EUROPEAN PATENT SPECIFICATION

DOUBLE ACTION FILTER ASSEMBLY WHEEL WITH FLIPPING WHEEL

DOPPELT WIRKENDES FILTERBAUGRUPPENRAD MIT WENDERAD

ROUE D'ASSEMBLAGE AVEC FILTRE À DOUBLE ACTION AVEC ROUE DE RETOURNEMENT

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

Priority: 31.05.2006 US 809633 P

Date of publication of application:
18.02.2009 Bulletin 2009/08

Proprietor: Philip Morris Products S.A.
2000 Neuchâtel (CH)

Inventors:
• SPIERS, Steve, F.
 Richmond, VA 23235 (US)

• SCOTT, G., Robert
 Midlothian, VA 23113 (US)

• GARTHAFFNER, Travis
 Chesterfield, VA 23832 (US)

Representative: Marlow, Nicholas Simon
Reddie & Grose LLP
16 Theobalds Road
London WC1X 8PL (GB)

References cited:
WO-A-2006/048767
DE-A1- 19 920 760

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Cigarette filter rods have been processed in pairs in the so-called “two-up” filter rod configuration. According to this configuration, one solid filter plug is in the middle of a tube so that an empty space is created on either end of the filter tube. Each end is filled with a sequence of granular material, such as carbon and the like, and solid material, such as cellulose acetate fibers or fibers with flavorant. Upon completion a tobacco rod may be joined to each end of the filter tube, and the central solid filter may then be cut in half to form two cigarettes.

A separate assembly wheel may be arranged to fill each side of the tube. One end of the tube is filled on one assembly wheel by vertically depositing and/or inserting filter materials into the upwardly facing opening. The product is then transferred through a drum system or similar device to flip the tube along its longitudinal axis. The flipped tube, which has the filled end facing downward and the open end facing upward, is then placed on a second assembly wheel so that filter materials could be inserted or deposited into the open end.

U.S. patent application no. 11/268,291 teaches a method of filling the open ends of the filter tube, including filling one end of the tube, inverting the tube and filling the other end. The application describes a method which utilizes a rotating tube flute plate, a rotating bin of granular material, a plurality of vertically oriented fill tubes and second fill tubes, a rotating filter segment plate and second filter segment plate, and a plurality of rotating plungers, all of which collectively comprise an upper wheel assembly rotating about a central vertical axis. A substantially identical lower wheel assembly also rotates about the same central vertical axis. A first end of each filter tube is filled with solid and/or granular material on the upper wheel assembly. A conveyor system removes half-filled filter tubes from the upper wheel assembly, inverts the tubes and places them on the rotating tube flute plate of the lower wheel assembly. The other ends of the filter tubes are then filled with solid and/or granular material on the lower wheel assembly. It would be advantageous, however, if both sides of the fill tube could be filled using only one wheel assembly.

US 200210119874 A1 discloses a method and arrangement for producing compound filters for products in the tobacco-processing industry. A filter tube, having a filter element in a central region of the filter tube, is supplied to a predetermined position. Predetermined portions of filtering material are then inserted into the filter tube from at least a first end of the filter tube so that filter segments form in at least a first part of the filter tube.

It is therefore an objective of the present invention to develop a method that uses a single wheel assembly, as described herein below, to assemble components into both ends of a hollow tube having a solid center.

In accordance with one aspect of the present invention, there is provided an apparatus for filling ends of an opened ended tube comprising: a feed wheel for feeding an open ended tube; an assembly wheel for receiving an open ended tube from the feed wheel; means for depositing material into an open end of an open ended tube on the assembly wheel; a take-off wheel for removing a tube containing the said material from the assembly wheel; and a flipping wheel for receiving a tube from the take-off wheel and flipping it about its vertical axis; wherein the flipping wheel comprises a plurality of flutes for accepting half-filled tubes from the take-off wheel, the flutes being able to rotate so that the filter tubes can be flipped and the remaining hollow opening of the tube positioned to face generally upward, the flipping wheel configured to transfer filled tubes into the positions left vacant during the initial loading of the feed wheel so that open ended tubes and half-filled tubes can be loaded in alternating order into every position on the assembly wheel for filling the upwardly facing open ends.

In accordance with a further aspect of the present invention a preformed tube of paper with hollow ends and a solid center of cellulose acetate or similar material is formed into two cigarette filters. Specifically, the process of producing compound cigarette filters according to the present invention comprises the steps of: placing a filter tube with two hollow ends and a solid filter center in a substantially vertical position in a flute on a feed wheel; advancing the tube along the feed wheel; transferring the tube to a flute on an assembly wheel; filling one hollow end of the tube with granular material while the tube is on the assembly wheel; transferring the tube to a flute on a take-off wheel, said flute position aligned to transfer the tube to a flipping wheel; transferring the tube to a rotating flute on the flipping wheel and flipping the half-filled tube so that the remaining hollow end faces upward; transferring the flipped tube from the flipping wheel to a vacant position on the feed wheel; transferring the flipped tube from the feed wheel to the assembly wheel; filling the remaining hollow end of the tube with granular material while the tube is on the assembly wheel; transferring the tube to a flute on the take off wheel aligned to pass by a notch in the flipping wheel; and removing the tube by a stripper from the take-off wheel for further processing and packaging; wherein the process is repeated continuously by loading a tube at every other flute on the feed wheel to preserve vacant positions for the flipped tubes to fill, the tubes initially loaded onto the feed wheel in such a manner that the half-filled tubes will be transferred to the flipping wheel and not removed from the take-off wheel by the stripper.

The solid central filter can be further processed by joining a tobacco rod to each end of the filter and cutting the filter in half to form two cigarettes, for example. By using a single assembly wheel, the floor space required for this machine is considerably reduced.
Also, since one wheel is used to fill both ends of the tube, a separate assembly wheel is not required for each end of the tube. This decreases setup time, machine cost, and machine complexity.

[0010] Further aspects of the present invention are defined in the dependent claims.

Brief Description Of The Drawings

[0011] Novel features and advantages of the present invention in addition to those noted above will become apparent to persons of ordinary skill in the art from a reading of the following detailed description in conjunction with the accompanying drawings wherein similar reference characters refer to similar parts and in which:

- Fig. 1 is a top plan view of a fill tube of a 2-up filter;
- Fig. 2 is a cross-sectional view taken along line 2-2 of Fig. 1;
- Fig. 3 is a schematic top plan view of an apparatus with processing wheels according to the present invention at a first stage of a process for forming cigarette filters;
- Fig. 4 is a front elevational view of one of the filter tube flippers according to the present invention and its 180° drive mechanism;
- Fig. 5 is a schematic top plan view of an apparatus with processing wheels according to the present invention at a second stage of a process for forming cigarette filters;
- Fig. 6 is a schematic top plan view of an apparatus with processing wheels according to the present invention at a third stage of a process for forming cigarette filters; and
- Fig. 7 is a schematic top plan view of an apparatus with processing wheels according to the present invention at a fourth stage of a process for forming cigarette filters and a legend for the symbols used in Figs. 3-7.

Detailed Description Of A Preferred embodiment

[0012] Referring with more particularity to the drawings, Fig. 1 illustrates a top view of a tube 10 that will be transported and filled according to the present invention. Referring also to Fig. 2, tube 10 has a central filter 12 such as a plug of cellulose acetate tow or other suitable material. Filter 12 may be wrapped with filter paper 14 so that two hollow openings 16 are formed at each end of the tube 10.

[0013] Figure 3 is a top plan view that schematically shows the apparatus for achieving the objectives of the present invention. The apparatus includes a feed wheel 18, an assembly wheel 20, a take-off wheel 22, and a flipping wheel 24. Generally speaking, a tube 10 will travel from the feed wheel 18, to the assembly wheel 20 where one hollow end will be filled. Half-filled tube 10 will then be transferred to take-off wheel 22 and then to a flipping wheel 24 where the tubes will be flipped so that the filled end will be facing in a down position and the remaining hollow end will be facing upward. The half-filled and flipped tubes 10 will be returned to a vacant position on the feed wheel and back to the assembly wheel so that the remaining hollow end can be filled. The filled tubes 10 will then be placed on and removed from take-off wheel 22 for further processing and packaging. The specific manner in which hollow ends of filter tubes are filled is described in detail in U.S. Application 11/268,291. The novel process of handling tubes 10 so that both ends can be filled using only one assembly wheel will now be described in greater detail.

[0014] Tubes 10 are first introduced to a feed wheel 18 at the flute 11 in position 18A in a conventional manner. The flutes 11 are the generally semi-circular tubular shaped openings along the perimeter of the wheel. For purposes of illustration, certain positions will be designated with letters representing a point during the process. As the wheel advances by spinning on its axis, flutes 11 will change from one process position to the next. Thus, each tube 10 will be loaded at position 18A. After it is loaded, the wheel will rotate and the tube 10 will move to processing position 18B, and so forth.

[0015] Tubes 10 are held within the flutes of the various wheels by vacuum or other suitable means. Tubes 10 are initially loaded in every other flute on the feed wheel 18 for reasons that will be made more apparent below. As the newly introduced tubes 10 travel in a counterclockwise direction along wheel 18, they are not affected by the flutes on the flipping wheel 24, which is traveling in a clockwise direction, because of a notch 26 between adjacent flutes on flipping wheel 24. This can be observed in Fig. 3, where tube 10 at position 18E passes by notch 26. Tubes 10 on feed wheel 18 travel to position 18G and are then transferred to the assembly wheel 20 at assembly wheel flute position 20A. At position 18G the vacuum holding tube 10 will be disengaged, while the vacuum at position 20A will be engaged, thus transferring tube 10 from wheel 18 to wheel 20. Adjacent flutes 11 on wheel 18 are aligned with adjacent flutes 11 on wheel 20, so that as the two wheels are turned tubes 10 are initially introduced at every other flute on assembly wheel 20.

[0016] As each flute 10 reaches position 20M on assembly wheel 20, the exposed hollow end has been filled according to conventional filling techniques to form a half-filled tube 10. To discern between tubes at various stages of the process, it is useful at this point to introduce the designation system shown in Fig. 7. The designation system illustrated in Fig. 7 utilizes four symbols. The open circle designates a tube 10 in which no filter material has been introduced. Thus, both ends of tube 10 are hollow. The second symbol is a half-filled circle, which designates a tube 10 in which one of the exposed ends has been filled with filter materials and the filled end is facing in the upward direction. The third symbol is a three-quar-
Turning back to Fig. 3, a half-filled tube 10' is shown at position 20M. Thus, between point 20A and 20M one or more materials has been inserted or deposited in the upwardly facing end of tube 10. At position 20N, the half-filled tube 10' will lie between assembly wheel 20 and take-off wheel 22. The vacuum at position 20N will be disengaged, while a vacuum on the take-off wheel 22 will be engaged.

To described the take-off wheel 22, it is useful to designate flutes 1-4, which will move from one processing position to the next. Thus, as shown in Fig. 3, when the half-filled tube 10' is located at position 20N, it will be aligned with flute 1 or 3 in wheel 22. The assembly wheel 20 and take-off wheel 22 are turned at speeds such that half-filled tubes 10' will be continuously transferred at position 20N to flutes 1 and 3, where they will then be transferred to flutes on flipping wheel 24.

Fig. 4 shows a front elevational view of one of the filter tube flipping mechanisms 28 as viewed along line 4-4 in Fig. 3. Flipping wheel 24 has a motor 29 for rotating the wheel 24 and flipping mechanisms 28 for rotating to flip half-filled tubes 10' so that the empty end of filter tube 10' is facing upward. Flipping mechanisms 28 may have flutes 30 with a semicircular cross-section and suction ports 32 that retain half-filled filter tubes 10' by vacuum. The flipping mechanism 28 may also be attached to a shaft 33. A pinion 34 may be attached to the shaft 33 and engaged with a reciprocating rack 36. The reciprocating action of rack 36 may be caused by a wheel 38 at one end of the rack traveling along a cam track 40 as the flipping wheel 24 rotates under the power of motor 29. The rack, pinion, and cam track may be designed so that the filter tube 10' is flipped 180° after it is transferred from take-off wheel 22 to flipping wheel 24 and before the flipped filter tube 10'' is transferred to feed wheel 18. Flipping wheel 24 in Fig. 5 is now at point 18G. A vacuum at position 18G will be disengaged, while the vacuum at position 20A will be engaged. Tube 10'' in flute 6 is loaded onto feed wheel 18 at position 18E. A vacuum at position 6 will be disengaged, while the vacuum at position 18E will be engaged.

Fig. 7 shows the positions of the wheels and tubes after the assembly wheel has rotated 600 degrees from the position shown in Fig. 3. The previously half-filled, flipped tubes 10'' are completely filled as they are rotated about wheel 20 to form finished filled tubes 10''' as seen at position 20M. The completely filled tubes 10''' are transferred to flutes 2 and 4 on the take-off wheel 22, while the half-filled tubes 10' continue to transfer to flutes 1 and 3 en route to flipping wheel 24, as described previously. As the completely filled tubes 10''' pass the flipping wheel 24 they pass by notches 26 to thereby miss the flipping flutes 5-8 and a vacuum from the upper manifold continues to hold them on take-off drum 22 until they reach the stripper 28. When they reach stripper 28, the vacuum may be turned off and the finished product may be removed from the machine for further processing and packaging. Of course, an additional wheel could be used to remove the finished product instead of stripper 28.

With both ends of the filter tube 10''' filled with granular material and solid filter segments, a two-up dual filter has been formed, which when combined with wrapped tobacco rods at each end thereof ultimately produces two complete cigarettes (not shown). The dual filter can be cut through the middle of the central solid filter to separate the two cigarettes. After separation, the cigarette filter may have a length of approximately 30mm, but can be shorter or longer, if desired.

As used in the Figures, reference numeral 10 refers to a rod or group with both ends hollow, reference numeral 10' refers to a rod or group with both ends filled, reference numeral 10'' refers to a rod or group flipped to exposed opposite hollow end, and reference 10''' refers to a finished rod or group with both ends filled.

It should be understood that the above detailed description while indicating preferred embodiments of the invention are given by way of illustration only.

For example, it should be noted that the number of flutes illustrated on each wheel is limited for simplicity. Obviously, many more flutes could be evenly spaced along the entire outer diameter of the particular wheel to increase the number of tubes that could be processed for each full turn of the wheel. Each flute shown in Figs. 3-7 could represent a group of flutes. In short, the number of tubes and flutes shown on each wheel could be changed and still produce the same result.

1. An apparatus for filling ends of an opened ended tube comprising:
a feed wheel (18) for feeding an open ended tube (10);
an assembly wheel (20) for receiving an open ended tube from the feed wheel;
means for depositing material into an open end of an open ended tube on the assembly wheel;
a take-off wheel (22) for removing a tube containing the said material from the assembly wheel; and
a flipping wheel (24) for receiving a tube from the take-off wheel and flipping it about its vertical axis;
wherein the flipping wheel comprises a plurality of flutes (30) for accepting half-filled tubes from the take-off wheel, the flutes being able to rotate so that the filter tubes can be flipped and the remaining hollow opening of the tube positioned to face generally upward, the flipping wheel configured to transfer flipped tubes into the positions left vacant during the initial loading of the feed wheel so that open ended tubes and half-filled tubes can be loaded in alternating order into every position on the assembly wheel for filling the upwardly facing open ends.

2. Apparatus according to claim 1 wherein the feed wheel (18) comprises a plurality of flutes for accepting and retaining open ended tubes (10).

3. Apparatus according to claim 1 or 2 wherein the assembly wheel (20) comprises a plurality of flutes for accepting open ended tubes (10) from the feed wheel (18).

4. A process of producing a compound cigarette filter comprising the steps of:

 placing a filter tube (10) with two hollow ends and a solid filter center in a substantially vertical position in a flute (11) on a feed wheel (18);
 advancing the tube along the feed wheel;
 transferring the tube to a flute on an assembly wheel (20);
 filling one hollow end of the tube with granular material while the tube is on the assembly wheel;
 transferring the tube to a flute on a take-off wheel (22), said flute position aligned to transfer the tube to a flipping wheel (24);
 transferring the tube to a rotating flute (30) on the flipping wheel and flipping the half-filled tube so that the remaining hollow end faces upward;
 transferring the flipped tube from the flipping wheel to a vacant position on the feed wheel;
 transferring the flipped tube from the feed wheel to the assembly wheel;
 filling the remaining hollow end of the tube with granular material while the tube is on the assembly wheel;

 transferring the tube to a flute on the take off wheel aligned to pass by a notch (26) in the flipping wheel; and
 removing the tube by a stripper (28) from the take-off wheel for further processing and packaging;

 wherein the process is repeated continuously by loading a tube at every other flute on the feed wheel to preserve vacant positions for the flipped tubes to fill, the tubes initially loaded onto the feed wheel in such a manner that the half-filled tubes will be transferred to the flipping wheel and not removed from the take-off wheel by the stripper.

5. A process according to claim 4 wherein the flipping wheel is provided with notches (26) designed so that unfilled tubes in flutes (11) on the feed wheel (18) may pass the flipping wheel (24) without contact, while the vacant flutes on the feed wheel will be aligned with flutes (30) from the flipping wheel to allow flipped tubes to be transferred to the vacant flutes.

6. A process according to claim 4 or 5 wherein the flipping wheel (24) is provided with notches (26) designed so that completely filled tubes in flutes on the take-off wheel (22) may pass the flipping wheel without contact, while the half-filled tubes on the take-off wheel will be aligned with flutes (30) from the flipping wheel to allow half-filled tubes to be transferred to the flipping wheel.

Patentansprüche

1. Vorrichtung zum Füllen von Enden einer offenen Röhre, umfassend:

 ein Zuführrad (18) zum Zuführen einer offenen Röhre (10),
 ein Montagerad (20) zum Erhalten einer offenen Röhre von dem Zuführrad,
 eine Einrichtung zum Einbringen von Material in ein offenes Ende einer offenen Röhre am Montagerad,
 ein Abnahmerad (22) zum Entfernen einer das genannte Material enthaltenden Röhre vom Montagerad und
 ein Wenderad (24) zum Erhalten einer Röhre vom Abnahmerad und zu ihrem Wenden um ihre vertikale Achse,
 wobei das Wenderad eine Vielzahl von Rillen (30) zum Aufnehmen halbfüllter Röhren vom Abnahmerad aufweist, die Rillen sich drehen können, so dass die Filterröhren gewendet werden können und die verbleibende hohe Öffnung der Röhre so positioniert werden kann, dass sie
allgemein nach oben weist, wobei das Wenderad zur Übergabe gewendeter Röhren in die Positionen gestaltet ist, die während der anfänglichen Befüllung vom Zuführrad unbesetzt gelassen wurden, so dass offene Röhren und halbgefüllte Röhren zum Füllen der nach oben weisenden offenen Enden in abwechselnder Reihenfolge in jede Position an dem Montagerad geladen werden können.

2. Vorrichtung nach Anspruch 1, wobei das Zuführrad (18) eine Vielzahl von Rillen zur Aufnahme und zum Festhalten offener Röhren (10) aufweist.

3. Vorrichtung nach Anspruch 1 oder 2, wobei das Montagerad (20) eine Vielzahl von Rillen zur Aufnahme offener Röhren (10) vom Zuführrad (18) aufweist.

4. Verfahren zum Herstellen eines zusammengesetzten Zigarettenfilters, das die folgenden Schritte umfasst:

Anlegen einer Filterröhre (10) mit zwei hohlen Enden und einer massiven Filtermitte in einer im wesentlichen vertikalen Position in einer Rille (11) an einem Zuführrad (18), Voranbewegen der Röhre am Zuführrad entlang, Übergeben der Röhre an eine Rille an einem Montagerad (20), Füllen eines hohlen Endes der Röhre mit Granulat, während die Röhre auf dem Montagerad ist, Übergeben der Röhre an eine Rille eines Abnahmerads (22), wobei die genannte Rillenposition zur Übergabe der Röhre an ein Wenderad (24) ausgerichtet ist, Übergeben der Röhre an eine rotierende Rille (30) an dem Wenderad und Wenden der halbgefüllten Röhre, so dass das verbleibende hohle Ende herantreibt, Übergeben der gewendeten Röhre von dem Wenderad an eine freie Position an dem Zuführad, Übergeben der gewendeten Röhre vom Zuführad an das Montagerad, Füllen des verbleibenden hohlen Endes der Röhre mit Granulat, während die Röhre auf dem Montagerad ist, Übergeben der Röhre an eine Rille des Abnahmerads, die so ausgerichtet ist, dass sie an einer Aussparung (26) im Wenderad vorbeilaufen, und Entfernen der Röhre durch einen Abstreifer (28) von dem Abnahmerad zur Weiterverarbeitung und Verpackung, wobei der Prozess kontinuierlich wiederholt wird, indem eine Röhre an jeder zweiten Rille an dem Zuführad eingelegt wird, um freie Positionen zum Füllen durch die gewendeten Röhren freizuhalten, wobei die Röhren anfänglich so am Zuführad eingelegt werden, dass die halbgefüllten Röhren an das Wenderad übergeben werden und nicht durch den Abstreifer vom Wenderad entfernt werden.

5. Verfahren nach Anspruch 4, wobei das Wenderad mit Aussparungen (26) versehen ist, die so ausgeführt sind, dass ungefüllte Röhren in Rillen (11) am Zuführrad (18) ohne Kontakt am Wenderad (24) vorbeilaufen können, während die freien Rillen am Zuführrad auf die Rillen (30) vom Wenderad ausgerichtet werden, damit gewendete Röhren in die freien Rillen übergeben werden können.

6. Verfahren nach Anspruch 4 oder 5, wobei das Wenderad (24) mit Aussparungen (26) versehen ist, die so ausgeführt sind, dass vollständig gefüllte Röhren in Rillen am Abnahmerad (22) ohne Kontakt am Wenderad vorbeilaufen können, während die halbgefüllten Röhren am Abnahmerad auf Rillen (30) vom Wenderad ausgerichtet werden, damit halbgefüllte Röhren an das Wenderad übergeben werden können.

Revendications
1. Appareil de remplissage d’extrémités d’un tube à extrémités ouvertes, comprenant :
 une roue d’aménée (18) pour amener un tube à extrémités ouvertes (10) ;
 une roue d’assemblage (20) pour recevoir un tube à extrémités ouvertes depuis la roue d’aménée ;
 un moyen de dépôt d’une substance dans une extrémité ouverte d’un tube à extrémités ouvertes sur la roue d’assemblage ;
 une roue de retrait (22) pour retirer un tube contenant ladite substance de la roue d’assemblage ;
 et une roue de retournement (24) pour recevoir un tube de la roue de retrait et le retourner autour de son axe vertical ;
 dans lequel la roue de retournement comprend une pluralité de cannelures (30) destinées à recevoir des tubes à moitié remplis de la roue de retrait, les cannelures pouvant tourner de telle sorte que les tubes de filtres puissent être retournés et que l’ouverture restante creuse du tube soit positionnée pour être tournée généralement vers le haut, la roue de retournement étant configurée pour transférer les tubes retournés dans les positions laissées vides durant le chargement initial de la roue d’aménée de telle sorte que les tubes à extrémités ouvertes et
les tubes à moitié remplis puissent être chargés en alternance dans chaque position sur la roue d’assemblage pour remplir les extrémités ouvertes tournées vers le haut.

2. Appareil selon la revendication 1, dans lequel la roue d’aménée (18) comprend une pluralité de cannelures pour recevoir et retenir des tubes à extrémités ouvertes (10),

3. Appareil selon la revendication 1 ou 2, dans lequel la roue d’assemblage (20) comprend une pluralité de cannelures pour recevoir des tubes à extrémités ouvertes (10) depuis la roue d’aménée (18).

4. Processus de production d’un filtre de cigarette composé comprenant les étapes consistant à :
 placer un tube de filtre (10) ayant deux extrémités ouvertes et un centre de filtre solide en position sensiblement verticale dans une cannelure (11) sur une roue d’aménée (18) ;
 avancer le tube le long de la roue d’aménée ;
 transférer le tube dans une cannelure sur une roue d’assemblage (20) ;
 remplir une extrémité creuse du tube avec une substance granulaire pendant que le tube se trouve sur la roue d’assemblage ;
 transférer le tube dans une cannelure sur une roue de retrait (22), la position de ladite cannelure étant alignée pour transférer le tube sur une roue de retournement (24) ;
 transférer le tube dans une cannelure rotative (30) sur la roue de retournement et retourner le tube à moitié rempli de telle sorte que l’extrémité creuse restante soit tournée vers le haut ;
 transférer le tube retourné de la roue de retournement à une position vide sur la roue d’aménée ;
 transférer le tube retourné de la roue d’aménée à la roue d’assemblage ;
 remplir l’extrémité creuse restante du tube avec une substance granulaire pendant que le tube se trouve sur la roue d’assemblage ;
 transférer le tube dans une cannelure sur la roue de retrait alignée pour passer par une encoche (26) dans la roue de retournement ; et
 retirer le tube avec un extracteur (28) de la roue de retrait en vue de ses traitement et conditionnement ultérieurs ;
 dans lequel le processus est répété continûment en chargeant un tube toutes les une cannelure sur deux sur la roue d’aménée de façon à préserver des positions vides destinées à être remplies par les tubes retournés, les tubes étant initialement chargés sur la roue d’aménée de telle sorte que les tubes à moitié remplis soient transférés sur la roue de retournement et ne soit pas retirés de la roue de retrait par l’extracteur.

5. Processus selon la revendication 4, dans lequel la roue de retournement est dotée d’encehces (26) conçues de telle sorte que les tubes non remplis dans les cannelures (11) sur la roue d’aménée (18) puissent passer devant la roue de retournement (24) sans contact, tandis que les cannelures vides sur la roue d’aménée seront alignées avec les cannelures (30) de la roue de retournement pour permettre le transfert des tubes retournés dans les cannelures vides.

6. Processus selon la revendication 4 ou 5, dans lequel la roue de retournement (24) est dotée d’encoches (26) conçues de telle sorte que les tubes complètement remplis dans les cannelures sur la roue de retrait (22) puissent passer devant la roue de retournement (24) sans contact, tandis que les tubes à moitié remplis sur la roue de retrait seront alignés avec les cannelures (30) de la roue de retournement pour permettre le transfert des tubes à moitié remplis sur la roue de retournement.
Fig. 7.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 268291 A [0003] [0013]
• US 200210119874 A1 [0004]