EUROPEAN PATENT SPECIFICATION

MACHINE FOR APPLYING A FLEXIBLE CARRIER TO A PLURALITY OF CONTAINERS

MASCHINE ZUM ANBRINGEN EINES FLEXIBLEN TRÄGERS AUF MEHRERE BEHÄLTER

APPAREIL SERVANT A APPLIQUER UN SUPPORT SOUPLE SUR UNE PLURALITE DE CONTENANTS

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

Priority:
09.05.2006 US 799227 P
24.04.2007 US 789167

Date of publication of application:
28.01.2009 Bulletin 2009/05

Proprietor: Illinois Tool Works Inc.
Glenview, Cook County, IL 60026-1215 (US)

Inventors:
• SLOVIK, Rachell, L.
 Glenview, IL 60026 (US)
• LUDWIG, Christopher, J.
 Glenview, IL 60026 (US)

Representative: Smee, Anthony James Michael
Gill Jennings & Every LLP
Broadgate House
7 Eldon Street
London EC2M 7LH (GB)

References cited:
EP-A1- 1 495 969
EP-A2- 0 084 442
WO-A-03/016144
US-A- 2 996 025

Note: Within nine months of the publication of the mentions of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
As such, different machines and/or set-up procedures are traditionally required to bring the carrier up or down over the containers having the second diameter and/or chime. Two different diameters are provided to the machine. A second carrier is then fed into a turner-diverter that moves and/or rotates the package to a correct position for placement on a pallet or similar shipping unit. EP1495969 describes a machine for packaging multiple containers wherein a flexible carrier stock is fed across a jaw drum.

Finally, different machines or complex set-up procedures would also be required for containers having different heights or requiring application along different points along the container sidewall and/or chime. Two traditional configurations of container carrier to container are the sidewall-applied carrier (SAC) position and the rim-applied carrier (RAC) position. A sidewall-applied carrier requires that the carrier is applied lower along the container than the rim-applied carrier. In addition, containers having different heights typically require positioning of the carrier along different heights of the sidewall. As such, different machines and/or set-up procedures are traditionally required to bring the carrier up or down along the container. Likewise, such different equipment and/or set-up procedures are traditionally required to package containers having different overall heights.

Conventional applying machines include a single jaw drum used to apply carriers to individual containers. The conventional jaw drum is typically fixed into position on the applying machine and used in connection with a fixed range of container diameters, such as a range of approximately 0.5 cm (.2 inches) and up to a range of approximately 1.27 cm (.5 inches), based upon the size of the jaw drum. Such conventional applying machines typically include an infeed conveyor for supplying a plurality of containers within a limited range of diameters to the jaw drum. Additionally, a reel stand is positioned upstream of the jaw drum to supply a reel of carriers to a feed drum and then on to the jaw drum.

The string of carriers are then traditionally applied to the containers and, following application, cut into a desired package configuration. The resulting package is then fed into a turner-diverter that moves and/or rotates the package to a correct position for placement on a pallet or similar shipping unit. EP1495969 describes a machine for packaging multiple containers wherein a flexible carrier stock is fed across a jaw drum.

Accordingly, an entirely distinct applying machine is typically required when packaging a second plurality of containers outside of a size range that can be accommodated with the standard applying machine.

Prior art multi-packaging devices and methods generally require several different versions or configurations of machines to accommodate different container carrier, package sizes and package configurations. Machines are traditionally a limitation on the range of container diameters, size of package or configuration of package that can be effectively packaged by a single system.

In addition, different machines or complex set-up procedures would also be required for different sizes of packages, for instance 4-packs, 6-packs and/or 12-packs. Each different package size would typically require different machines and/or complex set-up of machine configurations to accommodate division and diversion of differently sized packages.

Finally, different machines or complex set-up procedures would also be required for containers having different heights or requiring application along different points along the container sidewall and/or chime. Two traditional configurations of container carrier to container are the sidewall-applied carrier (SAC) position and the rim-applied carrier (RAC) position. A sidewall-applied carrier requires that the carrier is applied lower along the container than the rim-applied carrier. In addition, containers having different heights typically require positioning of the carrier along different heights of the sidewall. As such, different machines and/or set-up procedures are traditionally required to bring the carrier up or down along the container. Likewise, such different equipment and/or set-up procedures are traditionally required to package containers having different overall heights.

Conventional applying machines include a single jaw drum used to apply carriers to individual containers. The conventional jaw drum is typically fixed into position on the applying machine and used in connection with a fixed range of container diameters, such as a range of approximately 0.5 cm (.2 inches) and up to a range of approximately 1.27 cm (.5 inches), based upon the size of the jaw drum. Such conventional applying machines typically include an infeed conveyor for supplying a plurality of containers within a limited range of diameters to the jaw drum. Additionally, a reel stand is positioned upstream of the jaw drum to supply a reel of carriers to a feed drum and then on to the jaw drum.

Accordingly, an entirely distinct applying machine is typically required when packaging a second plurality of containers outside of a size range that can be accommodated with the standard applying machine.
DESCRIPTION OF PREFERRED EMBODIMENTS

[0015] Figs. 1-13 show a system and machine for packaging multiple containers in a carrier according to one preferred embodiment of this invention. As shown in Figs. 1-3, carrier stock 15 moves through machine 10, specifically through jaw drum 40, where it is applied to containers and then separated into individual, unitized packages.

[0016] According to one preferred embodiment of this invention, if a uniform group of like-sized containers having a different size requires packaging and/or if a package is required having a different configuration and/or if a different carrier is required, a separate machine is unnecessary as machine 10 may be quickly reconfigured, following various adjustments to machine 10, as described below.

[0017] Therefore, the machine 10 for packaging multiple containers in multiple size packages along multiple locations on the container sidewall according to this invention permits the use of a single machine in combination with a variety of sizes of containers, sizes of packages and configurations of packages. Traditional machines are typically fifteen or more feet long and six or more feet wide, therefore a reduction in the number of machines required in a packaging plant significantly reduces the required working floor space within the plant. In addition, quick and generally toolless set-up and changeover results in more efficient packaging operations.

[0018] Carrier stock 15 preferably moves through machine 10 from reel stand 25 where carriers are dispersed in a continuous string of carrier stock 15 and ultimately to packages where each carrier is separated into a unitized package, each package containing a plurality of uniform containers. A typical configuration for a package is a "six-pack" containing two longitudinal rows of containers in three transverse ranks. Additional desired packages such as four-packs, eight packs and twelve packs may be unitized using machine 10 according to this invention, and such additional sizes of packages are limited only by the consumer market for such additional sizes.

[0019] Carrier (and carrier stock) is preferably constructed from a flexible plastic sheet, such as low-density polyethylene. The flexible plastic sheet is punched or otherwise formed into a plurality of container receiving apertures aligned in transverse ranks and at least two longitudinal rows to form a continuous sheet of carriers.

[0020] According to one preferred embodiment of this invention, machine 10 for packaging multiple containers includes moving carrier stock 15 through machine 10 from reel stand 25. Carrier stock 15 then enters machine 10 into jaw drum 40 (also referred to as "first jaw drum 40" herein). Following application to containers, carrier stock 15 is divided into individual carriers using cut-off wheel 100 resulting in individually unitized packages of a desired size which are then dispersed to a case packer (not shown), for example, by using turner/diverter 60.

[0021] According to a preferred embodiment of this invention, a plurality of containers each having a different diameter may also be packaged using the same machine 10. According to a preferred embodiment of this invention, when a changeover is desired, first jaw drum 40, such as shown in Fig. 5, is moved from an operating position 70 inline with carrier stock 15, such as shown in Fig. 6, to a storage position 75 not inline with carrier stock 15. Additionally, second jaw drum 50 is moved from a storage position 75 to the operating position 70. Carrier
components are described in more detail below.

As used herein, the term "inline" means that the respective jaw drum is positioned to receive and apply carrier stock 15 to containers.

As such, according to a preferred method of operation of the subject invention, that is, a method of packaging multiple containers in unitized packages wherein a first unitized package includes containers having a first diameter and a second unitized package includes containers having a second diameter, machine 10 utilizes first jaw drum 40 and second jaw drum 50.

Containers having the first diameter are provided to machine 10 having first jaw drum 40 in the operating position 70. A first carrier stock 15 is moved through machine 10 and positioned over the containers having the first diameter to form the first unitized package. First jaw drum 40 is then moved to storage position 70 of machine 10 not inline with carrier stock 15. Next, second jaw drum 50 is moved from the storage position 75' into the operating position 70 and containers having the second diameter are provided to machine 10. A second carrier stock (not shown) is then moved through machine and positioned over the containers having the second diameter to form the second unitized package.

In this manner, an operator can use a single machine to package a wide range of containers. Specifically, it is desirable that machine 10 is capable of packaging containers within a diameter range of approximately 5.08 cm (2 inches) to approximately 7.62 cm (3 inches), more specifically between approximately 5.84 cm (2.3 inches) and approximately 7.37 cm (2.9 inches). In addition, it is desirable that machine 10 is capable of packaging containers within a height range of approximately 10.2 cm (4 inches) to approximately 30.5 cm (12 inches), more specifically between approximately 12.1 cm (4.75 inches) and approximately 27.9 cm (11 inches).

According to a preferred embodiment of this invention and as shown in Figs. 9 and 10, a plurality of lugs 35 extending along sidewalls 30. Lugs 35 preferably move relative to sidewalls 30 to positively accommodate varying and/or non-conventional container shapes, such as contoured bottles. As discussed in more detail below, carrier stock 15 is subse-
quently positioned over the plurality of containers whereby each container receiving aperture engages with one of the containers to form a package having a predetermined number of containers.

JAW DRUMS

[0032] Accordingly, a plurality of containers is provided from infeed conveyor 20 to jaw drum 40, 50 for application of carrier stock 15 to containers. As described, jaw drum 40 or second jaw drum 50 may be positioned in an operating position 70 with respect to infeed conveyor 20 to accept the plurality of containers. The following detailed description presumes use of jaw drum 40 (or "first jaw drum 40") in the operating position 70, however, second jaw drum 50 preferably operates in the same or similar manner as jaw drum 40 described.

[0033] Carrier stock 15 proceeds from reel stand and/or infeed to jaw drum 40, particularly to jaw pairs 45 located radially about jaw drum 40. Jaw drum 40 preferably comprises a cylindrical member rotatable about a horizontal axis which transports carrier stock 15 to the plurality of containers which flow through jaw drum 40. A plurality of jaw pairs 45 are preferably equally spaced around a perimeter of jaw drum 40. Radial positions of jaw pairs 45 around the perimeter of jaw drum 40 are preferably permanently fixed.

[0034] As best shown in Fig. 5, according to one preferred embodiment of this invention, each jaw pair 45 comprises a fixed jaw and a moveable jaw (not shown). In one preferred embodiment of this invention, jaw pairs 45 are moved between an open position and a closed position. According to one preferred embodiment of this invention, each jaw pair 45 is configured to grip carrier stock 15 with the moveable jaw and the fixed jaw engaged through each transverse pair of container receiving apertures in carrier stock 15. The circumferential spacing between adjacent jaw pairs 45 is preferably approximately equal to a pitch of carrier, i.e., the distance between adjacent centers of container receiving openings. The lateral spacing between the moveable jaw and the fixed jaw in the closed position is preferably slightly less than a width between transverse pairs of container receiving apertures. Carrier stock 15 is engaged with jaw pairs 45 of jaw drum 40 immediately prior to application to containers.

[0036] As jaw pairs 45 move with the rotation of jaw drum 40, container receiving apertures within carrier stock 15 stretch to accommodate a container. Carrier stock 15 in a stretched condition is positioned over a plurality of containers so that each container receiving aperture engages with one container. Upon engagement with the containers, carrier stock 15 is released from jaw pair 45 and grips a perimeter of container, either around a chime in a rim-applied carrier (RAC) configuration or, more preferably, around a sidewall in a sidewall-applied carrier (SAC) configuration.

[0037] Jaw drum 40 is preferably adapted to move between the operating position 70 and a storage position 75. Second jaw drum 50 is likewise adapted to move between the operating position and a storage position 75'. Although shown in Figs. 2-4 and described herein as different storage positions 75, 75', jaw drum 40 and second jaw drum 50 may share a common storage position that may be adaptable to enable transfer between the operating position 70 and storage position 75. Jaw drums 40, 50 may be moved individually or as a module that includes other components of machine 10, such as cutoff wheel 100 and/or other operative components.

[0038] According to a preferred embodiment of this invention, one or more rails or tracks 80 extend between the operating position 70 and the storage position 75, 75'. Jaw drum 40 and/or module containing jaw drum 40 may thereby slide on track 80 between operating position 70 and storage position 75. Likewise, second jaw drum 50 and/or module containing second jaw drum 50 may slide on track between operating position 70 and storage position 75'. Jaw drums 40, 50 may be positioned on or with respect to linear bearings to permit movement along rails or tracks 80.

[0039] More specifically, according to one preferred embodiment of this invention shown schematically in Fig. 4, first track 85 may extend from operating position 70 within machine 10. Second track 90 may further extend generally perpendicular to first track 85, preferably to form a \(\pm \), so that first track 85 intersects second track 90 at junction 95. Storage position 75 may be positioned on one side of junction 95 and storage position 75' may be positioned on opposite side of junction 95. In this manner, jaw drum 40 and jaw drum 50 may be slid or otherwise moved into operating position 70 without removal of jaw drums 40, 50 from track 80 and/or machine 10.

[0040] Jaw drum 40 and second jaw drum 50 are preferably used in connection with different sets of containers and/or carriers. For example, according to one preferred embodiment of this invention, jaw drum 40 includes a different pitch between jaw pairs 45, that is, jaw pairs 45 are circumferentially spaced at a different pitch length, than second jaw drum 50. For example, jaw drum 40 may include a pitch between adjacent jaw pairs 45 of approximately 7.62 cm (3 inches) and the second jaw drum 50 includes a pitch between adjacent jaw pairs 45 of approximately 6.60 cm (2.6 inches). As a result, jaw drum 40 may be used to package containers having a diameter of approximately 7.62 cm (3.0 inches) and second jaw drum 50 may be used to package containers having a diameter of approximately 6.60 cm (2.6 inches).

[0041] First jaw drum 40 and second jaw drum 50 are preferably interchangeable between the operating position and the storage position without the use of tools, such as with locking levers which may be loosened by
hand to permit sliding jaw drums 40, 50 relative to tracks and/or rails.

To further accommodate various containers, specifically those having different heights, infeed conveyor 20 may be lowered or raised relative to jaw drum 40, 50 so that jaw pairs 45 are positioned lower along the container to facilitate placement of carrier stock 15 around the sidewall of containers having different heights. Specifically, such as shown in Fig. 11, platform 65 may be positioned beneath the operating position 70 of a respective jaw drum 40, 50 so that at least one of a vertical height and angle of the plurality of containers is adjustable relative to the operating position 70. Platform 65 is preferably positioned integrally or inline with infeed conveyor 20 and output conveyor 55. According to one preferred embodiment of this invention, platform 65 is adjustable to accommodate containers having heights between approximately 10.2 cm (4 inches) and approximately 30.5 cm (12 inches) or more specifically between 12.1 cm and 27.9 cm (4.75 inches and 11 inches).

CUTOFF WHEEL

Output conveyor 55 preferably conveys the containers longitudinally from platform 65 and/or infeed conveyor 20 after carrier stock 15 has been applied. After carrier stock 15 is stripped from jaw pairs 45, a continuous string of unitized containers proceeds along output conveyor 55 and through cutoff wheel 100, such as shown in Fig. 12. According to a preferred embodiment of this invention, cutoff wheel 100 is adjustable and/or replaceable with minimal use of tools to divide packages into any number of desired sizes.

Cutoff wheel 100 preferably includes a plurality of knives positioned around a perimeter of cutoff wheel 100 at appropriate increments based upon a desired size of the package. For instance, if a six-pack is desired, knives are positioned in between every three containers to cut carrier stock 15 into packages having three ranks of two rows of containers. Likewise, if an eight-pack is required, knives are positioned in between every four containers to cut carrier stock 15 into packages having four ranks of two rows of containers.

The knives are preferably removable and/or adjustable within cutoff wheel 100 preferably using methods that provide quick and efficient removability and replaceability. Alternatively, the entire cutoff wheel 100 may be replaceable to account for different package configurations.

TURNER/DIVERTER

An outfeed such as output conveyor 55 subsequent provides individual unitized packages of containers from the operating position 70 to turner/divertor 60, such as shown in Fig. 13. Turner/divertor 60 is preferably positioned over discharge conveyor 120 and is used to move, align and/or realign the individual packages into a desirable discharge pattern for placement by a case packer into boxes and/or pallets and/or other shipping containers. For example, turner/divertor 60 may be used to rotationally realign six-packs from a two wide position as they emerge from the cutoff wheel 100 to a three wide position and on to a case packer to place in corrugated cardboard trays.

Turner/divertor 60 preferably includes a plurality of lugs extending from a continuous belt. The lugs may be removable and/or replaceable to accommodate various sizes and configurations of packages.

Tuner/divertor 60 and/or discharge conveyor 120 are preferably adjustable up and down relative to the slider 30 and on to a case packer, such as by using one or more linear actuators controlled electronically and/or manually. Adjustment of linear actuators enable turner/divertor 60 to properly address packages of different heights. In addition, discharge guides 62 may be removable and replaceable to enable different discharge patterns.

MACHINE DRIVE

According to one preferred embodiment of this invention, one or more of the operative components of machine 10 preferably includes an associated drive, either electrical or mechanical. The associated drive may include a servo motor providing power and feedback or a simple motor providing only power. According to one preferred embodiment of this invention, a drive electrically connects one component of machine 10 with respect to at least one other component of machine 10 including jaw drums 40, 50, infeed conveyor 20, reel stand 25, turner/divertor 60 and/or cutoff wheel 100.

According to a preferred embodiment of this invention, a drive speed of each moving component of machine 10 is timed and maintained using suitable electronic controls. Additionally or alternatively, various heights of individual components of machine 10 may be maintained using such suitable electronic controls. A controller, such as a PLC, is preferably electrically connected to a suitable moving component of machine 10, for instance to jaw drums 40, 50, reel stand 25, infeed conveyor 20 and/or turner/divertor 60 resulting in coordinated movements of these mechanisms relative to each other. As described herein, each referenced component (jaw drum 40, feed drum 70, etc.) may include a corresponding motor that powers a respective drive of such referenced component.

As a result, jaw drum 40, 50 may be registered relative to a home position of a container based upon signals received from the controller. Likewise, turner/divertor 60 preferably operates to position packages along discharge conveyor 120 at a speed and/or height responsive to signals received from the controller. As a result of the described relationship among the various drive mechanisms in machine 10, various mechanical adjustments are unnecessary among such drive mechanisms when switching between different jaw drum 40, 50, dif-
ferent containers, different carriers, different package configurations and other changes that may result in a change in operating characteristics of machine 10.

While in the foregoing specification this invention has been described in relation to certain preferred embodiments thereof, and many details have been set forth for purposes of illustration, it will be apparent to those skilled in the art that the invention is susceptible to additional embodiments and that certain of the details described herein can be varied considerably without departing from the scope of the claims.

Claims

1. An applicating machine for applying a flexible carrier to a plurality of containers provided from an infeed, the applicating machine comprising:

 an operating position (70) inline with the flexible carrier;
 a first track (85) extending from the operating position;
 first (75) and second (75') storage positions not inline with the flexible carrier;
 a first jaw drum (40) releasably positioned in the operating position (70) with respect to the infeed to accept the plurality of containers, the first jaw drum (40) applying the flexible carrier to the plurality of containers, the first jaw drum (40) capable of being released from the operating position (70) and slideably interchangeable between the operating position (70) and the first storage position (75) on the machine not inline with the flexible carrier;
 a second jaw drum (50) positioned in the second storage position (75') and slideably interchangeable between the second storage position (75') and the operating position (70), the second jaw drum (50) slideable to the operating position after the first jaw drum is removed therefrom; and
 a second track (90) extending generally perpendicular from the first track, the first track (85) intersecting the second track at a junction (95), wherein the first storage position (75) is on an opposite side of the junction (95) as the second storage position (75').

2. The applicating machine of Claim 1, wherein the first jaw drum (40) and second jaw drum (50) slideable with respect to the operating position (70).

3. The applicating machine of Claim 1, wherein the first jaw drum (40) is positionable in a first storage position (75) and the second jaw drum (50) is positionable in a second storage position (75'), each of the first jaw drum (40) and second jaw drum (50) slideable with respect to the operating position (70).

4. The applicating machine of Claim 1, further comprising an outfeed (55) providing unitized packages of containers from the operating position and a turner-diverter (60) connected with the outfeed.

5. The applicating machine of Claim 4, further comprising:

 a conveyor (120) extending through the turner-diverter (60), the conveyor having an adjustable height.

6. The applicating machine of Claim 1, further comprising:

 a reel stand (25) positioned at the infeed conveyor (20), the reel stand moveable between a first position for accommodating a reel of carriers and a second position permitting placement of a carton of carriers relative to the infeed conveyor.

7. The applicating machine of Claim 1, further comprising:

 a platform (10) positioned beneath the operating position of a respective jaw drum so that at least one of a vertical height and angle of the plurality of containers is adjustable relative to the operating position.

8. The applicating machine of Claim 1, further comprising:

 an outfeed conveyor (55) providing unitized packages of containers from the operating position (70);
 a turner-diverter (60) connected with the outfeed conveyor (55); and
 a conveyor (120) extending through the turner-diverter, the conveyor having an adjustable height.

9. A method of packaging multiple containers in a unitized package, the method comprising the steps of:

 providing a first plurality of containers having a first size to an applicating machine, the applicating machine including a first jaw drum (40) in an operating position (70) with a plurality of jaw pairs, each jaw pair spaced at a first length from a circumferentially adjacent jaw pair;
 moving a first carrier having a plurality of apertures through the applicating machine; and
 positioning the first carrier over the first plurality of containers, the carrier including a plurality of apertures, the plurality of apertures being dimensioned to receive the plurality of containers.
of containers whereby each aperture engages with one container to form a first package; moving the first jaw drum (40) from the operating position (70) along first (85) and second (90) tracks extending generally perpendicular to each other and intersecting at a junction (95) to a first storage position (75) and moving a second jaw drum (50) from a second storage position (75') on an opposite side of the junction to the first storage position (75) along the tracks on the machine to the operating position; providing a second plurality of containers having a second size distinct from the first size to the applicating machine; moving a second carrier having a plurality of apertures through the applicating machine; and positioning the second carrier over the second plurality of containers whereby each aperture engages with one container to form a second package.

10. The method of Claim 9, further comprising:
packaging containers within a diameter range of approximately 5.08 centimetres (2 inches) to approximately 7.62 centimetres (3 inches).

Patentansprüche

1. Befestigungsmaschine zum Anbringen eines flexiblen Trägers an mehreren von einem Zuförderer zugeführten Behältern, wobei die Befestigungsmaschine Folgendes umfasst:
eine Betriebsposition (70) in einer Linie mit dem flexiblen Träger;
eine erste Führungsschiene (85), die sich von der Betriebsposition erstreckt;
eine erste (75) und zweite (75') Lagerposition, die nicht in einer Linie mit dem flexiblen Träger liegen;
eine erste Backentrommel (40), die freigebar in der Betriebsposition (70) bezüglich des Zuförderers positioniert ist, um die mehreren Behälter aufzunehmen, wobei die erste Backentrommel (40) den flexiblen Träger an den mehreren Behältern anbringt, wobei die erste Backentrommel (40) aus der Betriebsposition (70) freigegeben werden kann und verschiebbar zwischen der Betriebsposition (70) und der ersten Lagerposition (75) an der Maschine, die nicht in einer Linie mit dem flexiblen Träger liegt, gewechselt werden kann;
eine zweite Backentrommel (50), die in der zweiten Lagerposition (75') positioniert ist und verschiebbar zwischen der zweiten Lagerposition (75') und der Betriebsposition (70) gewechselt werden kann, wobei die zweite Backentrommel (50) in die Betriebsposition verschoben werden kann, nachdem die erste Backentrommel draus heraus bewegt worden ist; und
eine zweite Führungsschiene (90), die sich allgemein senkrecht von der ersten Führungschiene erstreckt, wobei die erste Führungsschiene (85) die zweite Führungsschiene an einer Kreuzung (95) schneidet, wobei sich die erste Lagerposition (75) auf einer gegenüberliegenden Seite der Kreuzung (95) bezüglich der zweiten Lagerposition (75') befindet.

2. Befestigungsmaschine nach Anspruch 1, wobei die erste Backentrommel (40) und die zweite Backentrommel (50) jeweils mehrere Backenpaare enthalten, wobei die Backenpaare von der ersten Backentrommel (40) einen anderen Abstand zwischen Backenpaaren als die zweite Backentrommel (50) haben.

3. Befestigungsmaschine nach Anspruch 1, wobei die erste Backentrommel (40) in einer ersten Lagerposition (75) positioniert werden kann und die zweite Backentrommel (50) in einer zweiten Lagerposition (75') positioniert werden kann, wobei die erste Backentrommel (40) und die zweite Backentrommel (50) jeweils bezüglich der Betriebsposition (70) verschiebbar sind.

4. Befestigungsmaschine nach Anspruch 1, die weiterhin einen Abförderer (55), der eine Einheit bildende Verpackungen von Behältern aus der Betriebsposition zuführt, und eine mit dem Abförderer verbundene Dreh-/Umleitvorrichtung (60) umfasst.

5. Befestigungsmaschine nach Anspruch 4, die weiterhin eine Fördereinrichtung (120) umfasst, die sich durch die Dreh-/Umleitvorrichtung (60) erstreckt, wobei die Fördereinrichtung eine verstellbare Höhe aufweist.

7. Befestigungsmaschine nach Anspruch 1, die weiterhin eine Plattform (10) umfasst, die unterhalb der Betriebsposition einer jeweiligen Backentrommel positioniert ist, so dass eine vertikale Höhe und/oder ein Winkel der mehreren Behälter bezüglich der Betriebsposition einstellbar sind/ist.

8. Befestigungsmaschine nach Anspruch 1, die weiter-
ein Abförderer (55), der eine Einheit bildende Verpackungen von Behältern aus der Betriebsposition (70) bereitstellt; eine Dreh-/Umlievorrichtung (60), die mit dem Abförderer (55) verbunden ist; und eine Fördereinrichtung (120), die sich durch die Dreh-/Umlievorrichtung erstreckt, wobei die Fördereinrichtung eine verstellbare Höhe aufweist.

9. Verfahren zur Verpackung von mehreren Behältern in einer eine Einheit bildenden Verpackung, wobei das Verfahren die folgenden Schritte umfasst:

Zuführen mehrerer erster Behälter mit einer ersten Größe zu einer Befestigungsmaschine, wobei die Befestigungsmaschine eine erste Backentrommel (40) in einer Betriebsposition (70) mit mehreren Backenpaaren enthält, wobei jedes Backenpaar um eine erste Länge von einem umfangsmäßig benachbarten Backenpaar beabstandet ist; Bewegen eines ersten Trägers mit mehreren Öffnungen durch die Befestigungsmaschine; Positionieren des ersten Trägers über die mehreren ersten Behälter, wodurch jede Öffnung einen Behälter in Eingriff nimmt, um eine erste Verpackung zu bilden; Bewegen der ersten Backentrommel (40) aus der Betriebsposition (70) entlang der ersten (85) und zweiten (90) Führungsschiene, die sich allgemein senkrecht zueinander erstrecken und sich an einer Kreuzung (95) schneiden, in eine erste Lagerposition (75) und Bewegen einer zweiten Backentrommel (50) aus einer zweiten Lagerposition (75') auf einer gegenüberliegenden Seite der Kreuzung bezüglich der ersten Lagerposition (75) entlang den Führungsschienen auf der Maschine in die Betriebsposition; Zuführen mehrerer zweiter Behälter mit einer zweiten Größe, die von der ersten Größe verschieden ist, zur Befestigungsmaschine; Bewegen eines zweiten Trägers mit mehreren Öffnungen durch die Befestigungsmaschine; und Positionieren des zweiten Trägers über die mehreren zweiten Behälter, wodurch jede Öffnung einen Behälter in Eingriff nimmt, um eine zweite Verpackung zu bilden.

10. Verfahren nach Anspruch 9, das weiterhin Verpacken von Behältern in einem Durchmesserbereich von ca. 5,08 Zentimetern (2 Zoll) bis ca. 7,62 Zentimetern (3 Zoll) umfasst.
choires (40) et du deuxième tambour à mâchoires (50) pouvant coulisser par rapport à la position de fonctionnement (70).

4. Machine d’application selon la revendication 1, comprenant en outre une sortie (55) fournissant des emballages unitaires de contenus provenant de la position de fonctionnement et un dispositif de rotation-déviation (60) connecté à la sortie.

5. Machine d’application selon la revendication 4, comprenant en outre :
 un transporteur (120) s’étendant à travers le dispositif de rotation-déviation (60), le transporteur ayant une hauteur ajustable.

6. Machine d’application selon la revendication 1, comprenant en outre :
 un support de bobine (25) positionné au niveau du transporteur d’alimentation (20), le support de bobine pouvant être déplacé entre une première position pour recevoir une bobine de supports et une deuxième position permettant le positionnement d’un carton de supports par rapport au transporteur d’alimentation.

7. Machine d’application selon la revendication 1, comprenant en outre :
 une plate-forme (10) positionnée sous la position de fonctionnement d’un tambour à mâchoires respectif de telle sorte que la hauteur verticale et/ou l’angle de la pluralité de contenus puisse être ajusté par rapport à la position de fonctionnement.

8. Machine d’application selon la revendication 1, comprenant en outre :
 un transporteur de sortie (55) fournissant des emballages unitaires de contenus provenant de la position de fonctionnement (70) ; un dispositif de rotation-déviation (60) connecté au transporteur de sortie (55) ; et un transporteur (120) s’étendant à travers le dispositif de rotation-déviation, le transporteur ayant une hauteur ajustable.

9. Procédé pour emballer des contenus multiples dans un emballage unitaire, le procédé comprenant les étapes consistant à :
 fournir une première pluralité de contenus ayant une première dimension à une machine d’application, la machine d’application compor-
 tant un premier tambour à mâchoires (40) dans une position de fonctionnement (70), avec une pluralité de paires de mâchoires, chaque paire de mâchoires étant espacée d’une première longueur d’une paire de mâchoires adjacente circonférentiellement ; déplacer un premier support ayant une pluralité d’ouvertures à travers la machine d’application ; positionner le premier support par-dessus la première pluralité de contenus, chaque ouverture s’engageant avec un contenant pour former un premier emballage ; déplacer le premier tambour à mâchoires (40) de la position de fonctionnement (70) le long de premier (85) et deuxième (90) rails s’étendant généralement perpendiculairement l’un à l’autre et se coupant au niveau d’une jonction (95) jusqu’à une première position de stockage (75) et déplacer un deuxième tambour à mâchoires (50) d’une deuxième position de stockage (75’) sur un côté opposé de la jonction par rapport à la première position de stockage (75) le long des rails sur la machine jusqu’à la position de fonctionnement ; fournir une deuxième pluralité de contenus ayant une deuxième dimension différente de la première dimension à la machine d’application ; déplacer un deuxième support ayant une pluralité d’ouvertures à travers la machine d’application ; et positionner le deuxième support par-dessus la deuxième pluralité de contenus, chaque ouverture s’engageant avec un contenant pour former un deuxième emballage.

10. Procédé selon la revendication 9, comprenant en outre :
 l’emballage de contenus dans une gamme de diamètres d’environ 5,08 centimètres (2 pouces) à environ 7,62 centimètres (3 pouces).
FIG. 7

FIG. 8
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description