EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 06.09.2017 Bulletin 2017/36

Application number: 08011613.0

Date of filing: 26.06.2008

Movable contactor for air circuit breaker with contact spring protecting mechanism
Bewegliches Schütz für einen Druckluftschalter mit Kontaktfederschutzmechanismus
Contacteur amovible pour disjoncteur à air doté d’un mécanisme de protection à ressort de contact

Designated Contracting States: DE ES FR GB IT

Priority: 12.07.2007 KR 20070070264

Date of publication of application: 14.01.2009 Bulletin 2009/03

Proprietor: LS Industrial Systems Co., Ltd
Dongan-Gu
Anyang, Gyeonggi-Do (KR)

Inventor: Park, Woo-Jin
Cheongju
Chungcheongbuk-do (KR)

Representative: Lang, Johannes et al
Bardehle Pagenberg Partnerschaft mbB
Patentanwälte, Rechtsanwälte
Prinzregentenplatz 7
81675 München (DE)

References cited:
EP-A- 0 543 496
EP-A- 1 858 041
DE-U1- 20 114 426

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

RELATED APPLICATION

BACKGROUND OF THE INVENTION

1. Field of the Invention

[0002] The present invention relates to a movable contact arm for an air circuit breaker, and particularly, to a movable contact arm for an air circuit breaker with a contact spring protecting mechanism which is capable of minimizing damage to contact springs due to arcs occurred upon a tripping operation.

2. Background of the Invention

[0003] An air circuit breaker refers to an electric apparatus which can manually or automatically block a relatively low voltage circuit among power receiving and distributing apparatuses, thus to diverge the low voltage circuit and protect circuits and equipment. The air circuit breaker includes contactor portions provided with a stationary contact arm connected to a circuit of a power source or an electric load, and a movable contact arm movable to a position to come in contact with or be separated from the stationary contact arm to open or close the circuit. The movable contact arm is separately provided for each AC (Alternating Current) phase of R, S, T and N. The movable contact arm for each phase includes a plurality of movable conductors (so-called movable arms) so as to divide flowing current for management. Also, each of the plurality of movable conductors is provided with a contact spring which is installed at a rear side thereof to push its corresponding movable conductor toward the stationary contact arm so as to keep the stationary contact arm coming in contact with the movable conductor in its closed state (i.e., a conducted state, so-called on-state).

[0004] Configuration and operation of an exemplary movable contact arm according to the related art will be described with reference to Figs. 1 and 2.

[0005] First, the configuration and operation of the movable contact arm for the related art air circuit breaker is described with reference to Fig. 1 which is a perspective view of the movable contact arm obliquely shown from its upper side in order to illustrate the configuration of the movable contact arm for the related art air circuit breaker.

[0006] The movable contact arm for the related art air circuit breaker shown in Fig. 2 shows a movable contact arm of a particular phase among movable contact arms provided for each AC phase of R, S, T and N, for example. As shown in Fig. 2, the movable contact arm 1 of the particular phase is provided with a plurality of movable conductors 10 for dividing flowing current for management.

[0007] Each of the plural movable conductors 10 includes a main contact 2 and an arc contact 3 on its front surface. Upon a closing operation (i.e., upon a switch-on operation), the arc contact 3 shows a schematic view of the movable contact arm and thereafter the main contact 2 and the arc contact 3 come into contact with each other. The arc contacts are separated from each other after the main contacts come in contact with each other.

[0008] Each of the plural movable conductors 10 is provided with a contact spring 8 installed at its rear side to supply an elastic force by which the corresponding movable conductor 10 is pushed toward the stationary contact arm such that the stationary contact arm can stably come in contact with the movable conductor 10 of the movable contact arm 1 upon the closing operation.

[0009] An unexplained reference numeral 4 in Fig. 2 designates a pivot shaft portion protruding from a lower side of the movable contact arm 1, 5 designates a pivot shaft support for pivotably supporting the pivot shaft portion 4 so as not to be shaken, 6 designates a bus bar for connecting a conducting line to the movable contact arm 1, and 7 designates a cage configuring an outer case of the movable contact arm 1.

[0010] In the meantime, Fig. 1 is a side view of the movable contact arm for the related art air circuit breaker, particularly, showing an introduction of arcs into a contact spring. Upon a closing operation, arcs of high temperature and high voltage are introduced between the contact of the movable contact arm 1 and the contact of the stationary contact arm, for example, along an arc introduction path A of Fig. 1.

[0011] Especially, the movable contact arm for the related art air circuit breaker has a structure in which upper surfaces of the contact springs 8 are open as shown in Fig. 2. Accordingly, the contact springs are damaged due to an exposure to arcs introduced along the arc introduction path A, which results in a degradation in an elastic force of the contact springs due to impurities adhered thereon. The damage to the contact springs and the degradation in the elastic force thereof cause a decrease in a conducting performance of the air circuit breaker in its on state.

[0012] Furthermore, the performance degradation in part of the contact springs causes a current concentration on movable conductors supported by the remaining contact springs. As a result, the contact adhered on the movable conductor cannot cope with large current so as to be melted, which may cause the opening operation not to be performed when a circuit is needed to be broken.

[0013] In addition, decrease in the lifespan of the air circuit breaker and increase in a maintenance cost there-
fore may be caused.

Document US-A-5,899,323 discloses a contact guide member that extends transversely to the contact fingers on the contact carrier of an electrical switching apparatus and has spaced openings through which the contact fingers extend.

SUMMARY OF THE INVENTION

Therefore, an object of the present invention is to provide a movable contact arm for an air circuit breaker with a contact spring protecting mechanism capable of protecting contact springs from arcs of high temperature and high voltage and minimizing an introduction of impurities.

To achieve these and other advantages and in accordance with the purpose of the present invention, as embodied and broadly described herein and as defined in claim 1, there is provided a movable contact arm for an air circuit breaker, in a movable contact arm for an air circuit breaker with contact springs, the movable contact arm comprising: a shielding plate configured to shield (cover) exposed surfaces of the contact springs for protection, thereby preventing a deterioration or performance degradation in the contact springs due to arcs.

The foregoing and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention.

In the drawings:

Figure 1 is a side view of a movable contact for an air circuit breaker according to the related art, which shows an introduction of arcs into contact springs;

Figure 2 is a perspective view of the movable contact arm obliquely shown from its upper side in order to illustrate the configuration of the movable contact arm for the related art air circuit breaker;

Figure 3 is a view showing an assembly process of installing a shielding plate in a movable contact arm for an air circuit breaker according to the present invention, namely, a side view of the movable contact arm in which the shielding plate is partially inserted between the movable conductor and the contact spring so as to be completely installed;

Figure 4 is a view showing the assembly process of installing the shielding plate in the movable contact arm for the air circuit breaker according to the present invention, namely, a side view of the movable contact arm in which the shielding plate is partially inserted between the movable conductors and the contact springs so as to be completely installed; and

Figure 5 is a view showing the assembly process of installing the shielding plate in the movable contact arm for the air circuit breaker according to the present invention, namely, a perspective view of the movable contact arm in which the movable conductors are opened such that the front surfaces of the contact springs are exposed;

Figure 6 is a view showing the assembly process of installing the shielding plate in the movable contact arm for the air circuit breaker according to the present invention, namely, a perspective view of the movable contact arm in which the shielding plate is partially inserted between the movable conductors and the contact springs so as to be completely installed; and

Figure 7 is a perspective view of a detailed configuration of the shielding plate in the movable contact arm for the air circuit breaker according to the present invention.

DETAILED DESCRIPTION OF THE INVENTION

The object of the present invention and configuration, operations and effects of the present invention to achieve the object will be more clearly understood by the following detailed description of the preferred embodiments of the present invention, with reference to the accompanying drawings.

Similar to the related art movable contact arm, a movable contact arm 1 for an air circuit breaker (hereinafter, referred to as 'movable contact arm') according to the present invention, as shown in Figs. 3 to 6, refers to a movable contact arm of any one phase among movable contact arms disposed for each AC phase of R, S, T and N. As shown in Figs. 5 and 6, a movable contact arm 1 of any one phase is provided with a plurality of movable conductors 10 which divide flowing currents for management.

Also, similar to the related art, each of the plural movable conductors 10 is provided with a main contact 2 and an arc contact 3 disposed at an upper portion of its front surface. Upon a closing operation (i.e., upon a switch-on operation), the arc contact 3 of the movable conductor 10 comes in contact with an arc contact of the stationary contact arm and thereafter the main contact 2 and the arc contact 3 of the movable conductor 10 can contact those of the stationary contact arm. The arc contacts are separated from each other after the
main contacts come in contact with each other.

Each of the plural movable conductors 10 is provided with a contact spring 8 installed at its rear side to supply an elastic force by which the corresponding movable conductor 10 is pushed toward the stationary contact arm such that the contact of the stationary contact arm can stably come in contact with the main contact 2 of the movable conductor 10 of the movable contact arm 1 upon the closing operation. Reference numeral 4 in Figs. 3 to 6 designates a pivot shaft portion protruding from a lower side of the movable contact arm 1, 5 designates a pivot shaft support for pivotably supporting the pivot shaft portion 4 so as not to be shaken, 6 designates a bus bar for connecting a conducting line to the movable contact arm 1, and 7 designates a cage configuring an outer case of the movable contact arm 1.

As a characteristic configuration, the movable contact arm 1 for the air circuit breaker according to the present invention may include a shielding plate 9 configured to shield exposed surfaces of the contact springs 8 for protection, thereby preventing a deterioration or performance degradation in the contact springs 8 due to arcs.

The movable conductor 10 has a structure of being opened up in a rotation manner to make the contact springs 8 exposed. That is, after a support shaft for the movable conductors 10 supported at the cage 7 based on the support shaft is disassembled, when the movable conductors 10 are rotated in a counterclockwise direction in Fig. 5, the upper portions of the movable conductors 10 are spaced apart from the cage 7, so as to expose the contact springs 8.

Hereinafter, the installation process for the shield plate 9 is described with reference to Figs. 3 to 6.

As shown in Figs. 3 and 5, the movable conductor 10 is rotated to expose the contact springs 8 such that the upper portions of the movable conductors 10 are spaced apart from the cage 7. Afterwards, a part of the shielding plate 9 (particularly, curved portions 9b-1 for shielding the front surfaces of the contact springs 8, respectively, as shown in Fig. 7) is inserted between the movable conductors 10 of the movable contact arm 1 and the contact springs 8.

Then, the movable conductors 10 are rotated in a clockwise direction in Figs. 3 and 5 and their support shaft is coupled to the cage 7, thus to be in the state as shown in Figs. 4 and 6, thereby completing the installation of the shielding plate 9.

As can be clearly seen in Fig. 3, the movable conductor 10 has spring seats (reference numeral not given) disposed up and down at the upper portion of its rear surface and implemented as concavo-convex portions for supporting the contact springs 8 so as not to be missed. In particular, the convex portion at the portion corresponding to an upper spring seat forms a support protrusion 10a sharply protruding so as to press and thus support the shielding plate 9 in order to prevent the separation of the shielding plate.

The shielding plate 9, on the other hand, is referred to as, for example, an insulating paper, and made of an electric insulating material which is easily buyable. The shielding plate 9 is formed as an elastic thin plate to have an elastic force. As shown in Fig. 7, the shielding plate 9 includes a plurality of shielding pieces 9b for shielding the exposed surfaces of the plural contact springs 8, and a common connection portion 9a for allowing one end portions of the plural shielding plate pieces 9b to be integrally connected all together.

Also, each of the plural shielding plate pieces 9b of the shielding plate 9 has a curved portion 9b-1 to shield the front surfaces of the contact springs 8.

Therefore, as the movable contact arm 1 for the air circuit breaker installs the shielding plate 9 mounted as aforementioned to protect the contact springs 8 from arcs and impurities introduced into the contact springs 8, the shielding plate 9 can protect the contact springs 8 from damage due to arcs and minimize an adhesion of impurities onto the contact springs 8. Also, the installation of the shielding plate 9 can provide an operational effect without interfering with the operation of the movable contact arm 1 for closing or opening (switching) a circuit. In the movable contact arm 1 for the air circuit breaker according to the present invention, the contact spring protecting mechanism is be employed so as to protect the contact springs 8 from arcs and minimize an introduction of impurities into the contact springs 8, which results in an improvement of operational reliability of the air circuit breaker, thereby elongating the lifespan of the air circuit breaker.

Claims

1. A movable contact arm (1) for an air circuit breaker with a plurality of contact springs (8), the movable contact arm comprising:

 a shielding plate (9) configured to shield exposed surfaces of the contact springs for protection so as to prevent a deterioration or performance degradation in the contact springs due to arcs,

 characterized in that

 the shielding plate is elastic and comprises a common connection portion (9a) and a plurality of shielding pieces (9b) with curved portions (9b-1); and

 the movable contact arm (1) is provided with movable conductors (10) rotatable so as to expose the contact springs, and the shielding plate is partially inserted between the movable conductors of the movable contact arm and the contact springs for installation.

2. The movable contact arm of claim 1, wherein the
shielding plate comprises:

a plurality of shielding pieces made of an elastic insulating material and formed as an elastic thin plate to have an elastic force, so as to shield the exposed surfaces of the plurality of contact springs from arcs; and a common connection portion configured to allow one end portions of the plurality of shielding pieces to be integrally connected all together.

3. The movable contact arm of claim 2, wherein the shielding plate is made of an insulating paper.

4. The movable contact arm of claim 2, wherein each of the plurality of pieces has a curved portion so as to shield the front surface of each contact spring.

5. The movable contact arm of claim 1 wherein each of the movable conductors is provided with a support protrusion (10a) for pressing and thus supporting the part of the shielding plate so as to prevent the separation of the shielding plate.

Patentansprüche

1. Beweglicher Kontaktarm (1) für einen Luftschutzschalter mit einer Vielzahl von Kontaktfedern (8), wobei der bewegliche Kontaktarm umfasst:

 eine Abschirmplatte (9), die eingerichtet ist, um freiliegende Flächen der Kontaktfedern zum Schutz abzuschirmen, um so eine Verschlechterung oder eine Leistungsverschlechterung aufgrund von Lichtbögen in den Kontaktfedern zu verhindern, dadurch gekennzeichnet, dass die Abschirmplatte elastisch ist und einen gemeinsamen Verbindungsanteil (9a) und eine Vielzahl von Abschirmstücken (9b) mit gekrümmten Anteilen (9b-1) umfasst; und

2. Beweglicher Kontaktarm nach Anspruch 1, wobei die Abschirmplatte umfasst:

 eine Vielzahl von Abschirmstücken, die aus einem elastischen isolierenden Material hergestellt sind und als eine elastische dünne Platte gebildet sind, um eine elastische Kraft aufzuweisen, um so die freiliegenden Oberflächen der Vielzahl von Kontaktfedern vor Lichtbögen abzuschirmen; und

 einen gemeinsamen Verbindungsanteil, der eingerichtet ist, um es einem Endanteil der Vielzahl von Abschirmstücken zu erlauben, integral zusammen verbunden zu sein.

4. Beweglicher Kontaktarm nach Anspruch 2, wobei jeder der beweglichen Leiter mit einem Unterstützungsvorsprung (10a) zum Drücken und demzufolge zum Unterstützen des Teils der Abschirmplatte bereitgestellt wird, um so die Trennung der Abschirmplatte zu verhindern.

Revendications

1. Un bras de contact mobile (1) pour un coupe-circuit à air avec une pluralité de ressorts de contact (8), le bras de contact mobile comprenant :

 une plaque formant écran (9) configurée pour former un écran aux surfaces exposées des ressorts de contact pour les protéger afin d'éviter une détérioration ou une dégradation des performances des ressorts de contact en raison des arcs, caractérisé en ce que

 la plaque formant écran est élastique et comprend une partie de liaison commune (9a) et une pluralité de pièces formant écran (9b) avec des parties courbes (9b-1) ; et

 le bras de contact mobile (1) est pourvu de conducteurs mobiles (10) pouvant tourner de manière à exposer les ressorts de contact, et la plaque formant écran est partiellement insérée entre les conducteurs mobiles du bras de contact mobile et les ressorts de contact à son installation.

2. Le bras de contact mobile de la revendication 1, dans lequel la plaque formant écran comprend :

 une pluralité de pièces formant écran réalisées en un matériau isolant élastique et conformées en une plaque élastique mince de manière à présenter une force élastique, afin de former un écran aux arcs pour les surfaces exposées de la pluralité de ressorts de contact ; et

 une partie commune de liaison configurée pour permettre à une partie d’extrémité de la pluralité
de pièces formant écran d’être reliées monobloc toutes ensemble.

3. Le bras de contact mobile de la revendication 2, dans lequel la plaque formant écran est réalisée en un papier isolant.

4. Le bras de contact mobile de la revendication 2, dans lequel chaque pièce de la pluralité de pièces présente une partie courbée de manière à faire écran pour la surface frontale de chaque ressort de contact.

5. Le bras de contact mobile de la revendication 1, dans lequel chaque conducteur des conducteurs mobiles est pourvu d’une saillie de support (10a) pour faire appui et ainsi supporter la partie de la plaque formant écran de manière à empêcher la séparation de la plaque formant écran.
FIG. 1
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- KR 1020070070264 [0001]