EUROPEAN PATENT SPECIFICATION

IMPACT ABSORBING AIRBAG INFLATOR
STOSSDÄMPFENDE AIRBAG-AUFBLASVORRICHTUNG
DISPOSITIF DE GONFLAGE D'AIRBAG AMORTISSEUR

Designated Contracting States: DE FR GB

Priority: 11.04.2006 US 279351

Date of publication of application: 24.12.2008 Bulletin 2008/52

Proprietor: HONDA MOTOR CO., LTD. Tokyo (JP)

Inventors:
• BOGGESS, Brian
 Raymond, OH 43067-9705 (US)

FOREMAN, Grant
Raymond, OH 43067-9705 (US)
MALCOLM, Skye
Raymond, OH 43067-9705 (US)

Representative: Liska, Horst et al
Weickmann & Weickmann Patentanwälte
Postfach 86 08 20
81635 München (DE)

References cited:

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

BACKGROUND OF THE INVENTION

1. Field of the Invention

[0001] The present invention relates generally to motor vehicles, and in particular the present invention relates to an impact absorbing airbag module.

2. Description of Related Art

[0002] In order to meet current safety regulations, most modern motor vehicles include some form of supplemental restraint system. These systems often include an airbag. Airbags are generally contained in a housing with a suitable inflator. This complete system is sometimes referred to as an airbag module. During an impact, the inflator quickly releases compressed gasses to inflate the airbag, which is deployed by the gasses. In the deployed condition, airbags are designed to cushion the impact experienced by the driver or passengers.

[0003] While airbag systems can be helpful during some types of collisions, there are some other collisions where the motor vehicle may have difficulty passing certain government mandated crash test requirements because passengers or drivers may impact the airbag module itself. These collisions generally occur at low speeds or low impact impulses where airbags are not designed to deploy. In these types of collisions, occupant impact with airbag modules can cause compliance problems with government mandated crash tests. To avoid this, the following airbag systems have been proposed.

[0004] U.S. patent number 6,312,008 to Neag and assigned to DaimlerChrysler Corporation is directed to an energy absorbing bracket for an airbag system. Neag discloses a side airbag that is deployed with generally less force than a frontal airbag. The airbag module of Neag includes an energy absorption bracket 40 with upper downstanding leg 46 and lower downstanding leg 48. These downstanding legs are designed to bend when the airbag module experiences an impact.

[0005] U.S. patent number 6,296,277 to Bittinger et al. and assigned to Chrysler Corporation is directed to a passenger restraint system with a crush zone. The '277 patent teaches crush zones 32 and 34 disposed on end caps 16 that are designed to absorb the impact of a passenger's knees during a collision. However, the end caps 16 of Bittinger are not part of the airbag.

[0006] U.S. patent number 6,279,942 to Bossenmaier et al. and assigned to DaimlerChrysler Corporation is directed to a deformable airbag housing. The '942 patent provides a good background discussion of deformable air bag housings and notes that prior deformable air bag housings presented sharp corners or edges after deformation. These sharp corners could tear or snag a deploying air bag. The '942 patent discloses a deformable airbag housing that is designed to minimize damage to the airbag during inflation. To accomplish this, the '942 patent discloses a slot 15 that runs nearly the entire width of side cover 8. Slot 15 divides side cover 8 into two parts 16 and 17 as shown in cross-sectional views A-A and B-B. Upper part 16 includes a slightly bent lower edge that allows upper part 16 to slide outward of lower part 17 as side cover 8 deforms.

[0007] The following patents disclose air bag modules with collapsible side walls. Generally, some feature or provision is provided so that a portion of the side wall is weakened and assists in promoting deformation of the side wall at that weakened region.

[0008] U.S. patent number 5,791,684 to Repp et al. and assigned to Morton International and Chrysler Corporation teaches an air bag canister with grooves of various cross-sectional shapes. U.S. patent number 5,533,747 to Rose and assigned to Morton International discloses an inflatable restraint module according to the preamble of claim 1 and 5. It discloses the use of slots 40 to provide a weakened region. Rose also teaches a "zigzag" shaped side walls 28 and 30. U.S. patent number 5,405,163 to Amamori et al. and assigned to Tanaka Corporation teaches a side wall that includes stress concentration portions 61 to assist the air bag container in deforming. Finally, referring to Figures 16 and 17, related art air bag inflator module 2000, designed to use a cylindrical inflator 2008, includes walls 2002 and 2004 with perforations 2006. These perforations 2006 can assist air bag inflator module 2000 in deforming.

[0009] While the related art teaches a variety of features that can be used to reduce the severity of an impact with an airbag module, none of the references teaches an airbag module that is easy to design and manufacture, that is easy to tune and configure for different motor vehicles, different locations and different types of collisions, and an airbag module that can reduce the possibility of tearing an airbag during deployment.

SUMMARY OF THE INVENTION

[0010] An impact absorbing airbag module is disclosed. The invention can be used in connection with a motor vehicle. The term "motor vehicle" as used throughout the specification and claims refers to any moving vehicle that is capable of carrying one or more human occupants and is powered by any form of energy. The term motor vehicle includes, but is not limited to cars, trucks, vans, minivans, SUV's, motorcycles, scooters, boats, personal watercraft, and aircraft.

[0011] In one aspect, the invention includes an inflatable restraint module configured for mounting in an interior of a motor vehicle comprising: a chassis retaining an inflator, and connected to a mounting system; the chassis including a forward side wall, a first lateral side wall, a second lateral side wall, and a rear side wall; wherein the forward side wall is disposed at an angle with respect to the first lateral side wall; the forward side wall including a forward deforming zone disposed between an upper...
portion of the forward side wall and a lower portion of the forward side wall; and wherein the forward deforming zone includes a first angled portion and a second angled portion.

[0012] In another aspect, the upper portion of the forward side is generally more rigid than the forward deforming zone.

[0013] In another aspect, wherein a first bend is disposed between the upper portion of the forward side and the first angled portion, and a second bend is disposed between the first angled portion and the second angled portion.

[0014] In another aspect, a plurality of holes are disposed on the second bend.

[0015] In another aspect, the first lateral side wall includes a first lateral upper portion and a first lateral deforming zone.

[0016] In another aspect, the first lateral deforming zone is located in a similar vertical position as the forward deforming zone.

[0017] In another aspect, the second lateral side wall includes a second lateral upper portion and a second lateral deforming zone.

[0018] In another aspect, the first lateral deforming zone, the second lateral deforming zone and the forward lateral deforming zone are located in substantially the same plane.

[0019] In another aspect, the invention includes an inflatable restraint module configured for mounting in an interior of a motor vehicle comprising: a chassis retaining an inflator, and connected to a mounting system; the chassis including a first wall and a second wall, angled with respect to the first wall; the first wall including a first deforming zone with first and second ends; the second wall including a second deforming zone with first and second ends; and wherein the first end of the first side wall is adjacent to the first end of the second side wall; and wherein the first end of the first side wall has a generally similar axial position with respect to the chassis as the first end of the second side wall.

[0020] In another aspect, the second side wall includes a generally straight deforming zone.

[0021] In another aspect, the second side wall includes a deforming zone including an angle.

[0022] In another aspect, one wall is generally rigid.

[0023] In another aspect, an upper portion of the first wall is generally more rigid than the first deforming zone.

[0024] In another aspect, an upper portion of the second wall is generally more rigid than the second deforming zone.

[0025] In another aspect, the first deforming zone and the second deforming zone are located in substantially the same plane.

[0026] In another aspect, the plane is generally normal with respect to an axis of the chassis.

[0027] In another aspect, the plane is generally angled with respect to an axis of the chassis.

[0028] In another aspect, the first deforming zone includes a first bend disposed between an upper portion of the first wall and a first angled portion, and a second bend is disposed between the first angled portion and a second angled portion.

[0029] In another aspect, the first deforming zone includes a third bend disposed between a lower portion of the first wall and the second angled portion.

[0030] Other systems, methods, features and advantages of the invention will be, or will become, apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description, be within the scope of the invention, and be protected by the following claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0031] The invention can be better understood with reference to the following drawings and description. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. Moreover, in the figures, like reference numerals designate corresponding parts throughout the different views.

[0032] FIG. 1 is a schematic diagram of a preferred embodiment of a motor vehicle interior;

[0033] FIG. 2 is a cut-away schematic view of a preferred embodiment of a passenger side portion motor vehicle interior;

[0034] FIG. 3 is a front isometric view of a preferred embodiment of an airbag chassis;

[0035] FIG. 4 is a rear isometric view of a preferred embodiment of an airbag chassis;

[0036] FIG. 5 is a schematic diagram of a preferred embodiment of a deformation zone;

[0037] FIG. 6 is a schematic diagram of a preferred embodiment of a deformed deformation zone;

[0038] FIG. 7 is a schematic diagram of a preferred embodiment of an airbag chassis;

[0039] FIG. 8 is a schematic diagram of a preferred embodiment of an airbag chassis;

[0040] FIG. 9 is a schematic diagram of an alternative embodiment of an airbag chassis;

[0041] FIG. 10 is a schematic diagram of an isometric view of a preferred embodiment of an airbag chassis;

[0042] FIG. 11 is a schematic diagram of a side view of a preferred embodiment of an airbag chassis;

[0043] FIG. 12 is a schematic diagram of an isometric view of a preferred embodiment of an airbag chassis in a deformed condition;

[0044] FIG. 13 is a schematic diagram of a side view of a preferred embodiment of an airbag chassis in a deformed condition;

[0045] FIG. 14 is a schematic diagram of an isometric view of a preferred embodiment of an airbag chassis;

[0046] FIG. 15 is a schematic diagram of an isometric view of a preferred embodiment of an airbag chassis in
FIG. 16 is a schematic diagram of a front view of a deformed condition; and
FIG. 17 is a schematic diagram of a side view of a deformed condition.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

FIG. 1 is a schematic diagram of a motor vehicle interior 100. Motor vehicle interior 100 includes a driver side 102 and a passenger 104. Instrument panel 106 spans across motor vehicle interior 100. FIG. 2 is a schematic cross-sectional view of the passenger side portion 108 of instrument panel 106. Disposed proximate passenger side portion 108 of instrument panel 106 is a Supplemental Restraint System (SRS) module 202. SRS module 202 includes an upper mounting system 204 that associates SRS module 202 with passenger side portion 108 of instrument panel 106. SRS module 202 also includes a chassis 206 that retains or holds an inflator 208 and a lower mounting system 210. In a preferred embodiment, the inflator 208 is a disk-type inflator. A hypothetical impact 212 is also shown in FIG. 2. Hypothetical impact 212 represents a possible impact location on passenger side portion 108 of instrument panel 106.

FIG. 3 and 4 are enlarged forward and rear isometric views of SRS module 202. Lower mounting system 210 can be seen in FIG. 3. In a preferred embodiment, SRS module 202 is associated with cross member 308 of the motor vehicle. Preferably, a pair of mounting legs are used to attach SRS module 202 to cross member 308. In an exemplary embodiment, the mounting legs are attached to a mounting bracket 306 that is then attached to cross member 308. As shown in FIG. 3, SRS module 202 includes a first mounting leg 302 and a second mounting leg 304. Preferably, first mounting leg 302 is laterally spaced from second mounting leg 304.

Preferably, second mounting leg 304 includes a collapsible portion 310 and a cantilever portion 312. Preferably collapsible portion 310 is generally straight or upright from mounting bracket 306 to chassis 206. Collapsible portion 310 can include one or more perforations. These perforations can help to facilitate the collapse of second mounting leg 304 in the event of a collision. Preferably cantilever portion 312 is angled with respect to collapsible portion 310. In the exemplary embodiment shown in FIG. 3, cantilever portion 312 is normal to collapsible portion 310.

Cantilever portion 312 is attached to mounting bracket 306, and helps to support SRS module 202. Any kind of mechanical connection can be used. In the preferred embodiment, cantilever portion 312 includes a whole or aperture to receive a mechanical fastener that is used to attach cantilever portion 312 to mounting bracket 306. Preferably, cantilever portion 312 includes one or more bends as shown in FIG. 3 that terminate with forward retaining flange 314. Preferably forward retaining flange 314 engages forward wall 320 of chassis 206. Preferably first mounting leg 302 is constructed in a similar manner as second mounting leg 304. The principles and features of second mounting leg 304 can be applied to first mounting leg 302. In the exemplary embodiment shown in FIG. 3, first mounting leg 302 is preferably a mirror image of second mounting leg 304. Like second mounting leg 304, first mounting leg 302 includes a collapsible portion 316. Preferably collapsible portion 316 terminates in a lateral retaining flange 318 that is configured to engage first lateral side wall 330 of chassis 206. Second mounting leg 304 preferably includes a similar lateral retaining flange 402 (see FIG. 4) on collapsible portion 310.

Chassis 206 is preferably formed of one or more walls. In the embodiment shown in Figures 3 and 4, chassis 206 includes a forward wall 320, first lateral side wall 330, second lateral side wall 340 and rear wall 350. Forward wall 320 includes an upper portion 322, a lower portion 324 and a deforming zone 326 disposed between upper portion 322 and lower portion 324. Similarly, first lateral side wall 330 includes a first upper portion 332, a first lower portion 334, and a first lateral deforming zone 336 disposed between first upper portion 332 and first lower portion 334. Preferably, second lateral side wall 340 is constructed in a manner similar to first lateral side wall 330, and includes second upper portion 342, second lower portion 344, and second deforming zone 346 disposed between second upper portion 342 and second lower portion 344.

Chassis 206 is preferably designed to deform or collapse during an impact. This helps to absorb energy from a passenger impact, which in turn, can reduce injuries to the passenger. Preferably chassis 206 is designed to collapse during an intermediate impact. That is, an impact that is severe enough to cause a passenger to contact instrument panel 106 (see FIG. 2) but is not severe enough to cause SRS module 202 to deploy an airbag. The various deforming zones disposed about chassis 206 assist chassis 206 in collapsing or deforming during an impact.

Referring to Figures 5 and 6 which are enlarged views of deforming zone 326, FIG. 5 shows the condition of deforming zone 326 prior to an impact, while FIG. 6 shows deforming zone 326 after an impact. Preferably deforming zone 326 includes a folded or bent shape. In a preferred embodiment shown in FIG. 5, deforming zone 326 includes a generally fan-folded shape.

As shown in FIG. 5, deforming zone includes first bend 502, first angled portion 504, second bend 506, and second angled portion 508. A third bend 510 is disposed between second angled portion 508 and lower portion 324. In the embodiment shown in FIG. 5, the various bends and angled portions form a triangular fan-fold structure.
shape. Some embodiments include provisions to modulate, control or adjust the deformation along one or more of the bends 502, 506, and/or 510. In some embodiments, holes are disposed along one or more of the bends 502, 506, and/or 510 to provide the ability to adjust the deformation characteristics.

In some embodiments, holes 512 are disposed on second bend 506. This optional feature can be used to modulate or control the bending or deforming characteristics of deforming zone 326. In some embodiments, holes 512 are laterally spaced and along second bend 506. The number, density, size and/or shape of holes 512 can be varied as needed. In some cases, additional holes or larger holes are provided. This can allow deforming zone 326 to bend or deform under lighter or smaller loads.

FIG. 6 shows the condition of forward wall 320 after an impact and after a deformation. As shown in FIG. 6, the angled portions have folded and upper portion 322 has been moved closer to lower portion 324 than prior to impact as shown in FIG. 5. The angle of second bend 506 has been decreased, and in some cases, the angle of second bend 506 is nearly zero, resulting in contact between first angled portion 504 and second angled 508. In other words, the fan-folded shape of FIG. 5 can be nearly flattened as shown in FIG. 6 in some embodiments and during some types of impact. This can also result in a reduction of the vertical height of deforming zone 326 as shown in FIG. 6.

The number, arrangement, design and location of deforming zones can be varied to achieve desired deformation or impact absorbing characteristics. The design and initial shape of a deforming zone can be modified in a number of ways. Referring to FIG. 5 as an example, first bend 502, second bend 506 and/or third bend 510 can all be adjusted or selected to vary the deformation characteristics. Also, the size of first angled portion 504 and/or second angled portion 508 can also be adjusted or selected to vary the deformation characteristics. In some embodiments, first angled portion 504 is of a different size than second angled portion 508. In other words, there is no requirement that the angled portions be similar, they can be dissimilar or asymmetrical.

Regarding the arrangement, location and number of deforming zones, in some embodiments, a deforming zone is provided on one of the walls of a chassis. In other embodiments, more than one wall of an airbag inflator chassis includes a deforming zone. And in other embodiments, all of the walls of an airbag inflator chassis include a deforming zone.

In those embodiments where more than one wall includes a deforming zone, the deforming zones on adjacent walls can be located to provide certain impact absorbing characteristics. In some cases, an airbag inflator chassis is designed to deform in a certain controlled manner and at a certain predetermined load. By carefully selecting the location, size and design of the various deforming zones associated with an airbag inflator chassis, the deformation of the airbag inflator chassis can be better controlled. In some cases, the chassis is designed to deform at a certain angle, in other cases, the chassis is designed so that the chassis achieves a predetermined shape or condition after deformation. The following embodiments illustrate ways in which the deforming zones can be arranged to achieve various different deformation characteristics.

FIG. 7 is an embodiment of chassis 702 with a number of deforming zones 704, 706 disposed about a periphery of chassis 702. First deforming zone 704 is disposed on first side wall 710 and second deforming zone 706 is disposed on front wall 712. Chassis 702 can also preferably include additional deforming zones. In the embodiment shown in FIG. 7, third deforming zone 708 is disposed on second side wall 714. In this embodiment, chassis 702 is generally designed to deform so that the upper portion of chassis 702 above the deforming zones 704, 706 and 708 moves closer to the lower portion of chassis 702 below the deforming zones.

In order to allow chassis 702 to deform in the desired manner, one end of one of the deforming zones is located at a similar vertical location as one end of an adjacent deforming zone. Considering the example embodiment shown in FIG. 7, first deforming zone 704 includes first end 722 and second end 724. Second deforming zone 706 includes first end 726 and second end 728. In some embodiments, the ends of two adjacent deforming zones are generally aligned with respect to the axial direction of chassis 702.

In FIG. 7, it can be observed that first end 722 of first deforming zone 704 has an axial position that is similar to the axial position of first end 726 of second deforming zone 706. Axially aligning the ends of two adjacent deforming zones can be used to control the deformation characteristics of chassis 702. In the embodiment shown in FIG. 7, the aligned ends of first deforming zone 704 and second deforming zone 706 helps the corner defined by first side wall 710 and front wall 712 to deform under a predetermined load.

In some embodiments, rear wall 716 may include a deforming zone. However, in other embodiments, rear wall 716 does not include a deforming zone. In the embodiment shown in FIG. 7, rear wall 716 does not include a deforming zone.

It can be observed in the embodiment shown in FIG. 7, that the various deforming zones 704, 706 and 708 are disposed in a certain pattern in relation with one another. In the embodiment shown in FIG. 7, it can be observed that the deforming zones 704, 706 and 708 are disposed on a common plane 718. This common plane 718 is generally parallel to the plane defined by the upper opening 720 of chassis 702. Common plane 718 can also be described as being normal or perpendicular to a central vertical axis of chassis 702.

FIG. 8 shows an alternative embodiment where a first deformation zone 804 is angled with respect to second deformation zone 806. In some embodiments,
opposite walls can include similar deformation zones. Thus, in some embodiments, second side wall 814 can include a deformation zone that is similar to second deformation zone 806 of first side wall 810. And, similarly, rear wall 816 can include deformation zone 820 that is similar to first deformation zone 804 disposed on front wall 812. It can be observed that the various deformation zones are disposed on a common plane 818. In the embodiment shown in FIG. 8, common plane 818 is normal to a central axis of chassis 802 and is instead angled with respect to the central axis of chassis 802. The deformation zones shown in FIG. 8 may allow chassis 802 to deform at an angle.

[0070] FIG. 9 shows another embodiment of a chassis 902. In this embodiment, first deforming zone 904 is disposed on first side wall 910 and second deforming zone 906 is disposed on front wall 912. As shown in FIG. 9, first deforming zone 904 is generally linear; however, second deforming zone 906 is not linear. Second deforming zone 906 includes a bend 920 along its length. This bend 920 can provide non-linear deformation characteristics for chassis 902 and allow chassis 902 to deform in irregular ways. In some cases, irregular deformation is desired. Also, as disclosed above, walls opposite to the ones shown in FIG. 9 can include similar deforming zones.

[0071] Figures 10-13 demonstrate the deformation characteristics of an embodiment of chassis 702 shown in FIG. 7. Two possible embodiments are disclosed in FIG. 7. In one embodiment, rear wall 716 includes a deforming zone, and in another embodiment, rear wall 716 does not include a deforming zone. Figures 10-13 demonstrate the deforming characteristics of the embodiment where rear wall 716 does not include a deforming zone. Rear wall 716 is thus relatively rigid in the axial direction as compared to the other walls of chassis 702. Figures 10 and 11 show chassis 702 in its undeformed state and Figures 12 and 13 show chassis 702 in its deformed state.

[0072] Rigid rear wall 716 generally does not deform while the remaining walls deform under load. This arrangement of rigid and deforming walls allows chassis 702 to deform at an angle as shown in Figures 12 and 13.

[0073] Another embodiment of an SRS module 1400 is shown in FIG. 14. FIG. 14 is an enlarged forward isometric view of SRS module 1400. Preferably, a pair of mounting legs are used to attach SRS module 1400 to the vehicle. As shown in FIG. 14, SRS module 1400 includes a first mounting leg 1402 and a second mounting leg 1404. Preferably, first mounting leg 1402 is laterally spaced from second mounting leg 1404.

[0074] Preferably, second mounting leg 1404 includes a collapsible portion 1412 and a cantilever portion 1414. Preferably collapsible portion 1410 is generally straight or upright from chassis 1406. Collapsible portion 1410 can include one or more perforations. These perforations can help to facilitate the collapse of second mounting leg 1404 in the event of a collision. Preferably cantilever portion 1412 is angled with respect to collapsible portion 1410. In the exemplary embodiment shown in FIG. 14, cantilever portion 1412 is normal to collapsible portion 1410.

[0075] Cantilever portion 1412 helps to support SRS module 1402. Any kind of mechanical connection can be used. In the preferred embodiment, cantilever portion 1412 includes a whole or aperture to receive a mechanical fastener that is used to attach cantilever portion 1412 to the vehicle.

[0076] Preferably, cantilever portion 1412 includes one or more bends as shown in FIG. 14 that terminate with forward retaining flange 1414. Preferably forward retaining flange 1414 engages forward wall 1420 of chassis 1406. Preferably first mounting leg 1402 is constructed in a similar manner as second mounting leg 1404. The principles and features of second mounting leg 1404 can be applied to first mounting leg 1402. In the exemplary embodiment shown in FIG. 14, first mounting leg 1402 is preferably a mirror image of second mounting leg 1404. Like second mounting leg 1404, first mounting leg 1402 includes a collapsible portion 1416. Preferably collapsible portion 1416 terminates in a lateral retaining flange 1418 that is configured to engage first lateral side wall 1430 of chassis 1406. Second mounting leg 1404 preferably includes a similar lateral retaining flange on collapsible portion 1410.

[0077] Chassis 1406 is preferably formed of one or more walls. In the embodiment shown in FIG. 14, chassis 1406 includes a forward wall 1420, first lateral side wall 1430, second lateral side wall 1440 and rear wall 1450. Forward wall 1420 includes an upper portion 1422, a lower portion 1424 and a deforming zone 1426 disposed between upper portion 1422 and lower portion 1424. Similarly, first lateral side wall 1430 includes a first upper portion 1432, a first lower portion 1434, and a first lateral deforming zone 1436 disposed between first lateral upper portion 1432 and first lateral lower portion 1434. Preferably, second lateral side wall 1440 is constructed in a manner similar to first lateral side wall 1430, and includes second upper portion, second lower portion, and second deforming zone disposed between second upper portion and second lower portion.

[0078] Chassis 1406 is preferably designed to deform or collapse during an impact. This helps to absorb energy from a passenger impact, which in turn, can reduce injuries to the passenger. Preferably chassis 1406 is designed to collapse during an intermediate impact. That is, an impact that is severe enough to cause a passenger to contact instrument panel 106 (see FIG. 2) but is not severe enough to cause SRS module 1400 to deploy an airbag. The various deforming zones disposed about chassis 1406 assist chassis 1406 in collapsing or deforming during an impact.

[0079] As shown in FIG. 14, deforming zone 1426 located along forward wall 1420 includes first bend 1449, first angled portion 1451, second bend 1452, second angled portion 1453, and third bend 1456. First bend 1449 is disposed between upper portion 1422 and first angled
portion 1451. Second bend 1452 is disposed between first angled portion 1451 and second angled portion 1453. Third bend 1456 is disposed between second angled portion 1453 and lower portion 1424 of chassis 1406. In the embodiment shown in FIG. 14, the various bends and angled portions form a triangular fan-fold shape. Additionally, in the embodiment shown in FIG. 14, deforming zone 1436 located along first lateral side wall 1430 also includes first bend 1449, first angled portion 1471, second bend 1452, second angled portion 1473, and third bend 1476. First bend 1449 is displaced between upper portion 1436 and first angled portion 1471. Second bend 1472 is displaced between first angled portion 1471 and second angled portion 1473. Third bend 1476 is displaced between second angled portion 1473 and lower portion 1434 of chassis 1406. In the embodiment shown in FIG. 14, the various bends and angled portions form a triangular fan-fold shape.

[0080] As disclosed above, some embodiments include holes or perforations disposed in or around one or more deforming bones. Also, these holes can be placed along one or more bends associated with a particular deforming zone. In some cases, holes are disposed along every bend of a deforming zone. In the embodiment shown in FIG. 14, elongated holes 1460 are disposed on first bend 1449, second bend 1452, and third bend 1456. Elongated holes 1461 are also disposed on first bend 1449, second bend 1472, and third bend 1476. This optional feature can be used to modulate or control the bending or deforming characteristics of first deforming bone 1422 and second deforming bone 1436. In some embodiments, first elongated holes 1460 and second elongated holes 1461 are laterally spaced. The number, density, size and/or shape of first elongated holes 1460 and second elongated holes 1461 can be varied as needed. In some cases, additional holes or larger holes are provided. This can allow first deforming zone 1426 and second deforming zone 1436 to bend or deform under lighter or smaller loads. In a preferred embodiment, deforming zone 1436 does not span the entire width of first lateral side wall 1430.

[0081] In addition to the various elongated holes, some embodiments may include vertical hole 1458 located on first lateral side wall 1430. Vertical hole 1458 is disposed along a direction generally normal to second elongated holes 1461 and generally vertical with respect to chassis 1406. Vertical hole 1458 may also allow chassis 1406 to deform only partially. Vertical hole 1458 can also be used to define the end of first deforming zone 1436. Thus, the portion of first lateral side wall 1430 disposed rearward of vertical hole 1458 is generally not configured to deform in the same way as the portion of first lateral side wall 1430 containing first deforming zone 1436.

[0082] This feature, in addition to the restriction of deforming zone 1436 to less than the full width of first lateral side wall 1430, may be useful as it allows chassis 1406 to deform partially, but allows a portion of chassis 1406 to remain in tact. Government regulations require a specified zone around the passenger in which any object placed within that zone cannot impart more than a specified load to a passenger in the case of impact. By allowing chassis 1406 to deform partially, the portion of chassis 1406 which is contained within the regulated zone is deformable so as not to impart more than the allowable load to a passenger during an impact. The region of chassis 1406 outside of this regulated zone can remain in tact and does not need to be deformable.

[0083] Second lateral wall 1440 preferably contains the same features included in first lateral side wall 1430, and the features would be a mirror image of the features of first lateral side wall 1430.

[0084] FIG. 15 shows the condition of SRS module 1400 after an impact and after a deformation. In particular, FIG. 15 shows the condition of forward wall 1420, and first lateral side wall 1430 after an impact and after a deformation. As shown in FIG. 15, the angled portions have folded and along forward wall 1420, and upper portion 1422 has been moved closer to lower portion 1424 than prior to impact. Along first lateral side wall 1430, upper portion 1432 has been moved closer to lower portion 1434 than prior to impact. The angles of first bend 1449, second bend 1452, and third bend 1456 have been decreased, and in some cases, the angles of first bend 1449, second bend 1452, and third bend 1456 are nearly zero, resulting in contact between first angled portion 1451 and second angled portion 1453. In other words, the fan-folded shape of deforming zone 1426 can be nearly flattened as shown in FIG. 15 in some embodiments and during some types of impact. This can also result in a reduction of the vertical height of deforming zone 1426 as shown in FIG. 15.

[0085] FIG. 15 also shows the condition of first lateral side wall 1430 after an impact and after a deformation. Along first lateral side wall 1430, upper portion 1432 has been moved closer to lower portion 1434 than prior to impact. The angles of first bend 1449, second bend 1472, and third bend 1476 have been decreased, and in some cases, the angles of first bend 1449, second bend 1472, and third bend 1476 are nearly zero, resulting in contact between first angled portion 1471 and second angled portion 1473. In other words, the fan-folded shape of deforming zone 1436 can be nearly flattened as shown in FIG. 15 in some embodiments and during some types of impact. This can also result in a reduction of the vertical height of deforming zone 1436 as shown in FIG. 15.

[0086] In this embodiment, deforming zone 1436 does not result in similar deformation of the rear portion of first lateral side wall 1430. Because of vertical hole 1458 the portion of first lateral wall 1430 disposed between vertical hole 1458 and the edge of first lateral wall 1430 closest to rear wall 1450 is either not deformed or deformed differently after impact. The second lateral side wall will generally deform in a manner similar to first lateral side wall 1430.

[0087] The number, arrangement, design and location of deforming zones can be varied to achieve desired de-
formation or impact absorbing characteristics. The design and initial shape of a deforming zone can be modified in a number of ways. Referring to FIG. 14 as an example, first bend 1449, second bend 1452 and/or third bend 1456 can all be adjusted or selected to vary the deformation characteristics. Also, the size of first angled portion 1451 and/or second angled portion 1453 can also be adjusted or selected to vary the deformation characteristics. In some embodiments, first angled portion 1451 is of a different size than second angled portion 1453. In other words, there is no requirement that the angled portions be similar, they can be dissimilar or asymmetrical.

[0088] Regarding the arrangement, location and number of deforming zones, in some embodiments, a deforming zone is provided on one of the walls of a chassis. In other embodiments, more than one wall of an airbag inflator chassis includes a deforming zone. And in other embodiments, all of the walls of an airbag inflator chassis include a deforming zone.

[0089] In those embodiments where more than one wall includes a deforming zone, the deforming zones on adjacent walls can be located to provide certain impact absorbing characteristics. In some cases, an airbag inflator chassis is designed to deform in a certain controlled manner and at a certain predetermined load. By carefully selecting the location, size and design of the various deforming zones associated with an airbag inflator chassis, the deformation of the airbag inflator chassis can be better controlled. In some cases, the chassis is designed to deform at a certain angle, in other cases, the chassis is designed so that the chassis achieves a predetermined shape or condition after deformation. The following embodiments illustrate ways in which the deforming zones can be arranged to achieve various different deformation characteristics.

Claims

1. An inflatable restraint module for mounting in an interior of a motor vehicle comprising:

- a chassis 206 retaining an inflator, and connected to a mounting system;
- the chassis including a forward side wall 320, a first lateral side wall 330, a second lateral side wall 340, and a rear side wall 350;
- wherein the forward side wall is disposed at an angle with respect to the first lateral side wall;
- the forward side wall including a forward deforming zone disposed between an upper portion of the forward side wall and a lower portion of the forward side wall, wherein the forward deforming zone includes a first angled portion and a second angled portion; and
- wherein a first bend 502 is disposed between the upper portion of the forward side wall and

2. The inflatable restraint module according to claim 1, wherein the upper portion of the forward side wall is generally more rigid than the forward deforming zone.

3. The inflatable restraint module according to any one of claims 1 or 2, wherein the first lateral side wall includes a first lateral upper portion and a first lateral deforming zone, in particular wherein the first lateral deforming zone is located in a similar vertical position as the forward deformation zone.

4. The inflatable restraint module according to claim 3, wherein the second lateral side wall includes a second lateral upper portion and a second lateral deforming zone, and/or wherein the first lateral deforming zone, the second lateral deforming zone and the forward lateral deforming zone are located in substantially the same plane.

5. An inflatable restraint module configured for mounting in an interior of a motor vehicle comprising:

- a chassis 702 retaining an inflator, and connected to a mounting system;
- the chassis including a first side wall 710 and a second side wall 712, angled with respect to the first side wall;
- the first side wall including a first deforming zone 704 with first and second ends;
- the second side wall including a second deforming zone 706 with first and second ends;
- wherein the first end of the first side wall 710 is adjacent to the first end of the second side wall, and wherein the first end of the first side wall has a generally similar axial position with respect to the chassis as the first end of the second side wall; and
- wherein the first deforming zone 704 includes a first bend disposed between an upper portion of the first side wall and a first angled portion of the first side wall, and a second bend is disposed between the first angled portion of the first side wall and a second angled portion of the first side wall, characterized in that a plurality of holes 512 are disposed on the second bend 506.
The inflatable restraint module according to claim 5, wherein the second side wall includes a generally straight deforming zone.

The inflatable restraint module according to one of claims 4 or 6, wherein one wall is generally rigid.

The inflatable restraint module according to any one of claims 4 to 7, wherein an upper portion of the first side wall is generally more rigid than the first deforming zone, and/or wherein an upper portion of the second side wall is generally more rigid than the second deforming zone.

The inflatable restraint module according to any one of claims 4 to 8, wherein the first deforming zone and the second deforming zone are located in substantially the same plane, in particular wherein the plane is generally normal with respect to an axis of the chassis or is generally angled with respect to an axis of the chassis.

The inflatable restraint module according to one of claims 4 to 9, wherein the first deforming zone includes a third bend disposed between a lower portion of the first side wall and the second angled portion.

Patentansprüche

1. Aufblasbares Rückhaltemodul zur Montage in einem Inneren eines Motorfahrzeugs, umfassend:

 ein Gehäuse (206), welches eine Aufblasvorrichtung hält und mit einem Montagesystem verbunden ist;
 wobei das Gehäuse eine vordere Seitenwand (320), eine erste laterale Seitenwand (370), eine zweite laterale Seitenwand (340) und eine hintere Seitenwand (350) umfasst;
 die vordere Seitenwand eine vordere Verformungszone (500) mit ersten und zweiten Enden umfasst; wobei die vordere Verformungszone einen ersten winkeligen Abschnitt und einen zweiten winkeligen Abschnitt umfasst; und
 wobei eine erste Biegung (502) zwischen dem oberen Abschnitt der vorderen Seitenwand und dem ersten winkeligen Abschnitt (504) angeordnet ist, und eine zweite Biegung (505) zwischen dem ersten winkeligen Abschnitt und dem zweiten winkeligen Abschnitt angeordnet ist, dadurch gekennzeichnet, dass
 eine Mehrzahl von Löchern (572) auf der zweiten Biegung (506) angeordnet sind.

2. Aufblasbares Rückhaltemodul nach Anspruch 1, wobei die obere Abschnitt von der vorderen Seitenwand im Allgemeinen steifer ist als die vordere Verformungszone.

3. Aufblasbares Rückhaltemodul nach einem der Ansprüche 1 oder 2, wobei die erste laterale Seitenwand einen ersten lateral oberen Abschnitt und eine erste laterale Verformungszone umfasst, insbesondere, wobei die erste laterale Verformungszone in einer ähnlichen vertikalen Position wie die vordere Verformungszone angeordnet ist.

4. Aufblasbares Rückhaltemodul nach Anspruch 3, wobei die zweite laterale Seitenwand einen zweiten lateralen oberen Abschnitt und eine zweite laterale Verformungszone umfasst, und/oder wobei die erste laterale Verformungszone, die zweite laterale Verformungszone und die vordere laterale Verformungszone im Wesentlichen in der selben Ebene angeordnet sind.

5. Aufblasbares Rückhaltemodul, welches zur Montage in einem Inneren eines Motorfahrzeugs konfiguriert ist, umfassend:

 ein Gehäuse (702), welches eine Aufblasvorrichtung hält und mit einem Montagesystem verbunden ist; wobei das Gehäuse eine erste Seitenwand (710) und eine zweite Seitenwand (712) umfasst, welche bezüglich der ersten Seitenwand abgewinkelt ist; wobei die erste Seitenwand eine erste Verformungszone (704) mit ersten und zweiten Enden umfasst; die zweite Seitenwand eine zweite Verformungszone (706) mit ersten und zweiten Enden umfasst; wobei das erste Ende von der ersten Seitenwand (710) benachbart dem ersten Ende von der zweiten Seitenwand ist; und wobei das erste Ende von der ersten Seitenwand eine im Allgemeinen ähnliche axiale Position bezüglich des Gehäuses wie das erste Ende von der zweiten Seitenwand hat; und wobei die erste Verformungszone (704) eine erste Biegung umfasst, welche zwischen einem oberen Abschnitt von der ersten Seitenwand und einem ersten winkeligen Abschnitt von der ersten Seitenwand angeordnet ist, und eine
zweite Biegung zwischen dem ersten winkeli-
gen Abschnitt von der ersten Seitenwand und
einem zweiten winkeligen Abschnitt von der er-
sten Seitenwand angeordnet ist,
dadurch gekennzeichnet, dass die zweite
Verformungszone (706) eine erste Biegung um-
asst, welche zwischen einem oberen Abschnitt
von der zweiten Seitenwand und einem ersten
winkeligen Abschnitt von der zweiten Seiten-
wend angeordnet ist, und eine zweite Biegung
zwischen dem ersten winkeligen Abschnitt von
der zweiten Seitenwand und einem zweiten win-
keligen Abschnitt von der zweiten Seitenwend
angeordnet ist.

6. Aufblasbares Rückhaltemodul nach Anspruch 5, wo-
bei die zweite Seitenwand eine im Allgemeinen ge-
rade Verformungszone umfasst.

7. Aufblasbares Rückhaltemodul nach einem der An-
sprüche 4 oder 6, wobei eine Wand im Allgemeinen
steif ist.

8. Aufblasbares Rückhaltemodul nach einem der An-
sprüche 4 bis 7, wobei ein oberer Abschnitt von der
ersten Seitenwand im Allgemeinen steifer als die er-
ste Verformungszone ist, und/oder wobei ein oberer
Abschnitt von der zweiten Seitenwand im Allgemei-
nen steifer als die zweite Verformungszone ist.

9. Aufblasbares Rückhaltemodul nach einem der An-
sprüche 4 bis 8, wobei die erste Verformungszone
und die zweite Verformungszone im Wesentlichen
in der selben Ebene angeordnet sind, insbesondere,
wobei die Ebene im Allgemeinen senkrecht in Bezug
auf eine Achse von dem Gehäuse ist oder im Allge-
meinen in Bezug auf eine Achse von dem Gehäuse
abgewinkelt ist.

10. Aufblasbares Rückhaltemodul nach einem der An-
sprüche 4 bis 9, wobei die erste Verformungszone
eine dritte Biegung umfasst, welche zwischen einem
unteren Abschnitt von der ersten Seitenwand und
dem zweiten winkeligen Abschnitt angeordnet ist.

Revendications

1. Module de retenue gonflable pour être monté à l’in-
térieur d’un véhicule motorisé comprenant :

un châssis (206) retenant un gonfleur, et raccor-
dé à un système de montage ;
le châssis comprenant une première paroi côté
(320), une première paroi côté latéral (330), une
seconde paroi côté latéral (340), et une paroi
côté arrière (350) ;
dans lequel la paroi côté avant est située à un
certain angle par rapport à la première paroi côté
latéral ;
la paroi côté avant comprenant une zone de dé-
formation avant située entre une partie supé-
rieure de la paroi côté avant et une partie infé-
rieure de la paroi côté avant,
dans lequel la zone de déformation avant com-
prend une première partie coudée et une secon-
der portion coudée ; et
dans lequel une première pliure (502) est située
entre la partie supérieure de la paroi côté avant
e la première partie coudée (504), et une
deuxième pliure (506) est située entre la pre-
mière partie coudée et la seconde partie cou-
dée,
caractérisé en ce que

2. Module de retenue gonflable selon la revendication
1, dans lequel la partie supérieure de la paroi côté
avant est généralement plus rigide que la zone de
déformation avant.

3. Module de retenue gonflable selon l’une quelconque
des revendications 1 et 2, dans lequel la première
paroi côté latéral comprend une première partie su-
périeure latérale et une première zone de déforma-
tion latérale, en particulier dans lequel la première
zone de déformation latérale est située dans une
position verticale similaire à la zone de déformation
avant.

4. Module de retenue gonflable selon la revendication
3, dans lequel la seconde paroi côté latéral com-
prend une seconde partie supérieure latérale et une
seconde zone de déformation latérale, et/ou
dans lequel la première zone de déformation laté-
rale, la seconde zone de déformation latérale et la zone
de déformation latérale avant sont situées sensiblement
dans le même plan.

5. Module de retenue gonflable configuré pour être
monté à l’intérieur d’un véhicule motorisé,
comprenant :

un châssis (702) retenant un gonfleur, et raccor-
dé à un système de montage ;
le châssis comprenant une première paroi de
côté (710) et une seconde paroi de côté (712),
coudée par rapport à la première paroi de côté ;
la première paroi de côté comprenant une pre-
mière zone de déformation (704) avec des pre-
mière et seconde extrémités ;
la seconde paroi de côté comprenant une se-
conde zone de déformation (706) avec des pre-
mière et seconde extrémités ;
dans lequel la première extrémité de la première
paroi de côté (710) est adjacente à la première extrémité de la seconde paroi de côté ; et dans lequel la première extrémité de la première paroi de côté a une position axiale généralement similaire par rapport au châssis à celle de la première extrémité de la seconde paroi de côté ; et dans lequel la première zone de déformation (704) comprend une première pliure située entre une partie supérieure de la première paroi de côté et une première partie coudée de la première paroi de côté, et une deuxième pliure est située entre la première partie coudée de la première paroi de côté et une seconde partie coudée de la première paroi de côté.

6. Module de retenue gonflable selon la revendication 5, dans lequel la seconde paroi de côté comprend une zone de déformation généralement droite.

7. Module de retenue gonflable selon l’une des revendications 4 et 6, dans lequel une paroi est généralement rigide.

8. Module de retenue gonflable selon l’une quelconque des revendications 4 à 7, dans lequel une partie supérieure de la première paroi de côté est généralement plus rigide que la première zone de déformation, et/ou dans lequel une partie supérieure de la seconde paroi de côté est généralement plus rigide que la seconde zone de déformation.

9. Module de retenue gonflable selon l’une quelconque des revendications 4 à 8, dans lequel la première zone de déformation et la seconde zone de déformation sont situées sensiblement dans le même plan, en particulier dans lequel le plan est généralement normal par rapport à un axe du châssis ou est généralement coudé par rapport à un axe du châssis.

10. Module de retenue gonflable selon l’une quelconque des revendications 4 à 9, dans lequel la première zone de déformation comprend une troisième pliure située entre une partie inférieure de la première paroi de côté et la seconde partie coudée.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 6312008 B, Neag [0004]
- US 6296277 B, Bittinger [0005]
- US 6279942 B, Bossmann [0006]
- US 5791684 A, Repp [0008]
- US 5533747 A, Rose [0008]
- US 5405163 A, Amamori [0008]