EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 16.03.2011 Bulletin2011/11

Application number: 07114934.8

Date of filing: 24.08.2007

Piston for an internal-combustion engine and method for manufacturing a piston of this type
Kolben für einen Verbrennungsmotor und Verfahren zur Herstellung eines derartigen Kolbens
Piston pour moteur à combustion interne et procédé de fabrication d’un piston de ce type

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC MT NL PL PT RO SE SI SK TR

Date of publication of application: 25.02.2009 Bulletin2009/09

Proprietor: ThyssenKrupp Metalúrgica Campo Limpo Ltda.
13231-900 Campo Limpo Paulista SP (BR)

Inventors:
• Lopes, João Lester Garcia Lopes
 13214-296 Jundiaí, São Paulo (BR)
• Furquim, Heraldo Carlos
 13216-300 Jundiaí, São Paulo (BR)
• Oliveira, Mauro Aparecido Ferreira de
 13209-260 Jundiaí, São Paulo (BR)

Representative: Cohausz & Florack Patent- und Rechtsanwälte
Partnerschaftsgesellschaft
Bleichstraße 14
40211 Düsseldorf (DE)

References cited:
DE-A1-102004 058 968
JP-A-2 115 556
GB-A-1 502 790

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The invention relates to a piston, having a cooling chamber, for an internal-combustion engine, which piston is made up of two pre-produced parts, and to a method for manufacturing a piston of this type.

[0002] Pistons for internal-combustion engines are conventionally manufactured by casting or forging methods. Production by casting has the advantage of allowing the manufacture of light pistons of complex shape. However, considerable production costs have to be allowed for. This is especially the case if a steel material is to be used as the material for the manufacture of particularly high-strength pistons.

[0003] Depending on their size and on their intended application, forged pistons made of steel can both be of one-part construction and consist of two or more parts. In the case of multi-part pistons, composed of two or more parts, the individual parts are conventionally joined together non-positively, in a material-uniting manner or positively by suitable joining methods in such a way that they withstand the forces acting on them in practical use.

[0004] Specifically in the case of highly stressed diesel engines or highly charged spark-ignition engines, the heads of the pistons inserted in the respective internal-combustion engine are exposed to considerable thermal loads. In order to counteract the danger emanating from these loads, it has long been known to introduce at least one cooling chamber formed as a cooling channel into pistons of this type. The cooling channel can be connected to the atmosphere present in the crank chamber of the respective engine, so air passes through it during operation. To improve the effectiveness of this cooling, it is also known to integrate the cooling channel of a piston into the oil-circulation system of the respective internal-combustion engine.

[0005] A first example of a large number of pistons of this type is described in EP 0 787 898 A1. This piston is composed of a piston head part and a piston skirt part. The piston skirt part consists in this case of an intermediate part, which forms the bearing for the bolt of the connecting rod to be linked to the piston, and an outer part forming the piston skirt itself.

[0006] In the known piston, there is formed into the underside, associated with the piston skirt part, of the piston head part a recess formed in the manner of a groove and encircling in the outer edge region of the piston head part. Correspondingly, a recess, also formed in the manner of a groove and encircling in the outer edge region of the piston skirt part, is formed in the upper side, associated with the piston skirt part, of the piston skirt part. When the piston is fully assembled, the two recesses jointly form a closed, peripheral cooling channel which is delimited in its upper region by material of the piston head part and in its lower region by material of the piston skirt part. The cooling channel thus formed is in this case connected to the bearing, formed integrally with the piston skirt part, for the connecting rod via a hole guided through the piston skirt part, so during operation the oil conveyed to the bearing of the connecting rod can flow into the cooling channel and discharge the heat present therein.

[0007] In the case of the above-described known piston, the piston skirt and piston head parts, which are pre-produced separately from each other, are connected using a plurality of screws which are screwed from the upper side of the piston head part into the piston skirt part.

[0008] Although the multi-part construction of the known piston allows the cooling channel to be manufactured in a simple manner, the assembly of the known piston is, in particular, complex. The inevitable arrangement of the screw heads of the connecting screws in the combustion cavity of the piston head part also restricts the freedom of the design of a piston of this type.

[0009] Another piston, composed of a plurality of parts, with a cooling channel is described in WO 00/04286. This known piston also consists of a piston head part and a piston skirt part. In this case, unlike in the piston described in EP 0 787 898 A1, the piston head part is composed of an upper part and a lower part receiving the bearing for the connecting rod bolt. The lower part additionally carries, in this case, the sleeve-like piston skirt part. Correspondingly shaped recesses are formed into the mutually associated sides of the piston head upper and lower part. When the piston is fully assembled, the recesses jointly form a cooling channel which is enclosed on its underside by material of the piston head lower part and on its upper side by material of the piston head upper part. The cooling channel can be connected to an oil supply via a hole and an opening.

[0010] In the piston known from WO 00/04286, the connection between the individual piston parts is produced by friction welding, as a result of which the individual parts are permanently rigidly connected to one another in a material-uniting manner. This type of connection not only presupposes a specific configuration of the faces brought into contact with one another for welding but also restricts the choice of materials of which the piston is composed. Thus, in the case of the piston known from WO 00/04286, it is, in particular, not possible to make the piston head upper part, which is in practice subjected to high loads, of a steel material and the piston head lower part, which is subjected to less high loads, from a light material in order to save weight.

[0011] A further possibility for connecting two parts of a piston for an internal-combustion engine is described in DE 103 07 908 A1. In this prior art, the piston has a piston skirt part, the casing portion reaches up to the upper side of the piston, so the grooves for receiving the piston rings can be formed into the upper portion of the piston skirt part. At its upper end, the piston skirt part surrounds an opening into which, as a piston head part, a plate or plug-like piston head part is formed. The external diameter of the piston head part and the internal diameter of the opening in the piston skirt part are, in this case, mutually adapted in such a way that the piston head
part is held in the opening in a press fit. At the same time, the underside of the piston head part rests on material of the piston skirt part, so the piston head part is support-
ed against the piston skirt part counter to the drive forces acting on it during practical operation. In addition, screws ensure that the piston head part is secured in the piston skirt part.

[0012] Although the piston described in DE 103 07 908 A1 is intended for high-speed two-stroke engines, no cooling channel is provided in the known piston. Instead, the load capacity of the known piston is to be adapted, by the choice of suitable materials, to the loads resulting during practical use.

[0013] A further example of a multi-part piston for an internal-combustion engine is known from DE 102 44 513 A1. This piston has firstly a piston head part which is forged from steel and into which a combustion cavity, an annular wall and a cooling channel formed in the manner of a flute are formed. Secondly, the piston has a piston skirt part which carries a piston head part and in which hubs are formed for receiving a piston bolt connecting the piston to a connecting rod. For the manufacture of this piston, the piston head part and the piston skirt part are pre-produced in separate operations by forging and then finished by metal cutting. The finishing of the piston head part includes, in this case, the metal-cutting machining of the wall portions which delimit the cooling channel and via which a connection, uniting materials by welding or soldering, to the piston skirt part is subsequently produced.

[0014] Although a multi-part construction of this type allows complex shaping of the piston formed from two parts, apart from the load-capacity problems resulting from the multi-part construction, the production costs associated therewith are considerable.

[0015] Starting from the above-described prior art, the invention was based on the object of providing a piston for internal-combustion engines, which piston can be manufactured cost-effectively and allows maximum design freedom. A method for manufacturing a piston of this type is also to be specified.

[0016] With regard to the piston, this object was achieved, according to the invention, by a piston configured in accordance with claim 1. The claims dependent on claim 1 specify advantageous embodiments of such a piston according to the invention.

[0017] Particularly suitable for the manufacture of a piston according to the invention is the method specified in claim 9. Advantageous embodiments of this method according to the invention are specified in the claims dependent on claim 9.

[0018] A piston according to the invention for an internal-combustion engine is made up of at least one first part and a second part, one of the two parts forming the piston head and the other part the piston skirt. At the same time, there is arranged in the piston a cooling chamber which is delimited, in accordance with the prior art described at the outset, by material of the first part and material of the second part. In practise the delimitation of the cooling chamber can be realised for example by at least one wall of the first part and at least one wall of the second part.

[0019] According to the invention, the two parts of a piston of this type are joined together positively and non-
positively via a press fit. This press fit is, in this case, formed by a projection of the one part engaging with a recess in the respective other part.

[0020] The invention now applies the possibility, in general previously known from the field of the manufac-
ture of pistons for internal-combustion engines, of con-
necting two parts via a press fit to the particular problem of the connecting of two piston parts which, when the piston is finished, delimit a cooling chamber. It has sur-
prisingly been found that even in the case of a piston according to the invention having such a composition, a permanently rigid, positive and non-positive connection between the piston head and piston skirt part can be en-
sured.

[0021] The fundamental advantage of a piston accor-
ding to the invention is that the form, selected in accord-
ance with the invention, of the connection of the two pi-
ton parts can not only be produced cost-effectively but also allows maximum design freedom. In particular, it is readily possible, in the manner according to the invention, to form even cooling chambers of complex shape in the piston. Both the piston head part and the piston skirt part can in this case be pre-produced with high precision, so finishing costs are reduced to a minimum.

[0022] A further important advantage of the invention consists in the simple possibility of being able to combine even the most diverse materials without difficulty. The invention thus allows, for example, the piston head part to be made of a high-strength stainless steel and the piston skirt part to be made of a steel that is less strong but is particularly deformable or has particularly good sliding properties. It is also conceivable to combine a piston head part made of steel, in particular stainless steel, with a piston skirt part made of light metal, in par-
ticular an aluminium material.

[0023] The connection, produced in accordance with the invention via at least two press fits, of the two piston parts also allows the press fit to be formed in each case at the location at which it has an optimum effect with regard to the loads occurring during practical operation. A first press fit can thus be formed, for example, in the region of the piston wall forming the outer delimitation of the cooling chamber. A press fit of this type, arranged peripherally in the region of the circumference of the pi-
ton, allows the risk of opening of the joint seam, inevitably present between the first and the second part of a piston according to the invention, to be reliably minimised.

[0024] Additionally, it can also be expedient to form a second press fit in a centrally arranged region of the pis-
ton. In this embodiment, the comparatively high thick-
nesses of the walls present in the central region of the piston allow particularly high pressures to be generated.
between the moulded elements of the piston skirt and piston head part, via which the positive and non-positive connection according to the invention is produced. A particularly operationally secure connection of the two parts of a piston according to the invention is obtained, in this case, if the central pressed fit and the peripheral, outer press fit are combined with each other.

[0025] The at least one cooling chamber of the inventive piston can be a single integral cooling chamber formed in the center of the piston or a cooling channel which surrounds the center of the piston. It is also possible to combine a first cooling chamber placed in the center of the piston and a second cooling chamber in the form of a channel surrounding the central cooling chamber. By the presence of a centrally placed cooling chamber the transfer of heat from the combustion chamber of the engine to the piston skirt is interrupted or at least decisively limited so that the surface temperature of the combustion cavity of the piston rises. Accordingly, the combustion of fuel in the combustion chamber of the engine takes place at high temperatures so that the chemical energy of the fuel can be used with a higher efficiency.

[0026] In principle, it is possible to configure a plurality of cooling chambers in the piston head part or in the piston skirt part of a piston according to the invention in order to achieve maximum cooling effect. If the press fit is formed in the central region of the piston, it is particularly possible to guide a cooling chamber formed as a cooling channel of maximum cross section around the central region. If a press fit between the two parts is additionally formed in the outer peripheral region of the piston, the permanent tightness of the press fit can be reliably ensured.

[0027] A simple possibility for the formation of a press fit between the first and second part consists in there being formed into the side of the one part that is associated with the other part, as a recess, a peripheral groove in which, as a projection, a likewise peripheral shoulder of the second part is held positively and non-positively in a press fit.

[0028] Particularly secure cohesion between the at least two parts of a piston according to the invention can be achieved in that there is formed in the region of the recess in the one part an undercut with which a corresponding moulded element of the projection of the second part engages. The undercut of the recess and the corresponding moulded element of the projection are, in this case, to be mutually adapted in such a way that the change in size, caused, for example, by heating of the part provided with the recess and/or cooling of the part provided with the projection, of at least one of the parts is sufficiently great that the projection, despite its moulded element associated with the undercut, can be inserted into the recess substantially without force. After the subsequent adaptation of the temperatures of both parts and the accompanying adaptation of the dimensions of both parts, the moulded element of the one part then engages with the undercut of the other part and additionally supports the positive connection of both parts. Practical tests have revealed that the undercut formed in the region of the recess in the first part is for this purpose to have a contact face for the complementarily shaped moulded element of the projection, which contact face is inclined by > 0° to 5° relative to the direction in which the projection is guided on fitting of the first part into the second part.

[0029] In order, for example, to form the peripherally arranged press fit in the region of the circumference of the piston, the recess in the one part can be configured as a peripheral shoulder with which a correspondingly shaped shoulder of the second part engages as a projection.

[0030] Although it is in principle conceivable to provide for this purpose an additional constructional element, likewise connected in the manner in accordance with the invention to the other parts of a piston according to the invention, a particularly practical embodiment of the invention that can be produced cost-effectively is obtained if a bearing eyelet for a connecting rod bearing is configured on the part of a piston according to the invention that forms the piston skirt.

[0031] The possibility of pre-machining as completely as possible the piston skirt part and the piston head part of a piston according to the invention for internal-combustion engines allows the piston to be manufactured in a particularly simple manner. The method according to the invention accordingly makes provision for a recess to be formed on the first part and a projection to be formed on the second part during the pre-production of the first part, the dimensions of the recess in the one part and of the projection of the other part being mutually adapted in such a way that they can be joined together at room temperature only by means of a press fit. Obviously, there are also formed into the two parts, during the course of the pre-production process, the moulded elements such as, for example, suitably shaped grooves, recesses, etc., which delimit the respective cooling chamber when the piston according to the invention is fully assembled.

[0032] After pre-production, in accordance with the generally conventional procedure for the production of a press-fit, the temperature of at least one of the parts is adjusted in such a way that there is a difference in temperature between the first and the second part. This difference in temperature is to be set to be sufficiently large that at least one of the parts changes its shape, as a result of the change in its temperature accompanying the production of the difference in temperature, in such a way that the projection of the one part can be fitted substantially without force into the recess in the other part. The projection of the one part can then be fitted into the recess in the other part. After the subsequent equalising of the temperature of the one part to the temperature of the other part, the two parts are positively and/or non-positively linked to each other via the pairing "recess in the one part"/"projection of the other part".

[0033] Depending on the expansion properties of each part on heating, it can be beneficial for the first part pro-
vided with the recess to be heated for producing the difference in temperature. For this purpose, the respective first part can, for example, be heated to a heating temperature of 100 to 700°C. Practical tests have revealed in this regard that irrespective of the size of each part and the heat source available, a heating period of 5 to 3,600 s is required for this purpose.

[0034] However, alternatively or additionally, it can also be expedient, in a manner known per se, to cool the part provided with the projection for producing the difference in temperature.

[0035] The invention will be described hereinafter in greater detail with reference to drawings illustrating embodiments. In the drawings:

Fig. 1 is a schematic, partially cut-open perspective view of a piston for an internal-combustion engine;

Fig. 2 is a schematic longitudinal section of a detail of the piston shown in Fig. 1;

Fig. 3 is a schematic longitudinal section of a detail of a second piston;

Fig. 4 is a schematic longitudinal section of a detail of a third piston;

Fig. 5 is a schematic, partially cut-open perspective view of fourth piston for an internal-combustion engine and

[0036] The pistons 1 to 3 shown in the figures are each of two-part construction and assembled of a piston head part 4, 5, 6 and a piston skirt part 7, 8, 9. The piston head parts 4, 5, 6 each consist, in this regard, of a high-strength steel, in particular a stainless steel, whereas the piston skirt parts 7, 8, 9 can each be made of a steel that is less strong but is highly deformable, or of a light material, in particular an aluminium material.

[0037] The piston head parts 4, 5, 6 and the piston skirt parts 7, 8, 9 have each been pre-produced by forging. During the pre-production process, there is formed into the underside, associated with the respective piston skirt part 7, 8, 9, of the piston head parts 4, 5, 6 a respective annular depression 10, 11, 12 which is formed in the manner of a groove and encircles the central region 13 of the respective piston head part 4, 5, 6. A combustion cavity 14, 15, 16, which is configured in a manner known per se, is also formed in each case at the free upper side of the piston head parts 4, 5, 6.

[0038] Also in each case formed into the upper side, associated with the respective piston head part 4, 5, 6, of the respective piston skirt parts 7, 8, 9 is an annular depression 17, 18, 19 which is formed in the manner of a groove and encircles the central region of the respective piston skirt part 7, 8, 9. The depression 17, 18, 19 are in this case arranged in such a way that they form in conjunction with the indentations 10, 11, 12 associated there-

with, when the piston 1, 2, 3 is fully assembled, a respective peripheral cooling chamber formed as a cooling channel 20, 21, 22 which is delimited in its upper region by material of the respective piston head part 4, 5, 6 and in its lower region by material of the respective piston skirt part 7, 8, 9.

[0039] In the lower region of the piston skirt parts 6, 7, 8, there is formed in a manner known per se a respective bearing eyelet 23 for a bolt (not shown) via which a connecting rod (which can also not be seen) is articulated to the respective piston 1, 2, 3.

[0040] In the embodiment shown in Fig. 1 and 2, there is formed into the central region 13 of the piston head part 4, from the underside thereof, a centrally arranged recess 24, the opening of which is oriented normally to the longitudinal axis L of the piston 4 and is separated from the depression 10 in the piston head part 4 by a peripheral shoulder 25.

[0041] In the piston 1, a second recess 26 which is formed in the manner of a shoulder and encircles in the outer edge region of the piston head part 4 is formed on the inner edge of the wall 27, outwardly delimiting the indentation 10, of the piston head part 4.

[0042] In the piston 1, corresponding to the centrally arranged recess 24 in the piston head part 4, a projection 28 is formed integrally with the upper side, associated with the piston head part 4, of the piston skirt part 7. In the pre-produced state, not assembled with the piston head part 4, the external diameter thereof is larger by an excess amount than the internal diameter of the recess 24. This excess amount is such that, on the one hand, the expansion of the recess 24 accompanying in the radial direction heating of the piston head part 4 is sufficient to allow the projection 28 to be introduced into the recess 24 substantially without force and, on the other hand, the surface pressure achieved between the external circumferential surface of the projection 28 and the internal circumferential surface of the recess 24 after the assembly and cooling of the two parts 1, 4 is sufficient for reliable and permanent connection of the piston head part 4 to the piston skirt part 7.

[0043] In addition, a likewise annularly peripheral projection 29, configured in the manner of a shoulder, is formed on the upper side, associated with the piston head part 4, of the piston skirt part 7, in the wall 27’ outwardly delimiting the indentation 17, of the piston skirt part 7 so as to correspond to the peripheral recess 26, formed in the manner of a shoulder, in the piston head part 4. In the pre-produced but not yet assembled state, its outer circumferential wall is in this case oriented so as to be offset by an excess amount, based on the common longitudinal axis L of the piston 1, relative to the internal circumferential surface of the shoulder-like recess 26 in the piston head part 4. As in the case of the projection 28, this excess is such that, on the one hand, the expansion of the recess 26 accompanying in the radial direction heating of the piston head part 4 is sufficient to allow the projection 29 to be introduced into the recess 26 sub-
shoulders, are configured on the upper side, associated with the piston head part 4 and the piston skirt part 7.

[0044] In the piston 2, a recess 31 formed in the manner of a groove and encircling the central region 13 of the piston head part 5 is formed into the central region 13 of the piston head part 5, from the underside thereof associated with the piston skirt part 8. In addition, a further recess 32, in the form of a shoulder encircling the outer lower edge of the piston head part 5, is formed on the piston head part 5 of the piston 2. The circumferential surface 33 of the recess 32 is in this case inclined by an angle β of approx. 2° relative to the longitudinal axis L of the piston 5 toward the underside of the piston head part 5, so an undercut H is formed in the region of the recess 32.

[0045] Corresponding to the recess 31, formed in the manner of a groove, in the piston head part 5, a first shoulder-like peripheral projection 34 is formed integrally with the upper side, associated with the piston head part 5, of the piston skirt part 8. In addition, a projection 35, corresponding to the recess 32, formed in the manner of a shoulder and encircling the circumference of the piston skirt part 9, is formed on the outer edge of the upper side, associated with the piston head part 5, of the piston skirt part 8. The internal circumferential surface of the projection 35 is in this case inclined, so as to correspond to the circumferential surface 33 of the recess 32, relative to the longitudinal axis L by an angle of approx. 2°.

[0046] The position and dimensions of the recesses 31, 32 and the projections 34, 35 are, in each case, such that the projections 34, 35 of the piston skirt part 8 can, after appropriate temperature adjustment, be introduced into the recesses 31, 32 in the piston head part 5. After equalisation of the temperatures of the piston skirt part 8 and piston head part 5, there is then between the circumferential surfaces of the recesses 31, 32 and the faces, adjacent thereto in each case, of the projections 34, 35 a surface pressure which is sufficient reliably to hold together the two parts 5, 9 of the piston 5 even during practical use. The connection formed in the region of the pairing “recess 31” and “projection 35” by the undercut and the internal circumferential surface, engaging therewith, of the projection 35 additionally supports this cohesion.

[0047] In the piston 6, a recess 36, in the form of a shoulder encircling the outer lower edge of the piston head part 6, is formed on the piston head part 6, as in the piston head part 5 of the piston 5. In addition, on the inner upper edge of the depression 12, a further recess 37, in the form of a peripheral shoulder, is formed into the piston head part 6.

[0048] Projections 38, 39, encircling in the manner of shoulders, are configured on the upper side, associated with the piston head part 6, of the piston skirt part 9, corresponding to the recesses 36, 37 in the piston skirt part 6. The position and dimensions of the projections are in this case also selected in such a way that the piston head part 6 and the piston skirt part 9 cannot be joined together in the pre-produced state at room temperature; instead, for this purpose, at least the piston head part 6 has to be cooled sufficiently intensively or the piston skirt part 9 has to be heated sufficiently intensively that the change in the dimensions, associated with this temperature adjustment, of each part 6, 9 is sufficient to allow it to be joined to the respective other part 9, 6 substantially without force.

[0049] Piston 40 shown in Fig. 4 has an cooling channel 41 formed and positioned similar to the cooling channel 21 of piston 2. Additionally a cooling chamber 42 is formed in the central region of the piston 40 between the wall section 43 in which the combustion cavity of the piston head part 44 is moulded and the wall section 45 forming the top of the piston skirt part 46 of piston 40.

[0050] The positively and non-positively connection between the piston head part 44 and the piston skirt part 46 is realised in the same manner as the connection between the piston head part 5 and the piston skirt part 8 of the piston 2 shown in Fig. 3. Accordingly, from the skirt part 46 of piston 40 projections 47 and 48 shaped and positioned as the projections 34 and 35 of the piston skirt part 8 of piston 2 engage corresponding recesses 49 and 50 formed in the piston head part 44 of piston 40.

Reference numerals

[0051]

1, 2, 3 Piston
4, 5, 6 Piston head part
7, 8, 9 Piston skirt part
10, 11, 12 Depression
13 Central region of the piston head part 4, 5, 6
14, 15, 16 Combustion cavity
17, 18, 19 Depression
20, 21, 22 Cooling channel
23 Bearing eyelet
24 Recess in the piston head part 4
25 Shoulder of the piston head part 4
26 Recess in the piston head part 4
27 Wall of the piston head part 4
28 Projection
29 Projection
30 Seam
31 Recess
32 Recess
33 Circumferential surface of the recess 32
34 Projection
35 Projection
36 Recess
37 Recess
38 Projection
Claims

1. Piston for an internal-combustion engine made up of a first part and a second part, one of the two parts forming the piston head (4,5,6,44) and the other part forming the piston skirt (7,8,9,46) and a cooling chamber (20,21,22,41,42), which is delimited by material of the first part and by material of the second part, being configured in the piston (1,2,3,40), the two parts being joined together positively and non-positively via a press fit formed by a projection (28,29;34,35;38,39;48,49;47,50) of the second part, the projection (28,29;34,35;38,39;47,48) engaging with a recess (24,26;31,32;36,37;46,49,50) in the first part, characterised in that a first press fit is formed in the region of the piston wall (27,27') forming the outer delimitation of the cooling chamber (20,21,22,41,42), that a second press fit is formed in a centrally arranged region (13) of the piston and that the cooling chamber (20,21,22,41,42) is guided around the central region (13) in which the second press fit is produced.

2. Piston according to claim 1, characterised in that there is formed into the side of the one part that is associated with the other part, as a recess, a peripheral groove (31) in which, as a projection, a likewise peripheral shoulder (34) of the second part is held positively and non-positively in a press fit.

3. Piston according to any one of the preceding claims, characterised in that there is formed in the region of the recess (32) in the one part an undercut (H) with which a corresponding moulded element of the projection (35) of the second part engages.

4. Piston according to claim 3, characterised in that the undercut (H) formed in the region of the recess (32) in the first part has a contact face (33) for the complementarily shaped moulded element of the projection (35), which contact face is inclined by >0° to 5° relative to the direction in which the projection is guided on fitting of the first part into the second part.

5. Piston according to any one of the preceding claims, characterised in that the recess in the one part is configured as a peripheral shoulder (26) with which a correspondingly shaped shoulder (29) of the second part engages as a projection to produce the press fit.

6. Piston according to any one of the preceding claims, characterised in that there is formed in the region of the recess (32) in the one part an undercut (H) with which a corresponding moulded element of the projection (35) of the second part engages.

7. Piston according to any one of the preceding claims, characterised in that the part forming the piston head is made of a steel and the other part is made of a light metal.

8. Piston according to any one of the preceding claims, characterised in that the cooling chamber is formed as a cooling channel.

9. Method for manufacturing a piston, composed, in accordance with any one of claims 1 to 8, of two parts, for an internal-combustion engine,

- in which the first part (4,5,6,44) is pre-produced and in this pre-production recesses (24,31,32,36,37) are formed on the first part,
- in which the second part is pre-produced and projections (28,29,34,35,39) are configured on this second part,
- wherein the dimensions of the recesses (24,31,32,36,37) in the one part and of the projections (28,29,34,35,39) of the other part are mutually adapted in such a way that they can be joined together at room temperature only by means of a press fit,
- producing a difference in temperature between the first and the second part in such a way that at least one of the parts changes its shape, as a result of the change in its temperature accompanying the production of the difference in temperature, in such a way that the projection of the
one part can be fitted substantially without force into the recess in the other part,
- fitting the projections of the one part into the recesses in the other part, and
- equalising the temperature of the one part to the temperature of the other part, so the two parts are positively and/or non-positively linked to each other via the pairing "recess in the one part (24,31,32,36,37)"/"projection of the other part (28, 29, 34, 35, 39) ".

10. Method according to claim 9, characterised in that the first part provided with the recesses is (24,31,32,36,37) heated for producing the difference in temperature.

Patentansprüche

1. Kolben für eine Brennkraftmaschine, bestehend aus einem ersten Teil und einem zweiten Teil, wobei eines der beiden Teile den Kolbenboden (4, 5, 6, 44) und das andere Teil das Kolbenhemd (7, 8, 9, 46) bildet, und wobei eine Kühlkammer (20, 21, 22, 41, 42), welche von Material des ersten Teils und von Material des zweiten Teils begrenzt wird, in dem Kolben (1, 2, 3, 40) ausgebildet ist, wobei die beiden Teile über eine Presspassung, die durch einen Vorsprung (28, 29; 34, 35; 38, 39; 48, 49; 47, 48) des zweiten Teils gebildet wird, formschlüssig und kraftschlüssig verbunden sind, wobei der Vorsprung (28, 29; 34, 35; 38, 39; 47, 48) in eine Ausnehmung (24, 26; 31, 32; 36, 37; 46, 49, 50) in dem ersten Teil eingreift, dadurch gekennzeichnet, dass eine erste Presspassung in dem Bereich der Kolbenwand (27, 27') ausgebildet ist, welche die äußere Begrenzung der Kühlkammer (20, 21, 22, 41, 42) bildet, dass eine zweite Presspassung in einem zentral angeordneten Bereich (13) des Kolbens ausgebildet ist und dass die Kühlkammer (20, 21, 22, 41, 42) um den zentralen Bereich (13) herum geführt ist, in welchem die zweite Presspassung hergestellt ist.

2. Kolben nach Anspruch 1, dadurch gekennzeichnet, dass in der Seite des einen Teils, welche dem anderen Teil zugeordnet ist, als eine Ausnehmung eine umlaufende Nut (31) ausgebildet ist, in welcher, als ein Vorsprung, eine entsprechend ausgebildete umlaufende Schulter (34) des zweiten Teils formschlüssig und kraftschlüssig in einer Presspassung gehalten wird.

4. Kolben nach Anspruch 3, dadurch gekennzeichnet, dass der Hinterschnitt (H), der in dem Bereich der Ausnehmung (32) in dem ersten Teil ausgebildet ist, eine Kontaktfläche (33) für das komplementär geformte Formteil des Vorsprungs (35) aufweist, wobei diese Kontaktfläche um >0° bis 5° bezüglich der Richtung geneigt ist, in welcher der Vorsprung beim Einpassen des ersten Teils in das zweite Teil geführt wird.

9. Verfahren zum Herstellen eines Kolbens, der gemäß einem der Ansprüche 1 bis 8 aus zwei Teilen besteht, für eine Brennkraftmaschine,
- wobei das erste Teil (4, 5, 6, 44) vorgefertigt wird und bei dieser Vorfertigung Ausnehmungen (24, 31, 32, 36, 37) an dem ersten Teil geformt werden,
- wobei das zweite Teil vorgefertigt wird und Vorsprünge (28, 29, 34, 35, 39) an diesem zweiten Teil ausgebildet werden,
- wobei die Abmessungen der Ausnehmungen (24, 31, 32, 36, 37) in dem einen Teil und der Vorsprünge (28, 29, 34, 35, 39) des anderen Teils auf eine solche Weise angepasst sind, dass sie bei Raumtemperatur nur mittels einer Presspassung zusammengefügt werden können,
- Herstellen einer Temperaturdifferenz zwischen dem ersten und dem zweiten Teil auf eine solche Weise, dass mindestens eines der Teile infolge der mit der Herstellung der Temperaturdifferenz einhergehenden Änderung seiner
Temperatur seine Form auf eine solche Weise ändert, dass der Vorsprung des einen Teils im Wesentlichen ohne Kraftaufwand in die Ausnehmung in dem anderen Teil eingepasst werden kann,
- Einpassen der Vorsprünge des einen Teils in die Ausnehmungen in dem anderen Teil, und
- Angleichen der Temperatur des einen Teils an die Temperatur des anderen Teils, so dass die beiden Teile durch die Paarung "Ausnehmung in dem einen Teil (24, 31, 32, 36, 37)/"Vorsprung des anderen Teils (28, 29, 34, 35, 39)" formschlüssig und/oder kraftschlüssig miteinan-
der verbunden werden.

10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass das erste Teil, das mit den Ausnehmungen (24, 31, 32, 36, 37) versehen ist, zum Herstellen der Temperaturdifferenz er-
wartet wird.

Revendications

1. Piston pour moteur à combustion interne, constitué d'une première partie et d'une seconde partie, l'une des deux parties formant la tête (4, 5, 6, 44) du piston et l'autre partie formant la jupe (7, 8, 9, 46) du piston, et d'une chambre de refroidissement (20, 21, 22, 41, 42) qui est délimitée par la matière de la première partie et par la matière de la seconde partie, agencée dans le piston (1, 2, 3, 40), les deux parties étant assemblées par complémentarité de forme et par liaison de force, par un sertissage formé par une saillie (28, 29; 34, 35; 38, 39; 48, 49; 47, 50) de la seconde partie, la saillie (28, 29; 34, 35; 38, 39; 47, 48) s'engageant dans un évidement (24, 26; 31, 32; 36, 37; 46, 49, 50) de la première partie, caractérisé en ce qu'un premier sertissage est formé dans la région externe de la chambre de refroidissement (20, 21, 22, 41, 42), en ce qu'un second sertissage est formé dans une région centrale (13) du piston, et en ce que la chambre de refroidissement (20, 21, 22, 41, 42) entoure la région centrale (13) dans laquelle est effectué le second sertissage.

2. Piston selon la revendication 1, caractérisé en ce qu'une rainure périphérique (31) est formée en tant qu'évidement dans la face de l'une des parties qui est associée à l'autre partie, rainure dans laquelle, en tant que saillie, est retenu par liaison par complémentarité de forme et par liaison de force, dans un sertissage, un épaulement (34) également périphérique, de la seconde partie.

3. Piston selon l'une quelconque des revendications précédentes,
- production d'une différence de température entre
la première et la seconde parties, de telle
sorte qu'au moins l'une des parties change de
forme comme résultat de son changement de
température accompagnant la production de la
différence de température, de telle sorte que la
saillie de l'une des parties peut s'ajuster, sensi-
blement sans force, dans l'évidement de l'autre
partie,

- ajustement des saillies de l'une des parties
dans les évidements de l'autre partie, et

- égalisation de la température de la première
partie à la température de l'autre partie, de telle
sorte que les deux parties sont reliées l'une à
l'autre par liaison par complémentarité de forme
et par liaison de force, par l'assemblage "évide-
ment dans l'une des parties (24, 31, 32, 36,
37)"|"saillie de l'autre partie (28, 29, 34, 35, 39) ".

10. Procédé selon la revendication 9,
caractérisé en ce que la première partie pourvues
des évidements (24, 31, 32, 36, 37) est chauffée
pour produire la différence de température
Fig. 1
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- EP 0787898 A1 [0005] [0009]
- WO 0004286 A [0009] [0010]
- DE 10307908 A1 [0011] [0012]
- DE 10244513 A1 [0013]