomer, a racemate may be resolved into a single stereomer by using known methods.

The compound of the present invention may also be in the form of a salt. Its pharmaceutically acceptable salt is preferred.

The pharmaceutically acceptable salt includes, but not limited to, salts formed with various inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, phosphorous acid, hydrobromic acid and nitric acid, and salts formed with various organic acids such as maleic acid, fumaric acid, malic acid, succinic acid, tartaric acid, citric acid, acetic acid, lactic acid, benzoic acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, palmic acid and etc.

The pharmaceutically acceptable salt further includes, but not limited to, metal salts of the compound of the present invention, such as sodium salt, potassium salt, magnesium salt or calcium salt, or ammonium salts formed with ammonia or an organic amine such as ethylamine, diethylamine, triethylamine, diethanolamine, triethanolamine, diclohexylamine, dimethylaminoethanol, arginine, lysine, ethylenediamine, or 2-phenylethylamine, and the like.

Some compounds in the present invention may be crystallized or recrystallized by using water or various organic solvents, and in this case, various solvates may be formed. The present invention includes those stoichiometric solvates, hydrates, and also compounds comprising variable amount of water formed when prepared using lyophilisation.

The compounds of formula (I) as defined below and their salts or hydrates are preferred, wherein:

$$R^1 \text{ represents hydrogen, methyl, benzoyl or acetyl, }$$
$$R^2 \text{ represents a mono- or multi-substituted, the same or different substituent selected from: hydrogen, fluoro, chloro, bromo, benzyl, (C}_1\text{-C}_4\text{)-alkyl, (C}_1\text{-C}_4\text{)-alkoxy, amino, (C}_1\text{-C}_4\text{)-acylamino, }$$
$$R^3 \text{ represents a mono- or multi-substituted, the same or different substituent selected from: hydrogen, halogen, trifluoromethyl, trifluoromethoxy, trifluoromethylsulfonyl, nitro, cyano, carboxyl, hydroxyl, methoxycarbonyl and a group represented by formula } -\text{CONHCH}_2\text{C}(\text{CH}_3)\text{}_3, -\text{CONH(CH}_2\text{)}\text{}_2\text{OH, -CONHCH}_2\text{C}_6\text{H}_5, -\text{CONHC}_6\text{H}_5, -\text{OCH}_2\text{C}_6\text{H}_5 \\ \text{or -S-pCl-C}_6\text{H}_4, }$$
$$R^4 \text{ represents a group represented by formula } -\text{XR}^{12} \text{ or } -\text{NR}^{13}\text{R}^{14},$$

wherein

$$X \text{ represents oxygen or a bond, }$$
$$R^{12} \text{ represents hydrogen, (C}_1\text{-C}_4\text{)-alkenyl, (C}_1\text{-C}_4\text{)-alkoxycarbonyl or (C}_1\text{-C}_4\text{)-alkyl, wherein the radical may be optionally substituted by pyridyl, cyano, phenoxy, hydroxyl, trifluoroethyl, benzyl or a group represented by formula } -\text{NR}^{15}\text{R}^{16},$$

wherein

$$R^{15} \text{ and R}^{16}, \text{ the same or different, respectively represent hydrogen, benzyl or (C}_1\text{-C}_4\text{)-alkyl, }$$
$$R^{13} \text{ and } R^{14}, \text{ the same or different, respectively represent hydrogen, benzyl, (C}_1\text{-C}_4\text{)-alkyl, or cyclopropyl, }$$
$$R^5 \text{ represents hydrogen, benzyl, (C}_1\text{-C}_3\text{)-alkyl, wherein said alkyl may be substituted by hydroxyl, chloro, fluoro, (C}_1\text{-C}_3\text{)-alkoxycarbonyl, phenyl or substituted phenyl. }$$

The compounds of formula (I) as defined below and their salts or hydrates are preferred, wherein:

$$R^1 \text{ represents hydrogen, methyl, benzoyl or acetyl, }$$
wherein

X represents oxygen or a bond.

R^12 represents hydrogen, (C_1-C_2)-alkenyl, (C_1-C_2)-alkoxycarbonyl or (C_1-C_4)-alkyl, wherein the radical may be optionally substituted by pyridyl, cyano, phenoxy, hydroxyl, trifluoroethyl, benzyl or a group represented by formula -NR_15 R_16,

wherein

R^{15} and R^{16}, the same or different, respectively represent hydrogen, benzyl or methyl,

R^{13} and R^{14}, the same or different, respectively represent hydrogen, benzyl, (C_1-C_3)-alkyl, or cyclopropyl,

R^5 represents hydrogen, benzyl, (C_1-C_3)-alkyl, wherein said alkyl may be substituted by hydroxyl, chloro, fluoro, methoxycarbonyl, or ethoxycarbonyl.

[0021] The compounds of formula (I) as defined below and their salts or hydrates are particularly preferred, wherein:

R^1 represents hydrogen or acetyl,

R^2 represents a mono- or multi-substituted, the same or different substituent selected from: hydrogen, fluoro, chloro, methyl, amino, or acetylamino,

R^3 represents a mono- or multi-substituted, the same or different substituent selected from: hydrogen, fluoro, chloro, bromo, hydroxy, nitro, methoxy, or methyl,

R^4 represents a group represented by formula -XR^{12} or -NR^{13} R^{14},

wherein

X represents oxygen,

R^{12} represents a straight or branched alkyl having up to 3 carbon atoms,

R^{13} and R^{14} respectively represent hydrogen, α-methylbenzyl, R^5 represents hydrogen, methyl, or benzyl.

[0022] The particularly preferred compound of formula (I) of the present invention is selected from the group consisting of:

(1) Ethyl 2-(thiazol-4-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(2) Ethyl 2-(thiazol-4-yl)-4-(3-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(3) Ethyl 2-(thiazol-4-yl)-4-(4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(4) Ethyl 2-(thiazol-4-yl)-4-(3-methylphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(5) Ethyl 2-(thiazol-4-yl)-4-(4-methylphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(6) Ethyl 2-(thiazol-4-yl)-4-(3-methoxyphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(7) Ethyl 1-acetyl-2-(thiazol-4-yl)-4-(3-methoxyphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(8) Ethyl 2-(thiazol-4-yl)-4-(4-methoxyphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(9) Ethyl 2-(thiazol-4-yl)-4-(3-hydroxyphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(10) Ethyl 2-(thiazol-4-yl)-4-(4-hydroxyphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(11) Ethyl 2-(thiazol-4-yl)-4-(3-chlorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(12) Ethyl 2-(thiazol-4-yl)-4-(2-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(13) Ethyl 2-(thiazol-4-yl)-4-(4-chlorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(14) Ethyl 2-(thiazol-4-yl)-4-phenyl-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(15) Ethyl 2-(2-methylthiazol-4-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(16) Ethyl 2-(2-methylthiazol-4-yl)-4-(3-hydroxyphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(17) Ethyl 2-(2-methylthiazol-4-yl)-4-(4-hydroxyphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
EP 2 039 686 A1

(18) Ethyl 2-(2-methylthiazol-4-yl)-4-(3-chlorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(19) Ethyl 1-acetyl-2-(2-methylthiazol-4-yl)-4-(3-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(20) Ethyl 1-acetyl-2-(2-methylthiazol-4-yl)-4-(4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(21) Ethyl 1-acetyl-2-(2-methylthiazol-4-yl)-4-(3-methylphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(22) Ethyl 1-acetyl-2-(2-methylthiazol-4-yl)-4-(4-methylphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(23) Ethyl 1-acetyl-2-(2-methylthiazol-4-yl)-4-(3-methoxyphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(24) Ethyl 1-acetyl-2-(2-methylthiazol-4-yl)-4-(4-methoxyphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(25) Ethyl 1-acetyl-2-(2-methylthiazol-4-yl)-4-phenyl-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(26) Ethyl 1-acetyl-2-(2-methylthiazol-4-yl)-4-(4-chlorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(27) Ethyl 1-acetyl-2-(2-methylthiazol-4-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(28) Methyl 2-(2-thiazol-4-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(29) Methyl 2-(2-methylthiazol-4-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(30) Ethyl 2-(2-acetylaminothiazol-4-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(31) Ethyl 2-(2-aminothiazol-4-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(32) Ethyl 2-(5-chlorothiazol-4-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(33) Ethyl 2-(2-chlorothiazol-4-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(34) Methyl 2-(2-chlorothiazol-4-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(35) Methyl 2-(5-chlorothiazol-4-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(36) Methyl 2-(5-chlorothiazol-4-yl)-4-(4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(37) Methyl 2-(4-methylthiazol-5-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(38) Ethyl 2-(4-methylthiazol-5-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(39) Methyl 2-(2,4 diminethiazol-5-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(40) Ethyl 2-(2,4 dimethylnithiazol-5-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(41) Ethyl 2-(2-methylthiazol-5-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(42) Ethyl 2-(thiazol-5-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(43) Ethyl 2-(2-acetylaminothiazol-5-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(44) Ethyl 2-(2-aminothiazol-5-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(45) Ethyl 2-(2-chlorothiazol-5-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(46) Methyl 2-(2-chlorothiazol-5-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(47) Methyl 2-(2-chlorothiazol-5-yl)-4-(4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(48) Ethyl 2-(1H-imidazol-2-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(49) Ethyl 2-(N-methyl-1H-imidazol-2-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(50) Ethyl 2-(N-benzyl-1H-imidazol-2-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(51) Ethyl 2-(N-benzyl-1H-imidazol-2-yl)-4-(4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(52) Ethyl 2-(N-methyl-1H-imidazol-2-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(53) Ethyl 2-(N-methyl-1H-imidazol-2-yl)-4-(4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(54) Ethyl 2-(1H-imidazol-2-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(55) Methyl 2-(2,6-difluorophenyl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(56) Ethyl 2-(2,6-difluorophenyl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(57) Isopropyl 2-(2,6-difluorophenyl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(58) Ethyl 2-(2,4,6 trifluorophenyl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(59) Methyl 2-(2,4,6-trifluorophenyl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(60) R,R-N-(1-phenylethyl)4-(2-chloro-4-fluorophenyl)-2-(2,4,6-trifluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxamide;
(61) R,R-N(1-phenylethyl)-N-1-acetyl-4-(2-chloro-4-fluorophenyl)-2-(2,4,6-trifluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxamide; and
(62) Ethyl 4-R-(2-chloro-4-fluorophenyl)-2-(2,4,6-trifluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate,
or its pharmaceutically acceptable salt or hydrate.

[0023] The compound of formula (I) in the present invention may be prepared by the following process:

A) under the condition of adding a base or acid or not, and in a suitable inert solvent, reacting an amidine of formula (II) or a salt thereof
wherein R is defined as above, with an aldehyde of formula (III)

wherein R₃ is defined as above, and a compound of formula (IV)

\[\text{CH}_2\text{CO-CH}_2\text{-CO-R}_4(\square) \]

wherein R₄ is defined as above, or

B) under the condition of adding a base or acid or not, at a temperature of 20-150°C, and in a suitable inert solvent, reacting a compound of formula (V) or (VI)

wherein R₃, R₄ are as defined above, with the compound of formula (II), or

C) reacting an aldehyde of formula (III)

wherein R₃ is defined as above, with a compound of formula (VII)
wherein R^4 is defined as above, and the amidine of formula (II), or

D) in the presence of an ammonium salt, reacting the aldehyde of formula (III) with the compound of formula (IV) and an iminoether of formula (VIII)

$$\text{NH}$$

$$R^{-}\text{OR}'$$

wherein R is defined as above, and R' is C_1-C_4 alkyl.

[0024] The compound, wherein R^1 is acetyl, can be prepared by reacting the compound obtained according to the above process, with acetyl chloride or acetic anhydride in an inert solvent in the presence of an inorganic base or an organic base at a temperature of 20-150°C.

[0025] The process of the present invention is exemplified by using the following reaction schemes:

[A]

[B]

[C]
As to all of the reaction schemes A, B and C, suitable solvents are any inert organic solvents. These solvents preferably include alcohols such as ethanol, methanol, isopropanol, ethers such as dioxane, ethyl ether, THF, ethylene glycol monomethyl ether, ethylene glycol dimethyl ether or glacial acetic acid, dimethyl sulfoxide, acetonitrile, pyridine and hexamethylphosphamide.

The reaction temperature may vary within a relatively broad range. Usually, the reaction is carried out at a temperature of 20-150°C, but it is preferably carried out at the boiling point of the solvent.

The reaction may be carried out under normal pressure, or under an elevated pressure. Usually, the reaction is carried out under normal pressure.

The reaction may be carried out under the condition of adding a base or acid or not, but it is preferably carried out in the presence of a relatively weak acid such as acetic acid or formic acid.

The stibylene-β-ketone ester of formula (V) or formula (VI) as the starting substance may be prepared according to known methods described in literatures (cf. G Jones, “Knoevenage Condensation”, Organic Reaction, Vol. XV, pages 204-(1967)).

The enamino carboxylate of formula (VII) and iminoether of formula (VIII) as the starting substances are known, or may be prepared according to known methods described in literatures (cf. S. A. Glckman, A. C. Cope, J. Am. Chem. Soc. 1945, 67, 1017).

The compound of formula (I) in the present invention may be synthesized individually according to conventional method, or synthesized by libraries (each library includes at least two, or 5-1,000, optimally 10-100 compounds) according to mix-split method or parallel synthetic method of combinatorial chemistry, i.e., the compound may be synthesized according to a liquid phase method or a solid phase method.

As for more detailed information about the preparation of the compound of formula (I), please see the examples.

The antiviral test was carried out in a 96-cell microtiter plate. The first column of the plate only contained a culture medium and HepG2.2.15 cells, as a blank control.

First, a stock solution (50 mmol) of a test compound was dissolved in DMSO, and further diluted with a culture medium for growth of HepG2.2.15 cells. Usually, the compound of the present invention was transferred by suction at a test concentration of 100 μg/ml (the first test concentration) to each cell of the second column of the microtiter plate, and then diluted with the culture medium for growth plus 2% fetal bovine serum (25 μL), by 2 times once, up to 210 times at the maximum.

Then, 225 μL of a suspension of HepG2.2.15 cells in the culture medium for growth plus 2% fetal bovine serum
For use given by the manufacturer), and then hybridized with an anti-DIG antibody that had been previously coupled to the nylon film (used in accordance with the instructions for use provided by the manufacturer).

Determination of cytotoxicity

- The substance-induced change in cytotoxicity in HepG 2.2.15 cells or in inhibition of the cells could be determined by using, e.g., optical microscopic technique, and expressed by the change of cell morphology. Such substance-induced changes, e.g., cell lysis, cavity formation or change in cell morphology, in HepG 2.2.15 cells were apparent as compared to the untreated cells.
- Taking the observed pathological change of cells as index, the pathological change of cells was observed under microscope after 8 days, a complete destroy being indicated as 4; 75% being indicated as 3; 50% being indicated as 2; 25% being indicated as 1; and no pathological change being indicated as 0. The average extents of pathological change of cells and the inhibition percentages at various concentrations were calculated. According to Reed&Muench method, a half toxic concentration (TC_{50}) and a maximum non-toxic concentration (TC_{0}) were calculated.
- TC_{50} refers to the concentration of the compound of the present invention when 50% of cells have a similar morphology to the corresponding cells as a control.

Determination of antiviral activity

- After the supernatant was transferred onto the nylon film of the dot blot device (see the contents hereinabove), the supernatant of HepG 2.2.15 cells was denaturated (1.5 M NaCl/0.5 M NaOH), neutralized (3 M NaCl/0.5 M Tris HCl, pH 7.5) and washed (2 x SSC). Then, the filter film was kept at 120°C for 2-4 hours, whereby DNA was baked on the filter film.

DNA hybridization

- Usually, viral DNA of HepG 2.2.15 cells treated on the nylon film was detected by using a nonradioactive digoxigenin labeled HB-specific DNA probe. Wherein, each time the probe was labeled with digoxigenin, purified and hybridized according to the directions for use given by the manufacturer.
- Briefly, pre-hybridization and hybridization were conducted with 5 x SSC, 1 x blocking agent, 0.1% N-lauroyl sarcosine, 0.02% SDS and 100 µg sperm DNA of black carp. After pre-hybridization at 60°C for 30 min, a specific hybridization (at 60°C for 14 hr) was conducted with 20-40 ng/ml digoxigenin labeled denaturalized HBV specific DNA. Then, the film was washed, followed by HBV DNA detection with digoxigenin antibody.
- The immunology detection of digoxigenin labeled DNA was conducted according to the directions for use given by the manufacturer.
- Briefly speaking, the film was washed and pre-hybridized with a blocking agent (in accordance with the directions for use given by the manufacturer), and then hybridized with an anti-DIG antibody that had been previously coupled onto an alkaline phosphatase for 30 min. After washing, an alkaline phosphatase substrate CSPD was added, and cultured together with the filter for 5 min, and then wrapped in a plastic film, followed by further culturing at 37°C for 15 min. The filter was exposed to X-ray, and the chemical luminous signal (culturing for 10 min to 2 hr according to the signal strength) of HB-specific DNA on the film was detected, whereby a half inhibitory concentration (IC_{50}) was calculated.
- IC_{50} refers to the concentration of the compound of the present invention which reduces the HB-specific band by 50% as compared with the untreated sample.

**Examples of indications capable of being treated by the compound of the present invention include: acute and chronic viral infections capable of leading to infectious hepatitis, such as HB viral infection, and particularly preferred
chronic HB viral infection and acute HB viral infection.

The pharmaceutical composition comprising the compound of the present invention may be administered in any of the following routes: orally, inhaled by spray, rectally, nasally, vaginally, topically, parenterally such as subcutaneous, intravenous, intramuscular, intraperitoneal, intrathecal, intraventricular, intrasternal or intracranial injection or infusion, or administered with the aid of an explanted reservoir, wherein the administration routes by orally, intramuscular, intraperitoneal or intravenous injection are preferred.

The compound of the present invention or the pharmaceutical composition comprising the compound of the present invention may be administered in a unit dosage form. The dosage form may be in a liquid form, or a solid form. The liquid form includes true solution, colloids, particulates, emulsions, suspensions. Other dosage forms include tablets, capsules, dropping pills, aerosols, pills, powder, solutions, suspensions, emulsions, granules, suppository, lyophilized powder for injection, clathrates, implants, patches, liniment, and the like.

The pharmaceutical composition of the present invention may further comprise a commonly used carrier that includes, but not limited to, ion exchanger, alumina, aluminum stearate, lecithin, serum protein such as human serum protein, buffer substance such as phosphate, glycogen, sorbic acid, potassium sorbate, a mixture of partial glycerine esters of saturated vegetable fatty acids, water, salt or electrolyte, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salt, colloidal silica, magnesium trisilicate, polyvinylpyrrolidone, cellulose, polyethylene glycol, sodium carboxymethylcellulose, polycrystalline, beeswax, lanolin, and the like. The amount of the carrier in the pharmaceutical composition may be 1% to 98% by weight, usually about 80% by weight. For the convenience, topical anesthetic, antiseptic, buffer and etc. may be directly dissolved in the carrier.

The above preparations may further comprise other pharmaceutically active compounds, in addition to the compound of formula (I). The carrier used for an ointment includes, but not limited to, mineral oil, liquid vaseline, white vaseline, propylene glycol, polyoxyethylene, polyoxypropylene, emulsified wax and water; the carrier used for a lotion and a cream includes, but not limited to, mineral oil, liquid vaseline, white vaseline, propylene glycol, polyoxyethylene glycol, sodium carboxymethylcellulose, polyacrylate, beeswax, lanolin, and the like. The amount of the carrier in the pharmaceutical composition may be 1% to 98% by weight, usually about 80% by weight. For the convenience, topical anesthetic, antiseptic, buffer and etc. may be directly dissolved in the carrier.

The compound of the present invention or the pharmaceutical composition comprising the compound of the present invention may be administered in a unit dosage form. The dosage form may be in a liquid form, or a solid form. The liquid form includes true solution, colloids, particulates, emulsions, suspensions. Other dosage forms include tablets, capsules, dropping pills, aerosols, pills, powder, solutions, suspensions, emulsions, granules, suppository, lyophilized powder for injection, clathrates, implants, patches, liniment, and the like.

Oral tablets and capsules may comprise excipients e.g., binders such as syrup, Arabic gum, tragacanth, or polyvinylpyrrolidone, fillers such as lactose, sucrose, corn starch, calcium phosphate, sorbitol, aminocacidic acid, lubricant such as magnesium stearate, saponite, polyethylene glycol, silica, disintegrating agent such as potato starch, or acceptable moisturizing agent such as sodium lauryl sulfate. Tablets may be coated by using known methods in pharmaceutics.

The preferred carrier is water. According to the carrier selected and the drug concentration, the compound can be dissolved in the carrier or made into a suspension. When making an injection solution, the compound is firstly dissolved in water, and then filtered and sterilized before being packaged into an enclosed bottle or ampoule.

Oral solution may be made as a suspension of water and oil, an emulsion, a syrup or an elixir, or made as a dried product to which water or other medium is added before use. This liquid preparation may comprise conventional additives, e.g., suspending agent such as sorbitol, cellulose methyl ether, glucose syrup, gelatin, hydroxyethyl cellulose, carboxymethyl cellulose, aluminum stearate gel, hydrogenated edible grease; emulsifying agent such as lecithin, sorbitan monooleate, Arabic gum; or non-aqueous carrier (possibly including edible oil), such as almond oil, grease such as glycerine, ethylene glycol, or ethanol; antiseptic such as methyl or propyl p-hydroxybenzoate, sorbic acid. If desired, a flavoring agent or a colorant may be added.

Suppository may comprise a conventional suppository substrate, such as cocoa butter or other glyceride.

For non-gastric administration, the liquid dosage form is usually made of the compound and a sterilized carrier. The preferred carrier is water. According to the carrier selected and the drug concentration, the compound can be dissolved in the carrier or made into a suspension. When making an injection solution, the compound is firstly dissolved in water, and then filtered and sterilized before being packaged into an enclosed bottle or ampoule.

For topical application on skin, the compound of the present invention may be made into a suitable form of ointment, lotion or cream, wherein the active ingredient is suspended or dissolved in one or more carrier(s). The preferred carrier comprises water, or acceptable moisturizing agent such as sodium lauryl sulfate. Tablets may be coated by using known methods in pharmaceutics.

In the above preparations, the active compound of formula (I) exists in a concentration of about 0.1 to 99.5% by weight, preferably about 0.5 to 95% by weight, based on the total weight of the mixture.

The preferred carrier is water. According to the carrier selected and the drug concentration, the compound can be dissolved in the carrier or made into a suspension. When making an injection solution, the compound is firstly dissolved in water, and then filtered and sterilized before being packaged into an enclosed bottle or ampoule.

In the above preparations, the active compound of formula (I) exists in a concentration of about 0.1 to 99.5% by weight, preferably about 0.5 to 95% by weight, based on the total weight of the mixture.

In general, it has been proved that, advantageously, whether in human medicine or in veterinary medicine, the total dose of the active compound of the present invention is about 0.5 to 500 mg every 24 hr, preferably 1 to 100 mg per kg body weight. If appropriate, the drug is administrated by single dose for multiple times, to thereby achieve the desired effect. The amount of the active compound in a single dose is preferably about 1 to 80 mg, more preferably 1 to 50 mg per kg body weight. Nevertheless, the dose may also be varied according to the type and body weight of the object to be treated, the kind and extent of severity of diseases, the type of the preparation and the administration manner of the drug, and the administration period or the time interval.

Concrete Modes for Carrying Out the Invention

The following examples are preferred embodiments of the present invention, and shall not be understood to limit the present invention in any manner.
The melting point of the compound was determined by using RY-1 melting point apparatus, and the thermometer was not calibrated. Mass spectrum was determined by using Micromass ZabSpec high resolution mass spectrophotograph (resolution 1000). 1H NMR was determined by using JNM-ECA-400 superconductive NMR spectrometer, the working frequency being 1H NMR 400MHz, 13C NMR 100MHz.

Examples

Example 1 Preparation of ethyl 2-(thiazol-4-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

$^{[0067]}$

[Diagram]

2 mmol 4-Thiazolyl formamidine (Diana, G. D., Yarinsky, A., Zalay, E. S., et al. J. Med. Chem. 1969, 12(9): 791-793), 2 mmol 2-chloro-4-fluorobenzaldehyde, 2 mmol ethyl acetoacetate and 2.2 mmol sodium acetate were reacted under reflux in 10 ml anhydrous ethanol for 20 hr, concentrated, and then ethyl acetate and water were added to separate the layers. The ethyl acetate layer was dried over anhydrous sodium sulfate, and separated by a column chromatography to obtain 0.28 g of a yellow crystal (yield 37%) with mp 140-142°C; 1H-NMR (400MHz, DMSO-d$_6$) δ 1.01-1.05 (3H, m); 2.49 (3H, s); 3.92-3.95 (2H, m); 5.99 (1H, s); 7.36-7.39 (3H, m); 8.15 (1H, d, J=1.96Hz); 9.18 (1H, d, J= 1.96Hz); 9.47 (1H, s); MS(FAB) 380.2 (M+1).

Example 2 Preparation of ethyl 2-(thiazol-4-yl)-4-(3-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

$^{[0069]}$

[Diagram]

Using the method of Example 1, while using 3-fluorobenzaldehyde in place of 2-chloro-4-fluorobenzaldehyde, 0.22 g of yellowish granulates were obtained (yield 32%), with mp 118-120°C; 1H-NMR (400MHz, DMSO-d$_6$) δ 1.01-1.05 (3H, m); 2.49 (3H, s); 3.92-3.95 (2H, m); 5.99 (1H, s); 7.36-7.39 (3H, m); 8.15 (1H, d, J=1.96Hz); 9.18 (1H, d, J= 1.96Hz); 9.47 (1H, s); MS(FAB) 346.3 (M+1).

Example 3 Preparation of ethyl 2-(thiazol-4-yl)-4-(4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

$^{[0071]}$

Using the method of Example 1, while using 3-fluorobenzaldehyde in place of 2-chloro-4-fluorobenzaldehyde, 0.22 g of yellowish granulates were obtained (yield 32%), with mp 118-120°C; 1H-NMR (400MHz, DMSO-d$_6$) δ 1.11-1.15 (3H, m); 2.49 (3H, s); 4.03-4.05 (2H, m); 5.63 (1H, br); 7.02-7.34 (4H, m); 8.31 (1H, br); 9.21 (1H, d); 9.54 (1H, br); MS (FAB) 346.3 (M+1).
[0072] Using the method of Example 1, while using 4-fluorobenzaldehyde in place of 2-chloro-4-fluorobenzaldehyde, 0.27 g of a yellowish crystal was obtained (yield 39%), with mp 118-120°C; 1H-NMR (400MHz,DMSO-d$_6$) δ 1.11-1.15 (3H,m); 2.49(3H,s); 4.01-4.03(2H,m); 5.59(1H,d,J=3.36); 7.11-7.31(4H,m); 8.25-8.40(1H,d,J=1.96); 9.21-9.22(1H,d, J=1.96); 9.35-9.50(1H,d,J= 3.36); MS (FAB) 346.2 (M+1).

Example 4 Preparation of ethyl 2-(thiazol-4-yl)-4-(3-methylphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0073]

[0074] Using the method of Example 1, while using 3-methylbenzaldehyde in place of 2-chloro-4-fluorobenzaldehyde, 0.24 g of a yellow blocky crystal was obtained (yield 35%), with mp 133-134°C; 1H-NMR (400MHz,DMSO-d$_6$) δ 1.11-1.15 (3H,m); 2.25(3H,s); 2.49(3H,s); 4.00-4.02(2H,m); 5.47-5.55(1H,br); 7.01-7.17(4H,m); 8.24-8.39(1H,br); 9.20(1H,d); 9.40 (1H, br); MS (FAB) 342.1 (M+1).

Example 5 Preparation of Ethyl 2-(thiazol-4-yl)-4-(4-methylphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0075]

[0076] Using the method of Example 1, while using 4-methylbenzaldehyde in place of 2-chloro-4-fluorobenzaldehyde, 0.22 g of an amorphous solid was obtained (yield 33%); with 1H-NMR (400MHz,DMSO-d$_6$) δ 1.11-1.15 (3H,m); 2.24 (3H,s); 2.38-2.49(3H,br); 4.00-4.04(2H,m); 5.44-5.54(1H, br); 7.1-7.17(4H,m); 8.23-8.37(1H,br); 9.20(1H,s); 9.25-9.41 (1H,br); MS(FAB) 342.1 (M+1).
Example 6 Preparation of ethyl 2-(thiazol-4-yl)-4-(3-methoxyphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0077]

Using the method of Example 1, while using 3-methoxybenzaldehyde in place of 2-chloro-4-fluorobenzaldehyde, 0.26 g of yellow granulates were obtained (yield 36%), with mp 140-142°C; 1H-NMR (400MHz,DMSO-d$_6$) δ 1.13-1.15 (3H,m); 2.35-2.49 (3H,d); 3.70(3H,s); 4.01-4.03(2H,m); 5.46-5.58(1H,ds,J=3.36); 6.81-6.87(3H,m); 7.20-7.22(1H,m); 8.26-8.38(1H,dd,J=1.96); 9.21-9.22(1H,dd,J=1.96); 9.30-9.47(1H,ds,J=3.36); MS (FAB) 358.2 (M+1).

Example 7 Preparation of ethyl 1-acetyl-2-(thiazol-4-yl)-4-(3-methoxyphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0079]

0.25 g of Ethyl 2-(thiazol-4-yl)-4-(3-methoxyphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate (Example 6) was reacted with acetic anhydride under reflux for 1 hr, and then the resultant product was extracted with ethyl acetate, dried, and then separated by a column chromatography to obtain 0.21 g of a yellowish fine needle crystal (yield 75%), with mp 130-131°C; 1H-NMR (400MHz,CDCl$_3$) δ 1.26-1.29 (3H,t); 1.97(3H,s); 2.58(3H,s); 3.73(3H,s); 4.23-4.24(2H,m); 6.63(1H,s); 6.73-6.75(1H,m); 6.91-6.96(2H,m); 7.13-7.17(1H,t); 8.0(1H,s); 8.81-8.82(1H,d); MS (FAB) 400.1 (M+1).

Example 8 Preparation of ethyl 2-(thiazol-4-yl)-4-(4-methoxyphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0081]

[0082] Using the method of Example 1, while using 4-methoxybenzaldehyde in place of 2-chloro-4-fluorobenzaldehyde, 0.15 g of an amorphous solid was obtained (yield 20%); with 1H-NMR (400MHz,DMSO-d$_6$) δ 1.12-1.15(3H,m); 2.38(3H,
Example 9 Preparation of ethyl 2-(thiazol-4-yl)-4-(3-hydroxyphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0083]

Example 10 Preparation of ethyl 2-(thiazol-4-yl)-4-(4-hydroxyphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0085]

Example 11 Preparation of ethyl 2-(thiazol-4-yl)-4-(3-chlorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0087]
Using the method of Example 1, while using 3-chlorobenzaldehyde in place of 2-chloro-4-fluorobenzaldehyde, 0.27 g of a yellow solid was obtained, with mp 105-108°C; 1H-NMR (400MHz,DMSO-d$_6$) δ 1.12-1.15 (3H,m); 2.36-2.40 (3H,s); 4.02-4.05(2H,m); 5.61(1H,br); 7.27-7.29(4H, m); 8.29(1H,br); 9.22(1H,s); 9.36-9.56(1H,br); MS(FAB) 361.9 (M+1).

Example 12 Preparation of ethyl 2-(thiazol-4-yl)-4-(2-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

Using the method of Example 1, while using 2-fluorobenzaldehyde in place of 2-chloro-4-fluorobenzaldehyde, 0.26 g of yellow granulates were obtained, with mp 126-128°C; 1H-NMR (400MHz,DMSO-d$_6$) δ 1.04-1.08 (3H,m); 2.42 (3H,br); 3.94-3.96 (2H,m); 5.89 (1H,br); 7.11-7.15 (4H,m); 8.20 (1H,br); 9.19 (1H,d); 9.44(1H,br); MS(FAB) 346.1 (M+1).

Example 13 Preparation of ethyl 2-(thiazol-4-yl)-4-(4-chlorophenyl)-6-methyl- 1,4-dihydro-pyrimidin-5-carboxylate

Using the method of Example 1, while using 4-chlorobenzaldehyde in place of 2-chloro-4-fluorobenzaldehyde, 0.30 g of an amorphous solid was obtained; with H-NMR (400MHz,DMSO-d$_6$) δ 1.11-1.15(3H,m); 2.36-2.39(3H,d); 3.99-4.04(2H,m); 5.45-5.60(1H,d); 7.28-7.38(4H,m); 8.26-8.40 (1H, d); 9.21(1H,s); 9.36-9.52(1H,d); MS(FAB) 361.9 (M+1).

Example 14 Preparation of ethyl 2-(thiazol-4-yl)-4-phenyl-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

Using the method of Example 1, while using benzaldehyde in place of 2-chloro-4-fluorobenzaldehyde, 0.24 g
of an amorphous solid was obtained; with 1H-NMR (400MHz, DMSO-d$_6$) δ 1.11-1.15(3H, m); 2.38(3H, d); 4.01-4.03(2H, m); 5.57(1H, br); 7.19-7.39(5H, m); 8.28(1H, br); 9.21(1H, s); 9.31-9.45(1H, br); MS(FAB) 361.9(M+1).

Example 15 Preparation of ethyl 2-(2-methylthiazol-4-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0095]

![Diagram](image1)

[0096] 2 mmol 2-Methylthiazolyl-4-formamidine (Diana, G. D., Yarinsky, A., Zalay, E. S., et al. J. Med. Chem. 1969, 12(9):791-793), 2 mmol 2-chloro-4-fluorobenzaldehyde, 2 mmol ethyl acetoacetate and 2.2 mmol sodium acetate were reacted under reflux in 10 ml anhydrous ethanol for 20 hr, concentrated, and then ethyl acetate and water were added to separate the layers. The ethyl acetate layer was dried over anhydrous sodium sulfate, and separated by a column chromatography to obtain 0.28 g of a yellow crystal with mp 123-125°C; 1H-NMR (400MHz, DMSO-d$_6$) δ 1.01-1.05(3H, m); 2.37-2.43(3H, d); 2.66-2.69(3H, d); 3.92-3.95(2H, m); 5.89-5.97(1H, m); 7.14-7.19(1H, m); 7.33-7.39(2H, m); 7.91-8.18(1H, d); 8.91-9.27(1H, d); MS(FAB) 394.1(M+1).

Example 16 Preparation of ethyl 2-(2-methylthiazol-4-yl)-4-(3-hydroxyphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0097]

![Diagram](image2)

[0098] Using the method of Example 15, while using 3-hydroxybenzaldehyde in place of 2-chloro-4-fluorobenzaldehyde, 0.24 g of a colorless crystal was obtained, with mp 175-178°C; 1H-NMR (400MHz, DMSO-d$_6$) δ 1.13-1.17(3H, m); 2.33-2.37(3H, d); 2.69-2.72(3H, d); 4.00-4.03(2H, m); 5.34-5.50(1H, m); 6.56-6.61(1H, m); 6.68-6.72(2H, m); 7.03-7.09(1H, m); 8.01-8.16(1H, d); 9.09-9.32(2H, m); MS(FAB) 358.2(M+1).

Example 17 Preparation of ethyl 2-(2-methylthiazol-4-yl)-4-(4-hydroxyphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0099]
Using the method of Example 15, while using 4-hydroxybenzaldehyde in place of 2-chloro-4-fluorobenzaldehyde, 0.29 g of a yellow columnar crystal was obtained, with mp 208-210°C; \(^1\text{H-NMR}\ (400\text{MHz, DMSO-d}_6)\) δ 1.12-1.16 (3H, m); 2.33-2.36 (3H, d); 2.68-2.71 (3H, d); 3.99-4.02 (2H, m); 5.34-5.45 (1H, d, br); 6.65-6.67 (2H, m); 7.05-7.07 (2H, m); 8.0-8.14 (1H, d, br); 9.05-9.33 (2H, m); MS (FAB) 358.2 (M+1).

Example 18 Preparation of ethyl 2-(2-methylthiazol-4-yl)-4-(3-chlorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

Using the method of Example 15, while using 3-chlorobenzaldehyde in place of 2-chloro-4-fluorobenzaldehyde, 0.23 g of a colorless needle crystal were obtained, with mp 143-144°C; \(^1\text{H-NMR}\ (400\text{MHz, DMSO-d}_6)\) δ 1.11-1.14 (3H, m); 2.36-2.39 (3H, d); 2.69-2.72 (3H, d); 4.01-4.05 (2H, m); 5.46-5.59 (1H, d); 7.23-7.36 (4H, m); 8.04-8.19 (1H, d); 9.26-9.41 (1H, m); MS (FAB) 376.2 (M+1).

Example 19 Preparation of ethyl 1-acetyl-2-(2-methylthiazol-4-yl)-4-(3-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

Using the method of Example 15, while using 3-fluorobenzaldehyde in place of 2-chloro-4-fluorobenzaldehyde, an oily substance was obtained; and then, the oily substance was further reacted using the method of Example 7, to thereby obtain 0.18 g of a yellow crystal, with mp 127-130°C; \(^1\text{H-NMR}\ (400\text{MHz, DMSO-d}_6)\) δ 1.20-1.23 (3H, t); 1.90 (3H, s); 2.46 (3H, d); 2.68 (3H, s); 4.20-4.23 (2H, m); 6.45 (1H, s); 7.04-7.11 (3H, m); 7.32-7.37 (1H, m); 8.25 (1H, s); MS (FAB) 402.1 (M+1).
Example 20 Preparation of ethyl 1-acetyl-2-(2-methylthiazol-4-yl)-4-(4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0105]

Using the method of Example 19, while using 4-fluorobenzaldehyde in place of 3-fluorobenzaldehyde, 0.20 g of a yellow crystal was obtained, with mp 140-142°C; \(^1H \)-NMR (400MHz, DMSO-\(d_6 \)) \(\delta \) 1.18-1.22 (3H, t); 1.88 (3H, s); 2.46 (3H, s); 2.66 (3H, s); 4.17-4.20 (2H, m); 6.43 (1H, s); 7.10-7.15 (2H, m); 7.25-7.29 (2H, m); 8.22 (1H, s); MS (FAB) 402.0 (M+1).

Example 21 Preparation of ethyl 1-acetyl-2-(2-methylthiazol-4-yl)-4-(3-methylphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0107]

Using the method of Example 19, while using 3-methylbenzaldehyde in place of 3-fluorobenzaldehyde, 0.17 g of a yellow blocky crystal was obtained, with mp 113-114°C; \(^1H \)-NMR (400MHz, CDCl\(_3 \)) \(\delta \) 1.23-1.27 (3H, t); 1.97 (3H, s); 2.26 (3H, s); 2.61 (3H, s); 2.73 (3H, s); 4.17-4.24 (2H, m); 6.63 (1H, s); 7.01-7.03 (1H, m); 7.10-7.15 (2H, m); 7.48 (1H, br); MS (FAB) 398.1 (M+1).

Example 22 Preparation of ethyl 1-acetyl-2-(2-methylthiazol-4-yl)-4-(4-methylphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0109]
Using the method of Example 19, while using 4-methylbenzaldehyde in place of 3-fluorobenzaldehyde, 0.21 g of a yellow prismatic crystal was obtained, with mp 187-188°C; 1H-NMR (400MHz, DMSO-d6) δ 1.18-1.21 (3H, t); 1.89 (3H, s); 2.21 (3H, s); 2.44 (3H, s); 2.66 (3H, s); 4.15-4.18 (2H, m); 6.42 (1H, s); 7.06-7.13 (4H, m); 8.18 (1H, s); MS (FAB) 398.1 (M+1).

Example 23 Preparation of ethyl 1-acetyl-2-(2-methylthiazol-4-yl)-4-(3-methoxyphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

Using the method of Example 19, while using 3-methoxybenzaldehyde in place of 3-fluorobenzaldehyde, 0.18 g of a yellow prismatic crystal was obtained, with mp 114-116°C; 1H-NMR (400MHz, CDCl3) δ 1.25-1.28 (3H, t); 1.98 (3H, s); 2.60 (3H, s); 2.72 (3H, s); 3.74 (3H, s); 4.22-4.24 (2H, m); 6.63 (1H, s); 6.73-6.76 (1H, q); 6.88-6.90 (1H, d); 6.94-6.95 (1H, d); 7.13-7.16 (1H, t); 7.63 (1H, br); MS (FAB) 414.2 (M+1).

Example 24 Preparation of ethyl 1-acetyl-2-(2-methylthiazol-4-yl)-4-(4-methoxyphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

Using the method of Example 19, while using 4-methoxybenzaldehyde in place of 3-fluorobenzaldehyde, 0.17 g of a yellow columnar crystal was obtained, with mp 138-140°C; 1H-NMR (400MHz, CDCl3) δ 1.22-1.25 (3H, t); 1.98 (3H, s); 2.60 (3H, s); 2.72 (3H, s); 3.74 (3H, s); 4.22-4.24 (2H, m); 6.63 (1H, s); 6.73-6.76 (1H, q); 6.88-6.90 (1H, d); 6.94-6.95 (1H, d); 7.13-7.16 (1H, t); 7.63 (1H, br); MS (FAB) 414.2 (M+1).

Example 25 Preparation of ethyl 1-acetyl-2-(2-methylthiazol-4-yl)-4-(4-methoxyphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate
Example 25 Preparation of ethyl 1-acetyl-2-(2-methylthiazol-4-yl)-4-phenyl-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

Using the method of Example 19, while using benzaldehyde in place of 3-fluorobenzaldehyde, 0.20 g of a yellow columnar crystal was obtained, with mp 140-142°C; 1H-NMR (400MHz, DMSO-d₆) δ 1.19-1.22(3H, t); 1.89 (3H, s); 2.45(3H, s); 2.67(3H, s); 4.18-4.20(2H, m); 6.46(1H, s); 7.21-7.30(5H, m); 8.21(1H, s); MS (FAB) 384.1 (M+1).

Example 26 Preparation of ethyl 1-acetyl-2-(2-methylthiazol-4-yl)-4-(4-chlorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

Using the method of Example 19, while using 4-chlorobenzaldehyde in place of 3-fluorobenzaldehyde, 0.19 g of a yellow prismy crystal was obtained, with mp 169-171°C; 1H-NMR (400MHz, CDCl₃) δ 1.23-1.26(3H, t); 1.96(3H, s); 2.60(3H, s); 2.72(3H, s); 4.17-4.23(2H, m); 6.60(1H, s); 7.20-7.29(4H, m); MS (FAB) 418.0 (M+1).

Example 27 Preparation of ethyl 1-acetyl-2-(2-methylthiazol-4-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

Using the method of Example 19, while using 4-chlorobenzaldehyde in place of 3-fluorobenzaldehyde, 0.19 g of a yellow prismy crystal was obtained, with mp 169-171°C; 1H-NMR (400MHz, CDCl₃) δ 1.23-1.26(3H, t); 1.96(3H, s); 2.60(3H, s); 2.72(3H, s); 4.17-4.23(2H, m); 6.60(1H, s); 7.20-7.29(4H, m); MS (FAB) 418.0 (M+1).
[0120] Using the method of Example 19, while using 2-chloro-4-fluorobenzaldehyde in place of 3-fluorobenzaldehyde, 0.18 g of a yellow fine needle crystal was obtained, with mp 164-166°C; 1H-NMR (400MHz, DMSO-d_6) δ: 1.14-1.18 (3H, t); 1.85 (3H, s); 2.48 (3H, s); 2.62 (3H, s); 4.08-4.13 (2H, m); 6.83 (1H, s); 7.07-7.09 (2H, m); 7.44-7.46 (1H, m); 8.09 (1H, s).

Example 28 Preparation of methyl 2-(thiazol-4-yl)-4-(2-chloro-4-fluorophenyl)-6-ethyl-1,4-dihydro-pyrimidin-5-carboxylate

[0121]

[0122] Using the method of Example 1, while using methyl acetoacetate in place of ethyl acetoacetate, 0.28 g of a yellow blocky crystal was obtained, with mp 144-147°C; 1H-NMR (400MHz, DMSO-d_6) δ: 2.39-2.46 (3H, d); 3.49-3.51 (3H, d); 5.98 (1H, s); 7.17-7.20 (1H, m); 7.33-7.40 (2H, m); 8.16 (1H, s); 9.19 (1H, s); 9.55 (1H, s); MS (EI) 365.1 (M$^+$).

Example 29 Preparation of methyl 2-(2-methylthiazol-4-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0123]

[0124] Using the method of Example 15, while using methyl acetoacetate in place of ethyl acetoacetate, 0.25 g of a yellowish crystal was obtained, with mp 128-130°C; 1H-NMR (400MHz, DMSO-d_6) δ: 2.37-2.45 (3H, d); 2.67-2.70 (3H, d);
Example 30 Preparation of ethyl 2-[(2-acetylaminothiazol-4-yl)-4-(2-chloro- -fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

Step 1 Preparation of ethyl 2-aminothiazol-4-carboxylate

7.8 g (40 mmol) ethyl bromopyruvate and 3.1 g (40 mmol) thiourea were dissolved in 40 ml ethanol, and reacted at room temperature, to precipitate a white solid, which was filtered, washed and dried to obtain 7.5 g ethyl 2-aminothiazol-4-carboxylate (yield 74%) with mp 177-181°C.

Step 2 Preparation of 2-aminothiazol-4-carboxamide

3.0 g Ethyl 2-aminothiazol-4-carboxylate was added to 100 ml ammonia water, reacted for 2 hr, concentrated, and placed aside to precipitate a needle crystal, which was filtered, washed with water, and dried to obtain 1.9 g 2-aminothiazol-4-carboxamide (yield 76%) with mp 208-211°C.

Step 3 Preparation of 2-acetylaminothiazol-4-carboxamide

4.0 g (28 mmol) 2-Aminothiazol-4-carboxamide was dissolved in 40 ml glacial acetic acid, to which added 2.8 ml (29.6 mmol) acetic anhydride, followed by reacting under reflux for 2 hr, and naturally cooling down to precipitate a large quantity of solids, which were filtered, washed and dried to obtain 4.7 g 2-acetylaminothiazol-4-carboxamide (yield 92%) with mp >250°C.

Step 4 Preparation of 2-acetylamino-4-cyanothiazole

5.1 g (27.5 mmol) 2-Acetylaminothiazol-4-carboxamide was dispersed in 27 ml pyridine, and 10.5 g (55 mmol) p-tolysulfonyl chloride was added, to carry out reaction at room temperature for 10 hr, and then 150 ml ethyl acetate and 100 ml water were added to separate the layers. The resultant organic phase was washed with diluted HCl till aqueous phase being acidic, and then washed with saturated sodium chloride, dried over anhydrous sodium sulfate, filtered, and concentrated to obtain 3.45 g 2-acetylamino-4-cyanothiazole (yield 75%) with mp 185-188°C (ethyl acetate). 1H NMR (DMSO-d6) 2.18(3H,s) ; 8.33(1H,s) ; 12.55(1H,s).

Step 5 Preparation of 2-acetylamino-4-thiazolformamidine hydrochloride

10 mmol 2-Acetylamino-4-cyanothiazole was dissolved in 10 ml anhydrous methanol, and 10 mmol sodium methoxide was added. Upon complete reaction of the starting materials, 20 mmol ammonium chloride was added, to carry out reaction in closed state for 12 hr. The reaction product was filtered to remove inorganic salt, and then the resultant filtrate was concentrated to obtain 2-acetylamino-4-thiazolformamidine hydrochloride.
Step 6 Preparation of ethyl 2-(2-acetylaminothiazol-4-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0131] 2 mmol 2-Acetylamino-4-thiazolformamidine hydrochloride, 2 mmol 2-chloro-4-fluorobenzaldehyde, 2 mmol ethyl acetoacetate and 2.2 mmol sodium acetate were reacted under reflux in 10 ml anhydrous ethanol for 20 hr, concentrated, and then ethyl acetate and water were added to separate the layers. The ethyl acetate layer was dried over anhydrous sodium sulfate, and separated by a column chromatography to obtain 0.31 g of a colorless crystal with mp 220-223°C; \(\text{\textit{H}}\text-NMR (400MHz, DMSO-d_6) \delta 1.01-1.04 (3H, m); 2.13 (3H, s); 2.40-2.42 (3H, d); 3.91-3.97 (2H, m); 5.97 (1H, s); 7.15-7.39 (3H, m); 7.64-7.83 (1H, d); 8.33-8.98 (1H, d); 12.33 (1H, s); MS (EI) 436.0 (M\(^+\)).

Example 31 Preparation of ethyl 2-(2-aminothiazol-4-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0132]

[0133] 0.35 g Ethyl 2-(2-acetylaminothiazol-4-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate (Example 30) reacted with 2 ml 6 mol/L hydrochloric acid solution at 50°C for 2 hr. The reaction product was extracted with ethyl acetate, dried, and separated by a column chromatography to obtain 0.25 g of amorphous yellow solid with mp 95-110°C; \(\text{\textit{H}}\text-NMR (400MHz, DMSO-d_6) \delta 1.01-1.04 (3H, m); 2.39 (3H, s); 3.89-3.95 (2H, m); 5.91 (1H, br); 7.02-7.38 (6H, m, br); 8.83 (1H, br); MS (EI) 394.0 (M\(^+\)).

Example 32 Preparation of ethyl 2-(5-chlorothiazol-4-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0134]

Step 1 Preparation of ethyl 5-chlorothiazol-4-carboxylate

[0135] 21 g (123 mmol) ethyl 2-aminothiazol-4-carboxylate (Example 30, step 1) was added to 150 ml acetonitrile, and 18.4 g (137 mmol) NCS was added portionwise, to carry out reaction at room temperature overnight; and then, 19 ml (137 mmol) isoamyl nitrite was added rapidly dropwise, followed by continuing the reaction for 2 hr after complete of addition. The resultant reaction mixture was concentrated, then ethyl acetate and water were added, and filtered to remove insoluble solids. The organic phase was dried over anhydrous sodium sulfate, filtered, and concentrated to obtain 20 g ethyl 5-chlorothiazol-4-carboxylate \(\text{\textit{H}}\text-NMR (CDCl_3) 1.42-1.45 (3H, t, J=7.0Hz); 4.43-4.46 (2H, m, J=7.0Hz);
Step 2 Preparation of 5-chlorothiazol-4-carboxamide

[0136] 20 g Ethyl 5-chlorothiazol-4-carboxylate was added to 150 ml ammonia water, and reacted at room temperature with stirring for 5 hr. The resultant reaction mixture was extracted with ethyl acetate, dried over anhydrous sodium sulfate, filtered and concentrated to obtain 9.5 g of a crude product which was recrystallized from ethyl acetate to obtain 5.8 g of a needle crystal (yield 30%) with mp 213-216°C; 1H NMR (DMSO-d6) 7.69 (1H, s); 7.83 (1H, s); 9.05 (1H, s).

Step 3 Preparation of 4-cyano-5-chlorothiazole

[0137] 5.8 g (35.7 mmol) 5-chlorothiazol-4-carboxamide was dissolved in 35 ml pyridine, and 13.6 g (71.4 mmol) p-tolylisulfonyl chloride was added, to carry out reaction overnight; and then, ethyl acetate and water were added to separate the layers. The resultant organic phase was washed with diluted HCl till aqueous phase being acidic, and then washed with saturated sodium chloride, dried over anhydrous sodium sulfate, filtered, concentrated and separated by a column chromatography to obtain 3.1 g 5-chloro-4-cyanothiazole (yield 60%), which was placed aside to precipitate a needle crystal with mp 36-39°C, 13C NMR (CDCl3, ppm) 111.72, 126.65, 138.96, 152.55.

Step 4 Preparation of 5-chloro-4-thiazolformamidine hydrochloride

[0138] 10 mmol 5-chloro-4-cyanothiazole was dissolved in 10 ml anhydrous methanol, and 10 mmol sodium methoxide was added. Upon complete reaction of the starting materials, 20 mmol ammonium chloride was added, to carry out reaction in closed state for 12 hr. The reaction product was filtered to remove inorganic salt, and then the resultant filtrate was concentrated to obtain 5-chloro-4-thiazolformamidine hydrochloride.

Step 5 Preparation of ethyl 2-(5-chlorothiazol-4-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0139] 2 mmol 5-chloro-4-thiazolformamidine hydrochloride, 2 mmol 2-chloro-4-fluorobenzaldehyde, 2 mmol ethyl acetoacetate and 2.2 mmol sodium acetate were reacted under reflux in 10 ml anhydrous ethanol for 20 hr, concentrated, and then ethyl acetate and water were added to separate the layers. The ethyl acetate layer was dried over anhydrous sodium sulfate, and separated by a column chromatography to obtain 0.29 g of a yellowish solid with mp 149-152°C; 1H NMR (400MHz, DMSO-d6) δ 1.02-1.06 (3H, m); 2.42 (3H, s); 3.92-3.97 (2H, m); 6.01 (1H, br); 7.16-7.41 (3H, m); 9.08 (1H, s); 9.58 (1H, s); MS (EI) 413.1 (M+).

Example 33 Preparation of ethyl 2-(2-chlorothiazol-4-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0140]
anhydrous sodium sulfate, filtered, and concentrated to obtain 16 g of an oily liquid \(^1\)H NMR (CDCl\(_3\)) 1.39-1.43(3H,t, J=7.0Hz); 4.40-4.44(2H,m, J=7.0Hz); 8.08(1H , s).

Step 2 Preparation of 2-chlorothiazol-4-carboxamide

[0142] 16 g Ethyl 2-chlorothiazol-4-carboxylate was added to 120 ml ammonia water, and reacted for 3 hr. The resultant reaction mixture was extracted with ethyl acetate, dried over anhydrous sodium sulfate, filtered and concentrated to obtain 5.6 g of a colorless fine needle crystal (yield 34%); \(^1\)H NMR (DMSO-d\(_6\)) 7.66(1H, s); 7.85(1H, s); 8.24(1H, s); \(^{13}\)C NMR (DMSO-d\(_6\), ppm) 127.35, 148.47, 150.46, 161.06.

Step 3 Preparation of 2-chloro-4-cyanothiazole

[0143] 5.6 g (34.4 mmol) 2-chlorothiazol-4-carboxamide was dissolved in 35 ml pyridine, and 13.1 g (68.8 mmol) p-tolylsulfonyl chloride was added, to carry out reaction overnight; and then, 150 ml ethyl acetate and 100 ml water were added to separate the layers. The resultant organic phase was washed with diluted HCl till aqueous phase being acidic, and then washed with saturated sodium chloride, dried over anhydrous sodium sulfate, filtered, concentrated and separated by a column chromatography to obtain 3.7 g 2-chloro-4-cyanothiazole (yield 75%) with mp 75-78°C, \(^{13}\)C NMR (CDCl\(_3\), ppm) 112.73, 125.62, 132.38, 154.04; MS (EI) 144.0 (M\(^+\)).

Step 4 Preparation of 2-chlorothiazol-4-formamidine hydrochloride

[0144] 10 mmol 2-chloro-4-cyanothiazole was dissolved in 10 ml anhydrous methanol, and 10 mmol sodium methoxide was added. Upon complete reaction of the starting materials, 20 mmol ammonium chloride was added, to carry out reaction in closed state for 12 hr. The reaction product was filtered to remove inorganic salt, and then the resultant filtrate was concentrated to obtain 2-chloro-4-thiazolformamidine hydrochloride.

Step 5 Preparation of ethyl 2-(2-chlorothiazol-4-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0145] 2 mmol 2-chloro-4-thiazolformamidine hydrochloride, 2 mmol 2-chloro-4-fluorobenzaldehyde, 2 mmol ethyl acetoacetate and 2.2 mmol sodium acetate were reacted under reflux in 10 ml anhydrous ethanol for 20 hr, concentrated, and then ethyl acetate and water were added to separate the layers. The ethyl acetate layer was dried over anhydrous sodium sulfate, and separated by a column chromatography to obtain 0.28 g of a yellowish crystal with mp 141-143°C; \(^1\)H NMR (400MHz, DMSO-d\(_6\)) δ 1.01-1.05(3H , m); 2.42(3H, s); 3.92-3.95(2H, m); 5.97(1H, br); 7.16-7.40(3H, m,); 8.09(1H, s); 9.52(1H, s); MS (EI)413.0 (M\(^+\)).

Example 34 Preparation of methyl 2-(2-chlorothiazol-4-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0146]

![Chemical Structure](image)

[0147] Using the method of Example 33, while using methyl acetoacetate in place of ethyl acetoacetate, 0.27 g of a yellow solid were obtained, with mp 160-162°C; \(^1\)H NMR (400MHz,DMSO-d\(_6\)) δ 2.36-2.44(3H,d); 3.48-3.50(3H,d); 5.87-5.95(1H,d); 7.15-7.40(3H,m,); 8.08-8.32(1H,d); 9.2-9.57(1H,d); MS(EI)399.0 (M\(^+\)).
Example 35 Preparation of methyl 2-(5-chlorothiazol-4-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0148]

Using the method of Example 32, while using methyl acetoacetate in place of ethyl acetoacetate, 0.25 g of a yellowish solid was obtained, with mp 98-100°C; 1H-NMR (400MHz, DMSO-d_6) δ 2.24-2.43 (3H, m); 3.49-3.50 (3H, d); 6.01 (1H, s); 7.16-7.42 (3H, m); 9.08 (1H, s); 9.66 (1H, s); MS(EI)398.9(M$^+$).

Example 36 Preparation of methyl 2-(5-chlorothiazol-4-yl)-4-(4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0150]

Using the method of Example 32, while using methyl acetoacetate in place of ethyl acetoacetate and using 4-fluorobenzaldehyde in place of 2-chloro-4-fluorobenzaldehyde, 0.24 g of a colorless solid was obtained, with mp 118-122°C; 1H-NMR (400MHz, DMSO-d_6) δ 2.36 (3H, s); 3.58 (3H, s); 5.45-5.65 (1H, m); 7.10-7.17 (2H, m); 7.31-7.35 (2H, m); 9.09-9.64 (2H, m); MS(EI)365.0(M$^+$).

Example 37 Preparation of methyl 2-(4-methylthiazol-5-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0152]
Step 1 Preparation of 4-methylthiazol-5-carboxamide

[0153] 3.3 g (20 mmol) ethyl chloroacetoacetate and 1.8 g (30 mmol) thiourea were dissolved in 40 ml ethanol, and reacted under reflux for 8 hr, followed by removing the solvent by rotation drying; and then, ethyl acetate and water were added to separate the layers. The resultant organic phase was dried over anhydrous sodium sulfate, filtered, and concentrated to obtain a red oily liquid. 60 ml ammonia water was directly added to the red oily liquid without purification, to carry out reaction in closed state for 24 hr. The reaction product was extracted with ethyl acetate, dried with sodium sulfate, filtered and concentrated to obtain 2.3 g of a solid (yield 82%).

Step 2 Preparation of 4-methyl-5-cyanothiazole

[0154] 7.0 g (50 mmol) 4-methylthiazol-5-carboxamide was dissolved in 50 ml pyridine, and 19 g (100 mmol) p-tolylsulfonyl chloride was added, to carry out reaction overnight; and then, 500 ml ethyl acetate and 150 ml water were added to separate the layers. The resultant organic phase was washed with diluted HCl till aqueous phase being acidic, and then washed with saturated sodium chloride, dried over anhydrous sodium sulfate, filtered and concentrated to obtain 2.2 g 4-methyl-5-cyanothiazole (yield 55%) with mp 32-34°C, H NMR (CDCl₃) 2.65 (3H, s); 8.88 (1H, s).

Step 3 Preparation of 4-methyl-5-thiazolformamidine acetate

[0155] 1.6 g (12.9 mmol) 4-methyl-5-cyanothiazole was dissolved in 30 ml anhydrous methanol, the resultant solution was added dropwise into an anhydrous methanol solution of 2.7 g (38.8 mmol) hydroxylamine hydrochloride, and reacted at room temperature for 5 hr. The reaction product was filtered to remove insoluble matters, the resultant filtrate was concentrated to obtain an oily matter, then the oily matter was dispersed in water to precipitate a solid, which was filtered to obtain 1.2 g a fine needle crystal (yield 60%) with mp 153-154°C, H NMR (DMSO-d₆) 5.87 (2H, s), 8.91 (1H, s), 9.80 (1H, s); (D₂O) 2.36 (3H, s), 8.78 (1H, s); MS (FAB) 158.1 (M+1).

[0156] 0.83 g (5.3 mmol) Amidoxime was dissolved in 25 ml glacial acetic acid, and 0.73 ml (7.7 mmol) acetic anhydride was added, to carry out reaction for 15 min; after complete reaction of the materials, 100 mg 10% Pd/C was added, and hydrogen was charged, to carry out reaction at normal pressure for 4 hr. The reaction product was filtered, the resultant filtrate was concentrated to nearly dry, and then acetone was added to precipitate a colorless crystal, which was filtered to obtain 0.7 g of 4-methyl-5-thiazolformamidine acetate (66%) with mp 182-184°C, H NMR (DMSO-d₆) 1.74 (3H, s); 2.53 (3H, s); 9.17 (1H, s); 10.04 (3H, br).

Step 4 Preparation of methyl 2-(4-methylthiazol-5-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0157] 2 mmol 4-methyl-5-thiazolformamidine acetate, 2 mmol 2-chloro-4-fluorobenzaldehyde, 2 mmol methyl acetate and 2.2 mmol sodium acetate were reacted under reflux in 10 ml anhydrous ethanol for 20 hr, concentrated, and then ethyl acetate and water were added to separate the layers. The ethyl acetate layer was dried over anhydrous sodium sulfate, and separated by a column chromatography to obtain 0.24 g of a colorless crystal with mp 145-147°C; H NMR (400MHz, DMSO-d₆) δ 2.34 (3H, s); 2.38 (3H, s); 3.50 (3H, s); 5.95 (1H, s); 7.12-7.49 (3H, m), 9.08 (1H, s); 9.61 (1H, s); MS (EI) 379.0 (M+).

Example 38 Preparation of ethyl 2-(4-methylthiazol-5-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0158]
Using the method of Example 37, while using ethyl acetoacetate in place of methyl acetoacetate, 0.26 g of a colorless crystal was obtained, with mp 134-139°C; 1H-NMR (400MHz, DMSO-d$_6$) δ 1.02-1.05(3H, m); 2.34(3H, s); 2.38 (3H, s); 3.93-3.96(2H, m); 5.96(1H, s); 7.19-7.42 (3H, m); 9.01(1H, s); 9.57(1H, s); MS(EI)393.0(M$^+$).

Example 39 Preparation of methyl 2-(2,4-dimethylthiazol-5-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

Using the method of Example 37, while using thioacetamide in place of thioformamide, 0.29 g of a colorless crystal was obtained, with mp 116-118°C; 1H-NMR (400MHz, DMSO-d$_6$) δ 2.26(3H, s); 2.37 (3H, s); 2.58(3H, s); 3.49(3H, s); 5.95(1H, s); 7.16-7.41(3H, m); 9.51 (1H, s); MS(EI)393.0(M$^+$).

Example 40 Preparation of ethyl 2-(2,4-dimethylthiazol-5-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

Using the method of Example 37, while using thioacetamide in place of thioformamide and using ethyl acetoacetate in place of methyl acetoacetate, 0.31 g of a colorless crystal was obtained, with mp 117-119°C; 1H-NMR (400MHz,
Example 41 Preparation of ethyl 2-(2-methylthiazol-5-yl)-4-(2-chloro-4- fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0164]

![Chemical Structure](image)

Step 1 Preparation of methyl 2-methylthiazol-5-carboxylate

[0165] 2.0 g (14.6 mmol) methyl formylchloroacetate (A. Gangjee, A. Vidwans, E. Elzein, et al. J. Med. Chem. 2001, 44, 1993-2003), and 1.6 g (21.3 mmol) thioacetamide were dissolved in 10 ml water, heated, and reacted at 95 K for 5 hr. The reaction product was extracted with ethyl acetate for 3 times, the ethyl acetate phases were combined, washed with a saturated sodium chloride solution, dried over anhydrous sodium sulfate, filtered, concentrated, and separated by a column chromatography to obtain 1.0 g methyl 2-methylthiazol-5-carboxylate (yield 43%), 1H NMR (CDCl3) 2.76 (3H, s), 3.89 (3H, s), 8.25 (1H, s).

Step 2 Preparation of 2-methyl-5-thiazolamide

[0166] 1.4 g Methyl 2-methylthiazol-5-carboxylate was added to 25 ml ammonia water, to carry out reaction at room temperature for 3 hr. The reaction product was cooled down, filtered, and washed with water to obtain 0.95 g a white powdery solid (73%) with mp 202-205°C.

Step 3 Preparation of 2-methyl-5-cyanothiazole

[0167] 3.95 g (27.8 mmol) 2-Methyl-5-thiazolamide was dissolved in 22 ml pyridine, and 10.6 g (55.6 mmol) p-tolylsulfonyl chloride was added, to carry out reaction at 50°C for 2 hr; and then, 250 ml ethyl acetate and water were added to separate the layers. The resultant organic phase was washed with diluted HCl till aqueous phase being acidic, and then washed with saturated sodium chloride, dried over anhydrous sodium sulfate, filtered, concentrated, and separated by a column chromatography to obtain 2.2 g 2-methylthiazol-5-carboxylate (yield 65%), 1H NMR (CDCl3) 2.76 (3H, s), 3.89 (3H, s), 8.14 (1H, s).

Step 4 Preparation of 2-methylthiazol-5-formamidine acetate

[0168] 4.2 g (33.9 mmol) 2-Methyl-5-cyanothiazole was dissolved in 30 ml anhydrous methanol, the resultant solution was added dropwise into an anhydrous methanol solution of 2.6 g (37.4 mmol) hydroxylamine hydrochloride, and reacted at room temperature for 5 hr. The reaction product was filtered to remove insoluble matters, the resultant filtrate was concentrated to obtain an oily matter, then ethyl ether was added in the oily matter to precipitate a solid, which was filtered to obtain 2.6 g amidoxime (yield 48%).

[0169] 2.6 g (16.5 mmol) Amidoxime was dissolved in 50 ml glacial acetic acid, and 2.3 ml (24 mmol) acetic anhydride was added, to carry out reaction for 15 min; after complete reaction of the materials, 0.52 g 10% Pd/C was added, and hydrogen was charged, to carry out reaction at normal pressure for 4 hr. The reaction product was filtered, the resultant filtrate was concentrated to nearly dry, and then acetone was added to precipitate a solid, which was filtered to obtain 2.7 g of 2-methylthiazol-5-formamidine acetate (81%), with 1H NMR (DMSO-d6) 1.76(3H, s) ; 2.71(3H, s) ; 8.27(1H, s) ; 9.65(3H, br); MS (EI) 141(M+).
Step 5 Preparation of ethyl 2-(2-methylthiazol-5-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0170] 2 mmol 2-Methylthiazol-5-formamidine acetate, 2 mmol 2-chloro-4-fluorobenzaldehyde, 2 mmol ethyl acetoacetate and 2.2 mmol sodium acetate were reacted under reflux in 10 ml anhydrous ethanol for 20 hr, concentrated, and then ethyl acetate and water were added to separate the layers. The ethyl acetate layer was dried over anhydrous sodium sulfate, and separated by a column chromatography to obtain 0.24 g of a yellowish solid with mp 107-111°C; \(\text{\^{1}H-NMR (400MHz,DMSO-d6) } \delta 1.0-1.04(3H, m); 2.43(3H,s); 2.59(3H,s); 3.89-3.93(2H,m); 5.90(1H,s); 7.14-7.43(3H, m) ; 9.52(1H,s); \text{MS(EI)}393.0(M^+). \)

Example 42 Preparation of ethyl 2-(thiazol-5-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0171]

![Chemical Structure](image)

[0172] Using the method of Example 41, while using thioformamide in place of thioacetamide, 0.26 g of a yellowish crystal was obtained, with mp 121-125°C; \(\text{\^{1}H-NMR (400MHz,DMSO-d6) } \delta 1.0-1.06(3H, m); 2.44(3H,s); 3.92-3.94(2H,m); 5.93(1H,s); 7.15-7.44(3H,m,); 8.54(1H,d,J= 0.56); 9.11(1H,d,J=0.56); 9.6(1H,s); \text{MS(EI)}379.0(M^+). \)

Example 43 Preparation of ethyl 2-(2-acetylaminothiazol-5-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0173]

![Chemical Structure](image)

Step 1 Preparation of 2-amino-5-cyanothiazole

[0174] 14 g (135 mmol) Formyl chloroacetonitrile (A. Gangjee, A. Vidwans, E. Elzein, et. al. J. Med. Chem. 2001, 44, 1993-2003), and 10.3 g (135 mmol) thiourea were reacted in 75 ml water at 150°C for 5 hr. The reaction product was extracted with ethyl acetate, dried, concentrated, and separated by a column chromatography to obtain 3.5 g of a solid (yield 21%); \(\text{\^{1}H NMR (DMSO-d6) } 7.83(1H,s), 8.14(2H,s). \)
Step 2 Preparation of 2-acetylamino-5-cyanothiazole

[0175] 2.14 g 2-Amino-5-cyanothiazole was dissolved in 10 ml acetic acid, and 1.8 ml acetic anhydride was added to carry out reaction at 100°C for 30 min. The reaction product was cooled down, and filtered to obtain 2.5 g of a clay-solid having metallic luster (yield 80%). 1H NMR (DMSO-d6) 2.22(3H,s), 8.36(1H,s), 12.95(1H,s).

Step 3 Preparation of 2-acetylaminothiazol-5-formamidine acetate

[0176] 1.25 g 2-Acetylamino-5-cyanothiazole was dispersed in 60 ml methanol, 0.95 g hydroxylamine hydrochloride was added, to carry out reaction at room temperature for 24 hr. The reaction product was filtered, the solid matter obtained was dispersed in water, which was then filtered and washed with water to obtain 1.3 g powdery amidoxime, with 1H NMR (DMSO-d6) 2.14(3H,s), 5.94(2H,s), 7.79(1H,s), 9.63(1H,s), 12.11(1H,s).

[0177] 1.14 g Amidoxime was dispersed in 30 ml acetic acid, and 0.52 ml acetic anhydride was added, to carry out reaction at room temperature for 1.5 hr; after complete reaction of the materials, 0.23 g 10% Pd/C was added, and hydrogen was charged, to carry out reaction at room temperature overnight. The reaction product was filtered, and the resultant filtrate was concentrated to obtain 1.1 g of a powdery solid 2-acetylaminothiazol-5-formamidine acetate.

Step 4 Preparation of ethyl 2-(2-acetylaminothiazol-5-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0178] 2 mmol 2-Acetylaminothiazol-5-formamidine acetate, 2 mmol 2-chloro-4-fluorobenzaldehyde, 2 mmol ethyl acetoacetate and 2.2 mmol sodium acetate were reacted under reflux in 10 ml anhydrous ethanol for 20 hr, concentrated, and then ethyl acetate and water were added to separate the layers. The ethyl acetate layer was dried over anhydrous sodium sulfate, and separated by a column chromatography to obtain 0.32 g of a yellowish solid with mp >250°C; 1H-NMR (400MHz, DMSO-d6) δ 1.0-1.05(3H,m); 2.14(3H,s); 2.43(3H,s); 2.59(3H,s); 3.89-3.94(2H,m); 5.89(1H,s); 7.14-7.39(3H,m); 8.11(1H,s); 9.43(1H,s); 12.22(1H,br); MS(EI)436.0(M+).

Example 44 Preparation of ethyl 2-(2-aminothiazol-5-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0179] Ethyl 2-(2-acetylaminothiazol-5-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate (Example 43) was refluxed with 6 mol/L HCl in ethanol to obtain 0.15 g a yellowish solid with mp 132-135°C; 1H-NMR (400MHz,DMSO-d6) δ 1.0-1.05(3H,m); 2.14(3H,s); 2.43(3H,s); 2.59(3H,s); 3.89-3.94(2H,m); 5.89(1H,s); 7.14-7.39(3H,m); 8.11(1H,s); 9.43(1H,s); 12.22(1H,br); MS(EI)436.0(M+).

Example 45 Preparation of ethyl 2-(2-chlorothiazol-5-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0180] Ethyl 2-(2-acetylaminothiazol-5-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate (Example 43) was refluxed with 6 mol/L HCl in ethanol to obtain 0.15 g a yellowish solid with mp 132-135°C; 1H-NMR (400MHz,DMSO-d6) δ 1.0-1.05(3H,m); 2.14(3H,s); 2.43(3H,s); 2.59(3H,s); 3.89-3.94(2H,m); 5.89(1H,s); 7.14-7.39(3H,m); 8.11(1H,s); 9.43(1H,s); 12.22(1H,br); MS(EI)394.0(M+).
Step 1 Preparation of 2-chloro-5-cyanothiazole

3.4 g (27 mmol) 2-Amino-5-cyanothiazole (Example 43) and 5.1 g (30 mmol) dihydrated cupric chloride were dispersed in 100 ml acetonitrile. To the mixture, with vigorous stirring, 5.7 ml solution of isoamyl nitrite in acetonitrile was added rapidly dropwise over 30 min, followed by continuing the reaction for 10 hr. The reaction mixture was concentrated, dissolved in ethyl acetate, and filtered to remove insoluble matters. The organic phase was concentrated, and separated by a column chromatography to obtain 2.6 g of a liquid (yield 67%), which was placed aside to precipitate a needle crystal with mp 54-57°C. 13C NMR (CDCl$_3$, ppm) 108.16, 110.41, 150.59, 157.36; MS (EI) 144.1 (M$^+$).

Step 2 Preparation of 2-chlorothiazol-5-formamidine hydrochloride

0.43 g 2-chloro-5-cyanothiazole was dissolved in 8 ml anhydrous methanol, and 0.16 g sodium methoxide was added, to carry out the reaction with stirring for 15 min; and then, 0.48 g ammonium chloride was added, to further carry out reaction in closed state for 24 hr; finally, the reaction product was filtered to remove insoluble matters, and the resultant filtrate was concentrated, and recrystallized from isopropanol to obtain 0.47 g a yellow crystalline solid (yield 79%).

Step 3 Preparation of ethyl 2-(2-chlorothiazol-5-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

Using the method of Example 45, while using methyl acetoacetate in place of ethyl acetoacetate, 0.26 g of a...
yellow solid was obtained, with mp >230°C; ¹H-NMR (400MHz, DMSO-d₆) δ 2.44(3H, s); 3.48(3H, s); 5.89(1H, s); 7.15-7.41 (3H, m); 8.31(1H, s); 9.73(1H, s); MS(EI) 399.0(M⁺).

Example 47 Preparation of methyl 2-(2-chlorothiazol-5-yl)-4-(4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0187]

[0188] Using the method of Example 45, while using methyl acetoacetate in place of ethyl acetoacetate and using 4-fluorobenzaldehyde in place of 2-chloro-4-fluorobenzaldehyde, 0.23 g of a yellowish fine needle crystal was obtained, with mp 175-178°C; ¹H-NMR (400MHz, DMSO-d₆) δ 2.38(3H, s); 3.56(3H, s); 5.53(1H, s); 7.12-7.28(4H, m); 8.33(1H, s); 9.73(1H, s); MS(EI) 365.0(M⁺).

Example 48 Preparation of ethyl 2-(1H-imidazol-2-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0189]

2 mmol 1H-imidazol-2-formamidine methane sulfonate (Tommasi, R. A., Macchia, W. M., Parker, D. T., Tetrahedron Lett 1998, 39:5947-5950), 2 mmol 2-chloro-4-fluorobenzaldehyde, 2 mmol ethyl acetoacetate and 2.2 mmol sodium acetate were reacted under reflux in 10 ml anhydrous ethanol for 20 hr, concentrated, and then ethyl acetate and water were added to separate the layers. The ethyl acetate layer was dried over anhydrous sodium sulfate, and separated by a column chromatography to obtain 0.19 g of a colorless fine needle crystal with mp 157-162°C; ¹H-NMR (400MHz, DMSO-d₆) δ 1.02-1.06(3H, t, J=7Hz); 2.43(3H, s); 3.91-3.93(2H, m, J=7Hz); 5.99(1H, s); 7.04-7.42(5H, m); 9.59(1H, s); 12.69(1H, s); MS(EI) 362.1(M⁺).

Example 49 Preparation of ethyl 2-(N-methyl-1H-imidazol-2-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0190]
[0191] 2 mmol N-methyl-1H-imidazol-2-formamidine methane sulfonate (Tommasi, R. A., Macchia, W. M., Parker, D. T., Tetrahedron Lett 1998, 39:5947-5950), 2 mmol 2-chloro-4-fluorobenzaldehyde, 2 mmol ethyl acetoacetate and 2.2 mmol sodium acetate were reacted under reflux in 10 ml anhydrous ethanol for 20 hr, concentrated, and then ethyl acetate and water were added to separate the layers. The ethyl acetate layer was dried over anhydrous sodium sulfate, and separated by a column chromatography to obtain 0.23 g of a yellowish columnar crystal with mp 166-167°C; 1H-NMR (400MHz,DMSO-d$_6$) δ 1.03-1.06 (3H, m); 2.48 (3H, s); 3.81 (1H, s); 3.93-3.99 (2H, m,); 6.00 (1H, s); 6.99-7.42 (5H, m,); 9.57 (1H, s); MS (EI) 376.1 (M+).

Example 50 Preparation of ethyl 2-(N-benzyl-1H-imidazol-2-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0192]

[0193] 2 mmol N-benzyl-1H-imidazol-2-formamidine methane sulfonate (Tommasi, R. A., Macchia, W. M., Parker, D. T., Tetrahedron Lett 1998, 39:5947-5950), 2 mmol 2-chloro-4-fluorobenzaldehyde, 2 mmol ethyl acetoacetate and 2.2 mmol sodium acetate were reacted under reflux in 10 ml anhydrous ethanol for 20 hr, concentrated, and then ethyl acetate and water were added to separate the layers. The ethyl acetate layer was dried over anhydrous sodium sulfate, and separated by a column chromatography to obtain 0.31 g of colorless granulates with mp 114-117°C; 1H-NMR (400MHz,DMSO-d$_6$) δ 1.0-1.05 (3H, m, J= 7.0Hz); 2.46 (3H, s); 3.91-3.96 (2H,m,J=7.0Hz); 5.43-5.46 (1H,d,J=14.3Hz); 5.81-5.85 (1H,d, J=14.3Hz); 6.00 (1H,s); 6.92-7.5 (10H,m,); 9.57 (1H, s); MS(EI) 452.1 (M+).

Example 51 Preparation of ethyl 2-(N-benzyl-1H-imidazol-2-yl)-4-(4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0194]
[0195] Using the method of Example 50, while using 4-fluorobenzaldehyde in place of 2-chloro-4-fluorobenzaldehyde, 0.26 g of a colorless fine needle crystal was obtained, with mp 162-164°C; \(^1\)H-NMR (400MHz, DMSO-\(d_6\)) \(\delta\) 1.10-1.13 (3H, \(m\), \(J=7.28\)Hz); 2.40 (3H, \(s\)); 4.0-4.03 (2H, \(m\), \(J=7.28\)Hz); 5.52-5.56 (1H, \(d\), \(J=14.56\)Hz); 5.62 (1H, \(s\)); 5.81-5.84 (1H, \(d\), \(J=14.56\)Hz); 6.99-7.56 (11H, \(m\),); 9.54 (1H, \(s\)); MS (EI) 418.2 (M\(^+\)).

Example 52 Preparation of ethyl 2-(N-methyl-1H-imidazol-2-yl)-4-(2-chlorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0196]

[0197] Using the method of Example 49, while using 2-chlorobenzaldehyde in place of 2-chloro-4-fluorobenzaldehyde, 0.27 g of a yellowish crystal was obtained, with mp 124-127°C; \(^1\)H-NMR (400MHz, DMSO-\(d_6\)) \(\delta\) 1.02-1.06 (3H, \(t\)); 2.47 (3H, \(s\)); 3.81 (3H, \(s\)); 3.93-3.96 (2H, \(m\),); 6.03 (1H, \(s\)); 6.98 (1H, \(m\),); 7.22-7.45 (5H, \(m\),); 9.53 (1H, \(s\)); MS (EI) 358.0 (M\(^+\)).

Example 53 Preparation of ethyl 2-(N-methyl-1H-imidazol-2-yl)-4-(4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0198]

[0199] Using the method of Example 49, while using 4-fluorobenzaldehyde in place of 2-chloro-4-fluorobenzaldehyde, 0.24 g of a yellowish crystal was obtained, with mp 134-136°C; \(^1\)H-NMR (400MHz, DMSO-\(d_6\)) \(\delta\) 1.12-1.16 (3H, \(m\),); 2.39 (3H, \(s\)); 3.86 (3H, \(s\)); 4.00-4.05 (2H, \(m\),); 5.67 (1H, \(s\)); 7.02-7.16 (3H, \(m\),); 7.29-7.40 (3H, \(m\),); 9.52 (1H, \(s\)); MS (EI) 342.3 (M\(^+\)).

36
Example 54 Preparation of ethyl 2-(1H-imidazol-2-yl)-4-(2-chlorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0200]

Using the method of Example 48, while using 2-chlorobenzaldehyde in place of 2-chloro-4-fluorobenzaldehyde, 0.22 g of a colorless solid was obtained, with mp 121-125°C; ¹H-NMR (400MHz, DMSO-d₆) δ 1.01-1.05 (3H, t, J=7Hz); 2.43(3H, s); 3.91-3.94(2H, m, J=7Hz); 6.03(1H, s); 7.04- 7.38(6H, m); 9.54(1H , s); 12.67(1H, s); MS (EI) 344.2 (M⁺).

Example 55 Preparation of methyl 2-(2,6-difluorophenyl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0202]

[0203] 2 mmol 2,6-Difluorobenzamidine hydrochloride (Boere, R. J., Oakley, R. T., Read, R. V., J. Organometal. Chem. 1987, 331:161-167), 2 mmol 2-chloro-4-fluorobenzaldehyde, 2 mmol methyl acetoacetate and 2.2 mmol sodium acetate were reacted under reflux in 10 ml anhydrous ethanol for 20 hr, concentrated, and then ethyl acetate and water were added to separate the layers. The ethyl acetate layer was dried over anhydrous sodium sulfate, and separated by a column chromatography to obtain 0.21 g of a colorless fine needle crystal with mp 126-128°C; ¹H-NMR (400MHz, DMSO-d₆) δ 2.87(3H, s); 3.45(3H, s); 5.92(1H, s); 7.10-7.38 (6H, m); 9.87(1H, s); MS (EI) 394.0 (M⁺).

Example 56 Preparation of ethyl 2-(2,6-difluorophenyl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

[0204]
Using the method of Example 55, while using ethyl acetoacetate in place of methyl acetoacetate, 0.19 g of a colorless fine needle crystal was obtained, with mp 163-165°C; \(^1H \)-NMR (400MHz, CDCl\(_3\)) \(\delta \) 1.13-1.16 (3H, t, J=7.0Hz); 2.44(3H,s); 4.04-4.06(2H,m,J=7.0Hz); 6.17 (1H,s); 6.88-7.13 (4H, m); 7.31-7.46(3H,m); MS(FAB) 409(M+1).

Example 57 Preparation of isopropyl 2-(2,6-difluorophenyl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

Using the method of Example 55, while using isopropyl acetoacetate in place of methyl acetoacetate, 0.14 g of a white flocculent solid was obtained, with mp 155-158°C; \(^1H \)-NMR (400MHz, CDCl\(_3\)) \(\delta \) 0.95-0.97 (3H, d, J=6.2Hz); 1.21-1.22(3H,d,J=6.2Hz); 2.45 (3H, s); 4.92-4.95(1H,m,J=6.2Hz), 6.17 (1H,s) 6.88-7.01(3H,m); 7.10-7.12(1H,m); 7.33-7.47 (2H,m); MS(FAB) 423.1(M+1).

Example 58 Preparation of ethyl 2-(2,4,6-trifluorophenyl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

Using the method of Example 55, while using isopropyl acetoacetate in place of methyl acetoacetate, 0.14 g of a white flocculent solid was obtained, with mp 155-158°C; \(^1H \)-NMR (400MHz, CDCl\(_3\)) \(\delta \) 0.95-0.97 (3H, d, J=6.2Hz); 1.21-1.22(3H,d,J=6.2Hz); 2.45 (3H, s); 4.92-4.95(1H,m,J=6.2Hz), 6.17 (1H,s) 6.88-7.01(3H,m); 7.10-7.12(1H,m); 7.33-7.47 (2H,m); MS(FAB) 423.1(M+1).

Example 58 Preparation of ethyl 2-(2,4,6-trifluorophenyl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

2 mmol 2,4,6-Trifluorobenzamidine acetate (Judkins, B. D., Allen, D. G., Cook, T. A. Synth. Commun. 1996, 26(23):4351-4367), 2 mmol 2-chloro-4-fluorobenzaldehyde, 2 mmol methyl acetoacetate and 2.2 mmol sodium acetate were reacted under reflux in 10 ml anhydrous ethanol for 20 hr, concentrated, and then ethyl acetate and water were added to separate the layers. The ethyl acetate layer was dried over anhydrous sodium sulfate, and separated by a column chromatography to obtain 0.29 g of a colorless fine needle crystal with mp 184-186°C; \(^1H \)-NMR (400MHz, DMSO-d\(_6\)) \(\delta \) 1.02-1.05 (3H, t, J=7.3Hz); 2.32(3H,s); 3.92-3.95 (2H,m, J=7.3Hz); 5.97(1H,s); 7.21-7.45(5H,m); MS(EI) 426(M+).

Example 59 Preparation of methyl 2-(2,4,6-trifluorophenyl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

2 mmol 2,4,6-Trifluorobenzamidine acetate (Judkins, B. D., Allen, D. G., Cook, T. A. Synth. Commun. 1996, 26(23):4351-4367), 2 mmol 2-chloro-4-fluorobenzaldehyde, 2 mmol methyl acetoacetate and 2.2 mmol sodium acetate were reacted under reflux in 10 ml anhydrous ethanol for 20 hr, concentrated, and then ethyl acetate and water were added to separate the layers. The ethyl acetate layer was dried over anhydrous sodium sulfate, and separated by a column chromatography to obtain 0.29 g of a colorless fine needle crystal with mp 184-186°C; \(^1H \)-NMR (400MHz, DMSO-d\(_6\)) \(\delta \) 1.02-1.05 (3H, t, J=7.3Hz); 2.32(3H,s); 3.92-3.95 (2H,m, J=7.3Hz); 5.97(1H,s); 7.21-7.45(5H,m); MS(EI) 426(M+).
Using the method of Example 58, while using methyl acetoacetate in place of ethyl acetoacetate, 0.27 g of a colorless crystal was obtained, with mp 112-114°C; 1H-NMR (400MHz, DMSO-d$_6$) δ 2.33(3H, s); 3.51 (3H, s); 5.96(1H, s); 7.20-7.43(5H, m); 9.9(1H, s); MS(EI) 412(M$^+$.)

Example 60 Preparation of R,N-(1-phenylethyl)-4-(2-chloro-4-fluorophenyl)-2-(2,4,6-trifluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxamide

1.58 g (10 mmol) 2-chloro-4-fluorobenzaldehyde and 2.04 g (10 mmol) R,N-(1-phenylethyl)acetylacetamide were dissolved in 40 ml ethanol, and stirred at room temperature for 2 d; and then, 2.34 g (10 mmol) 2,4,6-trifluorobenzamide acetate was added, to carry out reaction under reflux overnight. After removing the solvent by evaporation, ethyl acetate and water were added to separate the layers. The resultant ethyl acetate layer was dried over anhydrous sodium sulfate, filtered, concentrated, and separated by a column chromatography to obtain 4.7 g of a mixture. The mixture was dissolved in ethyl acetate to precipitate a solid, which was recrystallized from 50% ethanol to obtain a colorless fine needle crystal with 1H-NMR (400MHz, DMSO-d$_6$) δ 1.3-1.33(3H, m); 1.97(3H, s); 4.81-4.88(1H, m); 5.96 (1H, s); 7.04-7.39(9H ,m); 7.57-7.61(1H,m) ; 8.11-8.13(1H,d) ; 9.25(1H,s); MS(EI) 501(M$^+$.)

Example 61 Preparation of R,N-(1-phenylethyl)-N-1-acetyl-4-(2-chloro-4-fluorophenyl)-2-(2,4,6-trifluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxamide

[0214]
Using the method of Example 7, a colorless fine needle crystal was obtained from the compound of Example 60. \(^1\)H-NMR (400MHz, DMSO-\(d_6\)) \(\delta\) 1.39-1.41 (3H, d, \(J=7.0\)) ; 2.07 (3H, s) ; 2.10 (3H, s) ; 4.95-4.99 (1H, m) ; 6.47 (1H, s) ; 7.08-7.30 (8H, m) ; 7.45-7.51 (2H, m) ; 8.70-8.72 (1H, d, \(J=8.12\)) MS (EI) 543 (M\(^+\)).

Example 62 Preparation of ethyl 4-R-(2-chloro-4-fluorophenyl)-2-(2,4,6-trifluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate

(-)-enantiomer of the compound of Example 58, and obtained by chiral separation as a colorless needle crystal. \(^1\)H-NMR (400MHz, DMSO-\(d_6\)) \(\delta\) 1.02-1.05 (3H, t, \(J=7.0\) Hz) ; 2.32 (3H, s) ; 3.92-3.96 (2H, m, \(J=7.0\) Hz) ; 5.97 (1H, s) ; 7.21-7.45 (5H, m) ; 9.86 (1H, s) ; MS (EI) 426 (M\(^+\)) ; \([\alpha]_D=-92.38\) (methanol).

Example 63 Determination of cytotoxicity and antiviral activity of the selected compounds

The cytotoxicity and antiviral activity of the compounds according to this invention were determined in accordance with the methods described above, and the results were showed in Table 1.

Table 1. Inhibitory effects of the selected compounds on HBV DNA

<table>
<thead>
<tr>
<th>Example No.</th>
<th>IC(_{50}) (\mu)M</th>
<th>TD(_{50}) (\mu)M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.35</td>
<td>50.59</td>
</tr>
<tr>
<td>28</td>
<td>3.99</td>
<td>58.50</td>
</tr>
<tr>
<td>29</td>
<td>8.42</td>
<td>56.34</td>
</tr>
<tr>
<td>33</td>
<td>0.87</td>
<td>7.17</td>
</tr>
<tr>
<td>34</td>
<td>2.08</td>
<td>12.35</td>
</tr>
<tr>
<td>37</td>
<td>14.55</td>
<td>101.42</td>
</tr>
<tr>
<td>38</td>
<td>2.22</td>
<td>54.33</td>
</tr>
<tr>
<td>39</td>
<td>3.20</td>
<td>165.90</td>
</tr>
<tr>
<td>40</td>
<td>2.59</td>
<td>157.42</td>
</tr>
</tbody>
</table>
EP 2 039 686 A1

(continued)

<table>
<thead>
<tr>
<th>Example No.</th>
<th>IC<sub>50</sub> μM</th>
<th>TD<sub>50</sub> μM</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>3.61</td>
<td>>32.90</td>
</tr>
<tr>
<td>43</td>
<td>2.29</td>
<td>76.43</td>
</tr>
<tr>
<td>44</td>
<td>2.69</td>
<td>22.56</td>
</tr>
<tr>
<td>49</td>
<td>0.27</td>
<td>38.83</td>
</tr>
<tr>
<td>51</td>
<td>6.65</td>
<td>36.87</td>
</tr>
<tr>
<td>53</td>
<td>10.23</td>
<td>281.14</td>
</tr>
<tr>
<td>55</td>
<td>4.01</td>
<td>60.84</td>
</tr>
<tr>
<td>56</td>
<td>2.03</td>
<td>117.50</td>
</tr>
<tr>
<td>58</td>
<td>2.60</td>
<td>32.50</td>
</tr>
<tr>
<td>59</td>
<td>3.39</td>
<td>>30.30</td>
</tr>
<tr>
<td>62</td>
<td>2.01</td>
<td>117.23</td>
</tr>
</tbody>
</table>

Claims

1. A compound of formula (I)

 R¹ represents hydrogen, (C₁-C₄)-alkyl, (C₂-C₄)-alkenyl, (C₂-C₆)-acyl or benzoyl,
 R² represents a mono- or multi-substituted, the same or different substituent selected from: hydrogen, halogen, hydroxyl, cyano, trifluoromethyl, nitro, benzyl, (C₁-C₆)-alkyl, (C₁-C₆)-alkoxy, (C₁-C₆)-alkylthio, (C₁-C₆)-alkoxy-carbonyl, (C₁-C₆)-acyloxy, amino, (C₁-C₆)-alkylamino, (C₁-C₆)-dialkylamino, or (C₁-C₆)-acylamino,
 R³ represents a mono- or multi-substituted, the same or different substituent selected from: hydrogen, halogen, trifluoromethyl, trifluoromethoxy, trifluoromethylsulfonyl, nitro, cyano, carboxy, hydroxyl, (C₁-C₆)-alkoxy, (C₁-C₆)-alkoxycarbonyl and (C₁-C₆)-alkyl, wherein said alkyl may be substituted by aryl having from 6 to 10 carbon atoms, halogen, or a group presented by formulae -S-R⁶, NR⁷R⁸, CO-NR⁹R¹⁰ and -A-CH₂-R¹¹,

or a pharmaceutically acceptable salt or hydrate thereof,

wherein

 R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰ and R¹¹, the same or different, respectively represent hydrogen, phenyl, hydroxyl-substituted phenyl, hydroxyl, (C₁-C₂)-acyl or (C₁-C₆)-alkyl, wherein said alkyl may be substituted by hydroxyl, halogen, (C₁-C₆)-alkoxycarbonyl, phenyl or hydroxyl-substituted phenyl,
 A represents O, S, SO or SO₂,
 R¹¹ represents phenyl optionally mono- or multi-substituted by a same or different group selected from: halogen,
nitro, trifluoromethyl, (C₁₋₆)-alkyl and (C₁₋₆)-alkoxy,
R⁴ represents a group represented by formula -XR¹² or -NR¹³R¹⁴,

wherein

X represents oxygen or a bond,
R¹² represents hydrogen, a straight or branched (C₁₋₆)-alkoxycarbonyl, or a straight, branched or cyclic, saturated or unsaturated (C₁₋₆)-hydrocarbyl, wherein said hydrocarbyl optionally comprises one or two identical or different heterochain unit(s) selected from the group consisting of O, CO, NH, -NH(C₁₋₄)-alkyl, -N((C₁₋₄)-alkyl)₂, S and SO₂ and may be optionally substituted by halogen, nitro, cyano, hydroxyl, aryl having from 6 to 10 carbon atoms, aralkyl, heteroaryl or a group represented by formula -NR¹⁵R¹⁶,

wherein

R¹⁵ and R¹⁶, the same or different, respectively represent hydrogen, benzyl or (C₁₋₆)-alkyl,
R¹³ and R¹⁴, the same or different, respectively represent hydrogen, benzyl, (C₁₋₆)-alkyl, or cycloalkyl having from 3 to 6 carbon atoms,
R⁵ represents hydrogen, benzyl, (C₁₋₆)-alkyl, wherein said alkyl may be substituted by hydroxyl, halogen, (C₁₋₆)-alkoxycarbonyl, phenyl or substituted phenyl.

2. The compound of formula (I) or a pharmaceutically acceptable salt or hydrate thereof according to claim 1,

wherein

R¹ represents hydrogen, methyl, benzyol or acetyl,
R² represents a mono- or multi-substituted, the same or different substituent selected from: hydrogen, fluoro, chloro, bromo, benzyl, (C₁₋₄)-alkyl, (C₁₋₄)-alkoxy, amino, (C₁₋₄)-acylamino,
R³ represents a mono- or multi-substituted, the same or different substituent selected from: hydrogen, halogen, trifluoromethyl, trifluoromethoxy, trifluoromethylsulfonyl, nitro, cyano, carboxy, hydroxyl, methoxycarbonyl and a group represented by formula -CONHCH₂C(CH₃)₃, -CONH(CH₂)₂OH, -CONHCH₂C₆H₅, -CONHC₆H₅,
-OCH₂C₆H₅ or -S-pCI-C₆H₄,
R⁴ represents a group represented by formula -XR¹² or -NR¹³R¹⁴,

wherein

X represents oxygen or a bond,
R¹² represents hydrogen, (C₁₋₄)-alkenyl, (C₁₋₄)-alkoxycarbonyl or (C₁₋₄)-alkyl, wherein the radical may be optionally substituted by pyridyl, cyano, phenoxy, hydroxyl, trifluoroethyl, benzyl or a group represented by formula -NR¹⁵R¹⁶,

wherein

R¹⁵ and R¹⁶, the same or different, respectively represent hydrogen, benzyl or (C₁₋₄)-alkyl,
R¹³ and R¹⁴, the same or different, respectively represent hydrogen, benzyl, (C₁₋₄)-alkyl, or cyclopropyl,
R⁵ represents hydrogen, benzyl, (C₁₋₆)-alkyl, wherein said alkyl may be substituted by hydroxyl, chloro, fluoro, (C₁₋₆)-alkoxycarbonyl, phenyl or substituted phenyl.

3. The compound of formula (I) or a pharmaceutically acceptable salt or hydrate thereof according to claim 1,

wherein

R¹ represents hydrogen, methyl, benzyol or acetyl,
R² represents a mono- or multi-substituted, the same or different substituent selected from: hydrogen, fluoro, chloro, bromo, benzyl, (C₁₋₄)-alkyl, (C₁₋₄)-alkoxy, amino, (C₁₋₄)-acylamino,
R³ represents a mono- or multi-substituted, the same or different substituent selected from: hydrogen, fluoro, chloro, bromo, iodo, hydroxyl, trifluoromethyl, trifluoromethoxy, trifluoromethylsulfonyl, nitro, cyano, carboxy, methoxycarbonyl and a group represented by formula -CONHCH₂C(CH₃)₃, -CONH(CH₂)₂OH, -CONHCH₂C₆H₅, -CONHC₆H₅, -OCH₂C₆H₅ or -S-pCI-C₆H₄,
R⁴ represents a group represented by formula -XR¹² or -NR¹³R¹⁴,
The compound of formula (I) or a pharmaceutically acceptable salt or hydrate thereof according to claim 1,
wherein

R\(^{12}\) represents hydrogen, (C\(_1\)-C\(_2\))-alkenyl, (C\(_1\)-C\(_2\))-alkoxycarbonyl or (C\(_1\)-C\(_2\))-alkyl, wherein the radical may be optionally substituted by pyridyl, cyano, phenoxy, hydroxyl, trifluoromethyl, benzyl or a group represented by formula -NR\(^{15}\)R\(^{16}\),

wherein

R\(^{15}\) and R\(^{16}\), the same or different, respectively represent hydrogen, benzyl or methyl,
R\(^{13}\) and R\(^{14}\), the same or different, respectively represent hydrogen, (C\(_1\)-C\(_2\))-alkyl or cyclopropyl,
R\(^{5}\) represents hydrogen, benzyl, (C\(_1\)-C\(_2\))-alkyl, wherein said alkyl may be substituted by hydroxyl, chloro, fluoro, methoxycarbonyl, or ethoxycarbonyl.

4. The compound of formula (I) or a pharmaceutically acceptable salt or hydrate thereof according to claim 1,
wherein

R\(^{1}\) represents hydrogen or acetyl,
R\(^{2}\) represents a mono- or multi-substituted, the same or different substituent selected from: hydrogen, fluoro, chloro, methyl, amino, or acetylamino,
R\(^{3}\) represents a mono- or multi-substituted, the same or different substituent selected from: hydrogen, fluoro, chloro, bromo, hydroxy, nitro, methoxy, or methyl,
R\(^{4}\) represents a group represented by formula -XR\(^{12}\) or -NR\(^{13}\)R\(^{14}\),

wherein

X represents oxygen,
R\(^{12}\) represents a straight or branched alkyl having up to 3 carbon atoms,
R\(^{13}\) and R\(^{14}\) respectively represent hydrogen, or \(\alpha\)-methylbenzyl,
R\(^{5}\) represents hydrogen, methyl, or benzyl.

5. The compound of formula (I) according to claim 1, selected from the group consisting of:

1. Ethyl 2-(thiazol-4-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
2. Ethyl 2-(thiazol-4-yl)-4-(3-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
3. Ethyl 2-(thiazol-4-yl)-4-(4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
4. Ethyl 2-(thiazol-4-yl)-4-(3-methylphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
5. Ethyl 2-(thiazol-4-yl)-4-(4-methylphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
6. Ethyl 2-(thiazol-4-yl)-4-(3-methoxyphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
7. Ethyl 1-acetyl-2-(thiazol-4-yl)-4-(3-methoxyphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
8. Ethyl 2-(thiazol-4-yl)-4-(4-methoxyphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
9. Ethyl 2-(thiazol-4-yl)-4-(3-hydroxyphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
10. Ethyl 2-(thiazol-4-yl)-4-(4-hydroxyphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
11. Ethyl 2-(thiazol-4-yl)-4-(3-chlorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
12. Ethyl 2-(thiazol-4-yl)-4-(2-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
13. Ethyl 2-(thiazol-4-yl)-4-(4-chlorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
14. Ethyl 2-(thiazol-4-yl)-4-phenyl-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
15. Ethyl 2-(2-methylthiazol-4-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
16. Ethyl 2-(2-methylthiazol-4-yl)-4-(3-hydroxyphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
17. Ethyl 2-(2-methylthiazol-4-yl)-4-(4-hydroxyphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
18. Ethyl 2-(2-methylthiazol-4-yl)-4-(3-chlorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
19. Ethyl 1-acetyl-2-(2-methylthiazol-4-yl)-4-(3-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
20. Ethyl 1-acetyl-2-(2-methylthiazol-4-yl)-4-(4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
21. Ethyl 1-acetyl-2-(2-methylthiazol-4-yl)-4-(3-methylphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
22. Ethyl 1-acetyl-2-(2-methylthiazol-4-yl)-4-(4-methylphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
23. Ethyl 1-acetyl-2-(2-methylthiazol-4-yl)-4-(3-methoxyphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
24. Ethyl 1-acetyl-2-(2-methylthiazol-4-yl)-4-(4-methoxyphenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
late;
(25) Ethyl 1-acetyl-2-(2-methylthiazol-4-yl)-4-phenyl-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(26) Ethyl 1-acetyl-2-(2-methylthiazol-4-yl)-4-(4-chlorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(27) Ethyl 1-acetyl-2-(2-methylthiazol-4-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(28) Methyl 2-(thiazol-4-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(29) Methyl 2-(2-methylthiazol-4-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(30) Ethyl 2-(2-acetylaminothiazol-4-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(31) Ethyl 2-(2-aminothiazol-4-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(32) Ethyl 2-(5-chlorothiazol-4-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(33) Ethyl 2-(2-chlorothiazol-4-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(34) Methyl 2-(2-chlorothiazol-4-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(35) Methyl 2-(5-chlorothiazol-4-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(36) Methyl 2-(2-chlorothiazol-4-yl)-4-(4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(37) Methyl 2-(4-methylthiazol-5-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(38) Ethyl 2-(4-methylthiazol-5-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(39) Methyl 2-(2,4-dimethylthiazol-5-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(40) Ethyl 2-(2,4-dimethylthiazol-5-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(41) Ethyl 2-(2-methylthiazol-5-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(42) Ethyl 2-(thiazol-5-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(43) Ethyl 2-(2-acetylaminothiazol-5-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(44) Ethyl 2-(2-aminothiazol-5-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(45) Ethyl 2-(2-chlorothiazol-5-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(46) Methyl 2-(2-chlorothiazol-5-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(47) Methyl 2-(2-chlorothiazol-5-yl)-4-(4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(48) Ethyl 2-(1H-imidazol-2-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(49) Ethyl 2-(N-methyl-1H-imidazol-2-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(50) Ethyl 2-(N-benzyl-1H-imidazol-2-yl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(51) Ethyl 2-(N-benzyl-1H-imidazol-2-yl)-4-(4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(52) Ethyl 2-(N-methyl-1H-imidazol-2-yl)-4-(2-chlorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(53) Ethyl 2-(N-methyl-1H-imidazol-2-yl)-4-(4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(54) Ethyl 2-(1H-imidazol-2-yl)-4-(2-chlorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(55) Methyl 2-(2,6-difluorophenyl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(56) Ethyl 2-(2,6-difluorophenyl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(57) Isopropyl 2-(2,6-difluorophenyl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(58) Ethyl 2-(2,4,6-trifluorophenyl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(59) Methyl 2-(2,4,6-trifluorophenyl)-4-(2-chloro-4-fluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate;
(60) R,R-N-(1-phenylethyl)-4-(2-chloro-4-fluorophenyl)-2-(2,4,6-trifluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxamide;
(61) R,R-N-(1-phenylethyl)-N-1-acetyl-4-(2-chloro-4-fluorophenyl)-2-(2,4,6-trifluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxamide; and
(62) Ethyl 4-R-2-(2-chloro-4-fluorophenyl)-2-(2,4,6-trifluorophenyl)-6-methyl-1,4-dihydro-pyrimidin-5-carboxylate,

or its pharmaceutically acceptable salt or hydrate.

6. A process for preparing a compound according to any one of claims 1 to 5, comprising the steps of:

A) reacting an amidine of formula (II) or a salt thereof,
wherein R is defined as above, with an aldehyde of formula (III)

wherein R₃ is defined as above, and a compound of formula (IV)

CH₃CO-CH₂-CO-R₄

wherein R₄ is defined as above, in the presence or absence of a base or acid, and in a suitable inert solvent, or
B) reacting a compound of formula (V) or (VI)

wherein R₃ and R₄ are defined above, with a compound of formula (II), in the presence or absence of a base or acid, at a temperature of 20-150°C, and in a suitable inert solvent, or
C) reacting an aldehyde of formula (III)

wherein R₃ is defined as above, with a compound of formula (VII)
wherein R^4 is defined as above, and an amidine of formula (II),
or
D) reacting an aldehyde of formula (III) with a compound of formula (IV) and an iminoether of formula (VIII)

wherein R is defined as above, and R' is C_1-C_4 alkyl, in the presence of an ammonium salt.

7. A pharmaceutical composition, comprising a compound of formula (I) according to any one of claims 1 to 5, or any possible isomer, a pharmaceutically acceptable salt or hydrate thereof, and at least one pharmaceutically acceptable carrier.

8. Use of a compound of formula (I) according to any one of claims 1 to 5, or any possible isomer, a pharmaceutically acceptable salt or hydrate thereof, for the preparation of a medicament for the treatment of an acute or chronic viral disease.

9. Use of a compound of formula (I) according to any one of claims 1 to 5, or any possible isomer, a pharmaceutically acceptable salt or hydrate thereof, for the preparation of a medicament for the treatment of an acute or chronic disease caused by hepatitis B virus infection.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

See extra sheet

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: C07D A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practicable, search terms used)

WPI, EPODOC, PAJ, CNPAT, CNKI, CA, ISI WEB OF KNOWLEDGE, STN: dihydropyrimidin+

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>CN1305471A (BAYER AG), 25 July 2001 (25.07.2001), claims 1-16, examples 1-84, compounds in table A</td>
<td>1-9</td>
</tr>
<tr>
<td>X</td>
<td>CN1297449A (BAYER AG), 30 May 2001 (30.05.2001), claims 1-10, examples 1-10</td>
<td>1-9</td>
</tr>
<tr>
<td>A</td>
<td>W00223585A1 (AJINOMOTO CO INC), 21 Mar. 2002 (21.03.2002), claim 1, example 100</td>
<td>1-9</td>
</tr>
<tr>
<td>A</td>
<td>W0200609989A1 (SMITHKLINE BEECHAM CORP), 26 Jan. 2006 (26.01.2006), claims 1-16</td>
<td>1-9</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☒ See patent family annex.

* "A" document defining the general state of the art which is not considered to be of particular relevance
* "E" earlier application or patent but published on or after the international filing date
* "L" document which may throw doubts on priority claim (S) or which is cited to establish the publication date of another citation or other special reason (as specified)
* "O" document referring to an oral disclosure, use, exhibition or other means
* "P" document published prior to the international filing date but later than the priority date claimed

<table>
<thead>
<tr>
<th>Date of the actual completion of the international search</th>
<th>Date of mailing of the international search report</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 July 2007 (26.07.2007)</td>
<td>06 Sep. 2007 (06.09.2007)</td>
</tr>
</tbody>
</table>

Name and mailing address of the ISA/CN
The State Intellectual Property Office, the P.R.China
6 Xitucheng Rd., Jintan Bridge, Haidian District, Beijing, China 100088
Facsimile No. 86-10-62019451

Form PCT/ISA/210 (second sheet) (April 2007)

Authorized officer
HE Xiaoping
Telephone No. (86-10) 62085629

47
<table>
<thead>
<tr>
<th>Patent Documents referred in the Report</th>
<th>Publication Date</th>
<th>Patent Family</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>WO9954326A1</td>
<td>28.10.1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU3813399A</td>
<td>08.11.1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO20005215A</td>
<td>13.12.2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ2003871A3</td>
<td>17.01.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP1080086A1</td>
<td>07.03.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SK1565200A3</td>
<td>09.04.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA200005136A</td>
<td>31.05.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR2001004278A</td>
<td>25.05.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU740318B</td>
<td>01.11.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MXP00010153A</td>
<td>01.05.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ507569A</td>
<td>26.04.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP2002512243T</td>
<td>23.04.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP1080086B1</td>
<td>04.09.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE5902573G</td>
<td>10.10.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES2183548T</td>
<td>16.03.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW548274A</td>
<td>21.08.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX213074B</td>
<td>03.03.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US6696451B1</td>
<td>24.02.2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ293482B6</td>
<td>12.05.2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2004167135A</td>
<td>26.08.2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO20045259A</td>
<td>13.12.2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU2245881C2</td>
<td>10.02.2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INMUMNP200000429E</td>
<td>15.07.2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN1159311C</td>
<td>28.07.2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU2245881C9</td>
<td>10.02.2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO321985B</td>
<td>31.07.2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL138584A</td>
<td>05.09.2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2007117812A1</td>
<td>24.05.2007</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (April 2007)
<table>
<thead>
<tr>
<th>Patent Documents referred in the Report</th>
<th>Publication Date</th>
<th>Patent Family</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO0222588A1</td>
<td>21.03.2002</td>
<td>AU8450401A</td>
<td>26.03.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP1318147A1</td>
<td>11.06.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2004009991A1</td>
<td>15.01.2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP2002526841T</td>
<td>22.01.2004</td>
</tr>
<tr>
<td>CN1297449 A</td>
<td>30.05.2001</td>
<td>WO9954329A1</td>
<td>28.10.1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU3420599A</td>
<td>08.11.1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP1073653A1</td>
<td>07.02.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR20010042787A</td>
<td>25.05.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP2002512244T</td>
<td>23.04.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP1073653B1</td>
<td>28.08.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE59902470G</td>
<td>02.10.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US6503913B1</td>
<td>07.01.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES2181413T</td>
<td>16.02.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN1134434C</td>
<td>14.01.2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE19817262A1</td>
<td>21.10.1999</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (April 2007)
CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>Classification</th>
<th>Year/Document</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>C07D239/20</td>
<td>2006.01</td>
<td>i</td>
</tr>
<tr>
<td>C07D403/04</td>
<td>2006.01</td>
<td>n</td>
</tr>
<tr>
<td>C07D417/04</td>
<td>2006.01</td>
<td>n</td>
</tr>
<tr>
<td>A61K31/505</td>
<td>2006.01</td>
<td>n</td>
</tr>
<tr>
<td>A61K31/506</td>
<td>2006.01</td>
<td>n</td>
</tr>
<tr>
<td>A61P31/12</td>
<td>2006.01</td>
<td>n</td>
</tr>
<tr>
<td>A61P1/16</td>
<td>2006.01</td>
<td>n</td>
</tr>
</tbody>
</table>
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 9954326 A [0004]
- WO 9954329 A [0004]
- DE 2165260 [0030]
- DE 2401665 [0030]

Non-patent literature cited in the description

- B. E. KORBA; J. L. GERIN. Antiviral Research, 1992, vol. 19, 55-70 [0036]