Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

BACKGROUND OF THE INVENTION

1. Field of the Invention

[0001] The present invention relates to a portable terminal, an in-vehicle apparatus installed in a vehicle, and a navigation system including a portable terminal removably mounted in the in-vehicle apparatus.

2. Description of the Related Art

[0002] A navigation apparatus detects the location and orientation of a vehicle by using a GPS (global positioning system) or the like. Map data corresponding to the vehicle location is read from a map-data storage medium, such as a hard disk, CD-ROM, or DVD-ROM, on which a large amount of map data is stored. Based on the read map data, a map image of the vicinity of the vehicle location is displayed on a display device with a vehicle-location mark being superimposed on the map image. The map image is scrolled as the vehicle travels, so that a user can recognize the vehicle location.

[0003] A known navigation apparatus has a route-guidance function for facilitating that the user can drive a vehicle to a destination without getting lost on a road. In the route-guidance function, with the map data, a guidance route having the lowest cost of a link that connects a start point to a destination is automatically searched for using simulation calculation involving a breadth-first search method, Dijkstra method, or the like. A found route is stored as a guidance route. During travel of the vehicle, the guidance route is drawn on a map image, in a different color from that of other roads and/or in boldface, or when the vehicle approaches within a predetermined distance to an intersection where the vehicle is to change a traveling direction on the guidance route, an arrow indicating the traveling direction is displayed at the intersection, to thereby guide the driver to a destination.

[0004] There is also a navigation apparatus that is installed in a vehicle to perform route guidance and so on of the vehicle and that is also removable therefrom for hand-held use to perform route guidance and so on of the user. With such an navigation apparatus that can be used after being removed from a vehicle (e.g., the technology disclosed in Japanese Patent Application Publication No. 2005-207934), when the navigation apparatus is removed from the vehicle while performing route guidance and is then re-installed in the vehicle after being used as a hand-held device, it is possible to return the operation to the route guidance operation performed before the removal.

[0005] In recent years, portable audio players are widely used and the above-described navigation apparatus that can be used after being removed from the vehicle may also have an audio-playback function. In such a case, there is a need to appropriately switch between and take over the route-guidance operation and the audio-playback operation in the state in which the apparatus is mounted in the vehicle and the state in which the apparatus is used as a hand-held device.

SUMMARY OF THE INVENTION

[0006] In order to overcome the above-described problems, an object of the present invention is to provide a navigation system, an in-vehicle apparatus, and a portable terminal which are capable of appropriately taking over a route-guidance operation and a content-playback operation.

[0007] One aspect of the present invention provides a navigation system including an in-vehicle apparatus installed in a vehicle and a portable terminal that is removably mounted in the in-vehicle apparatus. When the portable terminal is mounted in the in-vehicle apparatus, the in-vehicle apparatus and the portable terminal independently and selectively performs processing in the route-guidance operation mode and processing in the content-playback operation mode. The in-vehicle apparatus includes first storing means for storing a first operation mode before the portable terminal is removed from the in-vehicle apparatus or is disconnected from power supply and processing data in the first operation mode before the portable terminal is re-mounted in the in-vehicle apparatus after being removed therefrom or is re-connected to the power supply after being disconnected therefrom and processing data in the second operation mode. In the second operation mode, the portable terminal independently performs processing.

The in-vehicle apparatus includes: first reading means for reading the first operation mode stored in the first storing means and the second operation mode stored in the second storing means, when the portable terminal is re-mounted in the in-vehicle apparatus or is re-connected to the power supply after being disconnected therefrom; same/different-mode determining means for determining whether or not the first operation mode and the second operation mode read by the first reading means are the same; second reading means for reading the processing data in the second operation mode, when the same/different-mode determining means determines that the first operation mode and the second operation mode are the same, and for reading the processing data in the first operation mode, when the same/different-mode determining means determines that the first operation mode and the second operation mode are different from each other, the processing data in the second operation mode...
being stored in the second storing means and the processing data in the first operation mode being stored in the first storing means; and processing means for performing processing using the processing data read by the second reading means, in cooperation with the portable terminal.

[0008] With this configuration, when the first operation mode in which the in-vehicle apparatus and the portable terminal perform processing in cooperation with each other before the portable terminal is removed or is disconnected from the power supply and the second operation mode in which the portable terminal independently performs processing before the portable terminal is re-mounted in the in-vehicle apparatus after being removed therefrom or is re-connected to the power supply after being disconnected therefrom are the same, the in-vehicle apparatus performs processing using the processing data in the second operation mode and can take over the route-guidance operation or content-playback operation independently performed by the portable terminal. On the other hand, when the first operation mode and the second operation mode are different from each other, the in-vehicle apparatus performs processing using the processing data in the first operation mode and can take over the route-guidance operation or content-playback operation performed by the in-vehicle apparatus and the portable terminal in cooperation with each other.

[0009] Another aspect of the present invention provides a navigation system including an in-vehicle apparatus installed in a vehicle and a portable terminal that is removably mounted in the in-vehicle apparatus. When the portable terminal is mounted in the in-vehicle apparatus, the in-vehicle apparatus and the portable terminal selectively perform processing in a route-guidance operation mode and processing in a content-playback operation mode in cooperation with each other, and when the portable terminal is removed from the in-vehicle apparatus, the portable terminal independently and selectively performs processing in the route-guidance operation mode and processing in the content-playback operation mode. The portable terminal includes first storing means for storing a first operation mode before the portable terminal is removed from the in-vehicle apparatus or is disconnected from power supply and processing data in the first operation mode. In the first operation mode, the in-vehicle apparatus and the portable terminal perform processing in cooperation with each other. The portable terminal further includes second storing means for storing a second operation mode before the portable terminal is re-mounted in the in-vehicle apparatus after being removed therefrom or is re-connected to the power supply after being disconnected therefrom and processing data in the second operation mode. In the second operation mode, the portable terminal independently performs processing. The in-vehicle apparatus includes: first reading means for reading the first operation mode stored in the first storing means and the second operation mode stored in the second storing means, when the portable terminal is re-mounted in the in-vehicle apparatus or is re-connected to the power supply after being disconnected therefrom; same/different-mode determining means for determining whether or not the first operation mode and the second operation mode read by the first reading means are the same; second reading means for reading the processing data in the second operation mode, when the same/different-mode determining means determines that the first operation mode and the second operation mode are the same, and for reading the processing data in the first operation mode, when the same/different-mode determining means determines that the first operation mode and the second operation mode are different from each other, the processing data in the second operation mode being stored in the second storing means and the processing data in the first operation mode being stored in the first storing means; and processing means for performing processing using the processing data read by the second reading means, in cooperation with the portable terminal.

[0010] Another aspect of the present invention provides an in-vehicle apparatus installed in a vehicle, a portable terminal being removably mounted in the in-vehicle apparatus. When the portable terminal is mounted in the in-vehicle apparatus, the in-vehicle apparatus selectively performs processing in a route-guidance operation mode and processing in a content-playback operation mode in cooperation with the portable terminal. The in-vehicle apparatus includes: storing means for storing a first operation mode before the portable terminal is removed from the in-vehicle apparatus or is disconnected from power supply and processing data in the first operation mode, the in-vehicle apparatus and the portable terminal performing processing in cooperation with each other in the first operation mode; and first reading means for reading the first operation mode stored in the first storing means, when the portable terminal is mounted in the in-vehicle apparatus after being removed therefrom or is re-connected to the power supply after being disconnected therefrom, and for reading a second operation mode before the portable terminal is re-mounted in the in-vehicle apparatus after being removed therefrom or is re-connected to the power supply after being disconnected therefrom, the second operation mode being stored in the portable terminal and the portable terminal independently performing processing in the second operation mode. The in-vehicle apparatus further includes: same/different-mode determining means for determining whether or not the first operation mode and the second operation mode read by the first reading means are the same; second reading means for reading processing data in the second operation mode before the portable terminal is re-mounted in the in-vehicle apparatus after being removed therefrom or is re-connected to the power supply after being disconnected therefrom, when the same/different-mode determining means determines that the first operation mode and the second operation mode are the same, and for reading the processing data.
in the first operation mode, when the same/different-mode determining means determines that the first operation mode and the second operation mode are different from each other, the processing data in the second operation mode being stored in the portable terminal and the processing data in the first operation mode being stored in the first storing means; and processing means for performing processing using the processing data read by the second reading means, in cooperation with the portable terminal.

[0011] With this configuration, when the first operation mode in which the in-vehicle apparatus and the portable terminal perform processing in cooperation with each other before the portable terminal is removed or is disconnected from the power supply and the second operation mode in which the portable terminal is independently performs processing before the portable terminal is re-mounted in the in-vehicle apparatus after being removed therefrom or is re-connected to the power supply after being disconnected therefrom are the same, the in-vehicle apparatus performs processing using the processing data in the second operation mode and can take over the route-guidance operation or content-playback operation independently performed by the portable terminal. On the other hand, when the first operation mode and the second operation mode are different from each other, the in-vehicle apparatus performs processing using the processing data in the first operation mode and can take over the route-guidance operation or content-playback operation performed by the in-vehicle apparatus and the portable terminal in cooperation with each other.

[0012] Still another aspect of the present invention provides an in-vehicle apparatus installed in a vehicle, a portable terminal being removably mounted in the in-vehicle apparatus. When the portable terminal is mounted in the in-vehicle apparatus, the in-vehicle apparatus selectively performs processing in a route-guidance operation mode and processing in a content-playback operation mode in cooperation with the portable terminal. The in-vehicle apparatus includes: first reading means for reading a first operation mode in which the in-vehicle apparatus and the portable terminal perform processing in cooperation with each other before the portable terminal is removed from the in-vehicle apparatus or is disconnected from power supply and a second operation mode in which the portable terminal independently performs processing before the portable terminal is re-mounted in the in-vehicle apparatus after being removed therefrom or is re-connected to the power supply after being disconnected therefrom, the first operation mode and the second operation mode being stored by the portable terminal; and same/different-mode determining means for determining whether or not the first operation mode and the second operation mode read by the first reading means are the same. The in-vehicle apparatus further includes second reading means for reading processing data in the second operation mode, when the same/different-mode determining means determines that the first operation mode and the second operation mode are the same, and for reading processing data in the first operation mode, when the same/different-mode determining means determines that the first operation mode and the second operation mode are different from each other, the processing data in the second operation mode and the processing data in the first operation mode being stored in the portable terminal; and processing means for performing processing using the processing data read by the second reading means, in cooperation with the portable terminal.

[0013] In the in-vehicle apparatus according to the present invention, the processing means may include: operation-mode determining means for determining whether or not the second operation mode is the route-guidance operation mode, when the same/different-mode determining means determines that the first operation mode and the second operation mode are the same, and for determining whether or not the first operation mode is the route-guidance operation mode, when the same/different-mode determining means determines that the first operation mode and the second operation mode are different from each other; and route guiding means for performing, when the same/different-mode determining means determines that the first operation mode and the second operation mode are the same and the operation-mode determining means determines that the second operation mode is the route-guidance operation mode, route guidance based on processing data in the route-guidance operation mode, the processing data being read by the second reading means and being the processing data in the second operation mode, and performing, when the same/different-mode determining means determines that the first operation mode and the second operation mode are different from each other and the operation-mode determining means determines that the first operation mode is the route-guidance operation mode, route guidance based on processing data in the route-guidance operation mode, the processing data being read by the second reading means and being the processing data in the first operation mode. The processing means may further include content playback means for performing, when the same/different-mode determining means determines that the first operation mode and the second operation mode are the same and the operation-mode determining means determines that the second operation mode is the content-playback operation mode, content playback based on processing data in the content-playback operation mode, the processing data being read by the second reading means and being the processing data in the second operation mode, and performing, when the same/different-mode determining means determines that the first operation mode and the second operation mode are different from each other and the operation-mode determining means determines that the first operation mode is the content-playback operation mode, content playback based on processing data in the content-playback operation mode, the processing data being read by the second reading means and being
In the in-vehicle apparatus according to the present invention, the processing data in the route-guidance operation mode may include a destination location and guidance-route information. The route guiding means may include: vehicle-location obtaining means for obtaining a location of the vehicle; and route searching means for searching for, when the vehicle location obtained by the vehicle-location obtaining means is at a predetermined distance or more away from a guidance route identified by the guidance-route information, a guidance route from the vehicle location to the destination location, and for searching for, when the destination location is different from a destination location in immediately preceding route guidance, a guidance route from the vehicle location to the changed destination location.

With this configuration, in the present invention, the portable terminal independently performs processing in the route-guidance operation mode. The portable terminal selectively performs processing in a route-guidance operation mode and processing in a content-playback operation mode. The portable terminal independently performs processing in the route-guidance operation mode and processing in the content-playback operation mode. The portable terminal includes: storing means for storing an operation mode; and transmitting means for transmitting the operation mode and the processing data in the operation mode. Thus, the in-vehicle apparatus can take over the operation in the processing performed by the in-vehicle apparatus and the portable terminal in cooperation with each other before the portable terminal is removed from the in-vehicle apparatus or is disconnected from the power supply after being disconnected therefrom.

When the vehicle location is at a predetermined distance or more away from a guidance route, the in-vehicle apparatus searches for a guidance route from the vehicle location to a destination location, and when the vehicle location is different from a destination location in immediately preceding route guidance, the in-vehicle apparatus searches for a guidance route from the vehicle location to the changed destination location, thereby making it possible to appropriately taking over the route-guidance operation.

The processing data in the content-playback operation mode may include playback-position information of content, and the content-playback means may resume playback of the content from a playback position specified by the playback-position information.

With this configuration, since the in-vehicle apparatus resumes playback of content from the playback position specified by the playback-position information, it can take over the content-playback operation in processing performed by the in-vehicle apparatus and the portable terminal in cooperation with each other before the portable terminal is removed or is disconnected from the power supply or the content-playback operation in processing independently performed by the portable terminal before the portable terminal is re-mounted in the in-vehicle apparatus after being disconnected therefrom or is re-connected to the power supply after being disconnected therefrom and processing data in the operation mode; and transmitting means for transmitting the operation mode and the processing data in the operation mode to the in-vehicle apparatus.

Yet another aspect of the present invention provides a portable terminal that is removably mounted in an in-vehicle apparatus installed in a vehicle. When the portable terminal is mounted in the in-vehicle apparatus, the portable terminal selectively performs processing in a route-guidance operation mode and processing in a content-playback operation mode in cooperation with the in-vehicle apparatus, and when the portable terminal is removed from the in-vehicle apparatus, the portable terminal independently and selectively performs processing in the route-guidance operation mode and processing in the content-playback operation mode. The portable terminal includes first storing means for storing an operation mode in which the portable terminal independently performs processing before the portable terminal is re-mounted in the in-vehicle apparatus after being removed therefrom or is re-connected to the power supply after being disconnected therefrom and processing data in the operation mode; and transmitting means for transmitting the operation mode and the processing data in the operation mode to the in-vehicle apparatus.
ble terminal further includes transmitting means for transmitting the first operation mode, the processing data in the first operation mode, the second operation mode, and the processing data in the second operation mode to the in-vehicle apparatus, the first operation mode and the processing data in the first operation mode being stored by the first storing means and the second operation mode and the processing data in the second operation mode being stored by the second storing means.

[0021] With this arrangement, the portable terminal transmits, to the in-vehicle apparatus, the operation mode in processing performed by the in-vehicle apparatus and the portable terminal in cooperation with each other before the portable terminal is removed from the in-vehicle apparatus or is disconnected from the power supply and the processing data in the operation mode. The portable terminal also transmits, to the in-vehicle apparatus, the operation mode in processing independently performed by the portable terminal before the portable terminal is re-mounted in the in-vehicle apparatus after being removed therefrom or is re-connected to the power supply after being disconnected therefrom. Thus, the in-vehicle apparatus can take over the operation in the processing performed by the in-vehicle apparatus and the portable terminal in cooperation with each other before the portable terminal is removed from the in-vehicle apparatus or is disconnected from the power supply and the operation in the processing independently performed by the portable terminal before the portable terminal is re-mounted in the in-vehicle apparatus after being removed therefrom or is re-connected to the power supply after being disconnected therefrom.

[0022] Yet another aspect of the present invention provides a portable terminal that is removably mounted in an in-vehicle apparatus installed in a vehicle. When the portable terminal is mounted in the in-vehicle apparatus, the portable terminal selectively performs processing in a route-guidance operation mode and processing in a content-playback operation mode in cooperation with the in-vehicle apparatus, and when the portable terminal is removed from the in-vehicle apparatus, the portable terminal independently and selectively performs processing in the route-guidance operation mode and processing in the content-playback operation mode. The portable terminal includes: first storing means for storing a first operation mode before the portable terminal is removed from the in-vehicle apparatus or is disconnected from power supply and processing data in the first operation mode, the in-vehicle apparatus and the portable terminal performing processing in cooperation with each other in the first operation mode; and second storing means for storing a second operation mode before the portable terminal is re-mounted in the in-vehicle apparatus after being removed therefrom or is re-connected to the power supply after being disconnected therefrom and processing data in the second operation mode, the portable terminal independently performing processing in the second operation mode. The portable terminal further includes: first reading means for reading the first operation mode stored in the first storing means and the second operation mode stored in the second storing means, when the portable terminal is re-mounted in the in-vehicle apparatus after being removed therefrom or is re-connected to the power supply after being disconnected therefrom; same/different-mode determining means for determining whether or not the first operation mode and the second operation mode read by the first reading means are the same; second reading means for reading the processing data in the second operation mode, when the same/different-mode determining means determines that the first operation mode and the second operation mode are the same, and for reading the processing data in the first operation mode, when the same/different-mode determining means determines that the first operation mode and the second operation mode are different from each other, the processing data in the second operation mode being stored in the second storing means and the processing data in the first operation mode being stored in the first storing means; and processing means for performing processing using the processing data read by the second reading means, in cooperation with the in-vehicle apparatus.

[0023] With this configuration, when the first operation mode in which the in-vehicle apparatus and the portable terminal perform processing in cooperation with each other before the portable terminal is removed or is disconnected from the power supply and the second operation mode in which the portable terminal independently performs processing before the portable terminal is re-mounted in the in-vehicle apparatus after being removed therefrom or is re-connected to the power supply after being disconnected therefrom are the same, the portable terminal performs processing using the processing data in the second operation mode and can take over the route-guidance operation or content-playback operation independently performed by the portable terminal. On the other hand, when the first operation mode and the second operation mode are different from each other, the portable terminal performs processing using the processing data in the first operation mode and can take over the route-guidance operation or content-playback operation performed by the in-vehicle apparatus and the portable terminal in cooperation with each other.

[0024] In the portable terminal according to the present invention, the processing means may include: operation-mode determining means for determining whether or not the second operation mode is the route-guidance operation mode, when the same/different-mode determining means determines that the first operation mode and the second operation mode are the same, and for determining whether or not the first operation mode is the route-guidance operation mode, when the same/different-mode determining means determines that the first operation mode and the second operation mode are different from each other. The processing means may further include: route guiding means for performing, when the
same/different-mode determining means determines that the first operation mode and the second operation mode are the same and the operation-mode determining means determines that the second operation mode is the route-guidance operation mode, route guidance based on processing data in the route-guidance operation mode, the processing data being read by the second reading means and being the processing data in the second operation mode, and performing, when the same/different-mode determining means determines that the first operation mode and the second operation mode are different from each other and the operation-mode determining means determines that the first operation mode is the route-guidance operation mode, route guidance based on processing data in the route-guidance operation mode, the processing data being read by the second reading means and being the processing data in the first operation mode; and content playback means for performing, when the same/different-mode determining means determines that the first operation mode and the second operation mode are the same and the operation-mode determining means determines that the second operation mode is the content-playback operation mode, content playback based on processing data in the content-playback operation mode, the processing data being read by the second reading means and being the processing data in the second operation mode, and performing, when the same/different-mode determining means determines that the first operation mode and the second operation mode are different from each other and the operation-mode determining means determines that the first operation mode is the content-playback operation mode, content playback based on processing data in the content-playback operation mode, the processing data being read by the second reading means and being the processing data in the first operation mode.

In the portable terminal according to the present invention, the processing data in the route-guidance operation mode may include playback-position information of content, and the content-playback operation mode may include playback-position information.

With this configuration, since the portable terminal resumes playback of content from the playback position specified by the playback-position information, it can take over the content-playback operation in processing performed by the in-vehicle apparatus and the portable terminal in cooperation with each other before the portable terminal is removed or is disconnected from the power supply or the content-playback operation in processing independently performed by the portable terminal before the portable terminal is re-mounted in the in-vehicle apparatus after being disconnected therefrom or is re-connected to the power supply after being disconnected therefrom. When the vehicle location is at a predetermined distance or more away from a guidance route, the in-vehicle apparatus searches for a guidance route from the vehicle location to a destination location, and when the vehicle location is different from a destination location in immediately preceding route guidance, the portable terminal searches for a guidance route from the vehicle location to the changed destination location, thereby making it possible to appropriately taking over the route-guidance operation.

Still another aspect of the present invention provides a processing method for an in-vehicle apparatus installed in a vehicle, a portable terminal being removably mounted in the in-vehicle apparatus. When the portable terminal is mounted in the in-vehicle apparatus, the in-vehicle apparatus selectively performs processing in a route-guidance operation mode and processing in a content-playback operation mode in cooperation with the portable terminal. The processing method includes: a first storing step of storing, in storing means, when the vehicle location is at a predetermined distance or more away from a guidance route, the in-vehicle apparatus searches for a guidance route from the vehicle location to the destination location, and for searching for, when the destination location is different from a destination location in immediately preceding route guidance, a guidance route from the vehicle location to the changed destination location.

With this configuration, the portable terminal can take over the route-guidance operation in processing performed by the in-vehicle apparatus and the portable terminal in cooperation with each other before the portable terminal is removed or is disconnected from the power supply or the route-guidance operation in processing independently performed by the portable terminal before the portable terminal is re-mounted in the in-vehicle apparatus after being disconnected therefrom or is re-connected to the power supply after being disconnected therefrom. When the vehicle location is at a predetermined distance or more away from a guidance route, the in-vehicle apparatus searches for a guidance route from the vehicle location to a destination location, and when the vehicle location is different from a destination location in immediately preceding route guidance, the portable terminal searches for a guidance route from the vehicle location to the changed destination location, thereby making it possible to appropriately taking over the route-guidance operation.
ing processing in the second operation mode. The processing method further includes a same/different-mode determining step of determining whether or not the first operation mode and the second operation mode read in the first reading step are the same; a second reading step of reading processing data in the second operation mode before the portable terminal is re-mounted in the in-vehicle apparatus after being removed therefrom or is re-connected to the power supply after being disconnected therefrom, when it is determined in the same/different-mode determining step that the first operation mode and the second operation mode are the same, and of reading the processing data in the first operation mode, when it is determined in the same/different-mode determining step that the first operation mode and the second operation mode are different from each other, the processing data in the second operation mode being stored in the portable terminal and the processing data in the first operation mode being stored in the storing means; and a processing step of performing processing using the processing data read in the second reading step, in cooperation with the portable terminal.

[0030] A further aspect of the present invention provides a processing method for an in-vehicle apparatus installed in a vehicle, a portable terminal being removably mounted in the in-vehicle apparatus. When the portable terminal is mounted in the in-vehicle apparatus, the in-vehicle apparatus selectively performs processing in a route-guidance operation mode and processing in a content-playback operation mode in cooperation with the portable terminal. The processing method includes: a first reading step of reading a first operation mode in which the in-vehicle apparatus and the portable terminal perform processing in cooperation with each other before the portable terminal is removed from the in-vehicle apparatus or is disconnected from power supply and a second operation mode in which the portable terminal independently performs processing before the portable terminal is re-mounted in the in-vehicle apparatus after being removed therefrom or is re-connected to the power supply after being disconnected therefrom, the first operation mode and the second operation mode being stored in the storing means, and a processing step of performing processing using the processing data read in the second reading step, in cooperation with the portable terminal.

[0031] Another aspect of the present invention provides a processing method for a portable terminal that is removably mounted in an in-vehicle apparatus installed in a vehicle. When the portable terminal is mounted in the in-vehicle apparatus, the portable terminal selectively performs processing in a route-guidance operation mode and processing in a content-playback operation mode in cooperation with the in-vehicle apparatus, and when the portable terminal is removed from the in-vehicle apparatus, the portable terminal independently and selectively performs processing in the route-guidance operation mode and processing in the content-playback operation mode. The processing method includes: a storing step of storing, in storing means, an operation mode in which the portable terminal independently performs processing before the portable terminal is re-mounted in the in-vehicle apparatus after being removed therefrom or is re-connected to power supply after being disconnected therefrom and processing data in the operation mode; and a transmitting step of transmitting the operation mode and the processing mode in the operation mode to the in-vehicle apparatus, the operation mode and the processing mode being stored in the storing means.

[0032] Still another aspect of the present invention provides a processing method for a portable terminal that is removably mounted in an in-vehicle apparatus installed in a vehicle. When the portable terminal is mounted in the in-vehicle apparatus, the portable terminal selectively performs processing in a route-guidance operation mode and processing in a content-playback operation mode in cooperation with the in-vehicle apparatus, and when the portable terminal is removed from the in-vehicle apparatus, the portable terminal independently and selectively performs processing in the route-guidance operation mode and processing in the content-playback operation mode. The processing method includes: a first storing step of storing, in storing means, a first operation mode before the portable terminal is removed from the in-vehicle apparatus or is disconnected from power supply and processing data in the first operation mode, the in-vehicle apparatus and the portable terminal performing processing in cooperation with each other in the first operation mode; a second storing step of storing, in the storing means, a second operation mode before the portable terminal is re-mounted in the in-vehicle apparatus after being removed therefrom or is re-connected to the power supply after being disconnected therefrom and processing data in the second operation mode, the portable terminal independently performing processing in the second operation mode; and a transmitting step of transmitting the first operation mode, the processing mode in the first operation mode, the second operation mode, and the processing data in the second operation mode, which are stored in the storing means, to the in-vehicle apparatus in response to reading performed by the in-vehicle apparatus.
Yet another aspect of the present invention provides a processing method for a portable terminal that is removably mounted in an in-vehicle apparatus installed in a vehicle. When the portable terminal is mounted in the in-vehicle apparatus, the portable terminal selectively performs processing in a route-guidance operation mode and processing in a content-playback operation mode in cooperation with the in-vehicle apparatus, and when the portable terminal is removed from the in-vehicle apparatus, the portable terminal independently and selectively performs processing in the route-guidance operation mode and processing in the content-playback operation mode. The processing method includes: a first storing step of storing, in storing means, a first operation mode stored in the in-vehicle apparatus or in cooperation with the in-vehicle apparatus and the portable terminal performing processing in cooperation with each other in the first operation mode; a second storing step of storing, in the storing means, a second operation mode before the portable terminal is re-mounted in the in-vehicle apparatus after being removed therefrom or is re-connected to the power supply after being disconnected therefrom and processing data in the second operation mode, the portable terminal independently performing processing in the second operation mode; and a first reading step of reading the first operation mode stored in the storing means and the second operation stored in the storing means, when the portable terminal is re-mounted in the in-vehicle apparatus after being removed therefrom or is re-connected to the power supply after being disconnected therefrom. The processing method further includes a same/different-mode determining step of determining whether or not the first operation mode and the second operation mode read in the first reading step are the same; a second reading step of reading the processing data in the second operation mode, when it is determined in the same/different-mode determining step that the first operation mode and the second operation mode are the same, and of reading the processing data in the first operation mode, when it is determined in the same/different-mode determining step that the first operation mode and the second operation mode are different from each other, the processing data in the second operation mode and the processing data in the first operation mode being stored in the storing means; and a processing step of performing processing using the processing data read in the second reading step, in cooperation with the in-vehicle apparatus.

According to the present invention, when the first operation mode in which the in-vehicle apparatus and the portable terminal perform processing in cooperation with each other before the portable terminal is removed or is disconnected from the power supply and the second operation mode in which the portable terminal independently performs processing before the portable terminal is re-mounted in the in-vehicle apparatus after being removed therefrom or is re-connected to the power supply after being disconnected therefrom are the same, processing using the processing data in the second operation mode is performed to appropriately take over the route-guidance operation or content-playback operation independently performed by the portable terminal. On the other hand, when the first operation mode and the second operation mode are different from each other, processing using the processing data in the first operation mode is performed to appropriately take over the route-guidance operation or content-playback operation performed by the in-vehicle apparatus and the portable terminal in cooperation with each other.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is an exterior perspective view of a navigation system when a portable navigation device (PND) is mounted in an in-vehicle audio apparatus; FIG. 1B is an exterior perspective view of the navigation system when the PND is removed from the in-vehicle audio apparatus; FIG. 2 is a block diagram showing the configuration of the in-vehicle audio apparatus; FIG. 3 is a block diagram showing the configuration of the PND; FIG. 4 is a flowchart showing the operation of the in-vehicle audio apparatus or the PND when the PND is mounted in the in-vehicle audio apparatus and the in-vehicle audio apparatus and the PND perform processing in cooperation with each other; FIG. 5A is a table showing one example of route-guidance mode information; FIG. 5B is a table showing one example of audio-playback mode information; FIG. 6 is a flowchart showing an operation when the PND is removed from the in-vehicle audio apparatus and the PND independently performs processing; FIG. 7 is a flowchart showing a first operation of the in-vehicle audio apparatus or the PND when the PND is re-mounted in the in-vehicle audio apparatus and the in-vehicle audio apparatus and the PND perform processing in cooperation with each other; and FIG. 8 is a flowchart showing a second operation of the in-vehicle audio apparatus or the PND when the PND is re-mounted in the in-vehicle audio apparatus and the in-vehicle audio apparatus and the PND perform processing in cooperation with each other.

DESCRIPTION OF THE PREFERRED EMBODIMENT

An embodiment of the present invention will be described below in detail with reference to the accompanying drawings. FIGS. 1A and 1B are exterior perspective views of a navigation system according to the present invention. In FIGS. 1A and 1B, a navigation system 10
 FIG. 1A shows a state in which the PND 200 is mounted in the in-vehicle audio apparatus 100. On the other hand, as shown in FIG. 1B, pivoting the front section 104 about a lower edge thereof causes a front face of the main unit 102 to be exposed, so that the PND 200 can be removed from a mounting slot 103 provided in the front face. In addition, inserting the PND 200 into the main unit 102 through the mounting slot 103 allows the PND 200 to be re-mounted in the in-vehicle audio apparatus 100.

When the PND 200 is mounted in the in-vehicle audio apparatus 100 of the navigation system 10, the in-vehicle audio apparatus 100 and the PND 200 selectively perform processing in a route-guidance operation mode and processing in an audio-playback operation mode in cooperation with each other. When a user uses the PND 200 as a hand-held device after removing it from the in-vehicle audio apparatus 100, the PND 200 independently and selectively performs processing in the route-guidance operation mode and processing in the audio-playback operation mode.

FIG. 2 is a block diagram of the configuration of the in-vehicle audio apparatus 100. In FIG. 2, the main unit 102 of the in-vehicle audio apparatus 100 includes a microcomputer (MPU) 110, a memory 111, a connector 112, a sound volume/quality controller 114, a sound amplifier 116, a display memory 120, an OSD (on-screen display) processor 122, and a display controller 124. The front section 104 of the in-vehicle audio apparatus 100 includes an operation unit 113, a speaker 118, and a display 126.

The MPU 110 controls the entire in-vehicle audio apparatus 100 during route-guidance operation and audio-playback operation. The MPU 110 corresponds to transmitting means in claims 5 and 6, reading means in claims 7 and 8, first reading means in claims 9 and 10, second reading means in claims 11 and 12, and storing means in claims 13 and 14. Under the control of the MPU 110, the sound volume/quality controller 114 sets the sound volumes and sound qualities of an audio signal sent from the MPU 110 and an audio signal sent from the PND 200 via the connector 112, and outputs the resulting audio signal. The sound amplifier 116 amplifies the audio signal input from the sound volume/quality controller 114, and the speaker 118 outputs sound.

The display memory 120 stores various image data, such as data for a menu screen. Under the control of the MPU 110, the OSD processor 122 generates an image corresponding to image data stored in the display memory 120 and outputs a video signal to the display controller 124. Under the control of the MPU 110, the display controller 124 receives the video signals from the MPU 110 and the OSD processor 122 and also receives a video signal from the PND 200 via the connector 112, performs image synthesis and so on as needed, and displays an image on the display 126.

FIG. 3 is a block diagram of the configuration of the PND 200. In FIG. 3, the PND 200 includes an MPU 210, a display memory 211, a connector 212, an operation unit 213, a sound volume/quality controller 214, a sound amplifier 216, a speaker 218, a display memory 220, an OSD processor 222, a display controller 224, a display 226, and a GPS receiver 228.

The MPU 210 controls the entire PND 200 during route-guidance operation and audio-playback operation. The MPU 210 corresponds to transmitting means in claims 8 and 9, first reading means, second reading means, same/different-mode determining means, and processing means in claim 10, and operation-mode determining means, route guiding means, and content playback means in claim 11. The memory 211 stores various types of information, such as map data, needed for the route-guidance operation and the audio-playback operation. The memory 211 corresponds to first storing means in claims 2, 9, and 10, second storing means in claims 1, 2, 9, and 10, and storing means in claims 8.

The connector 212, the operation unit 213, the sound volume/quality controller 214, the sound amplifier 216, the speaker 218, the display memory 220, the OSD processor 222, the display controller 224, and the display 226 have functions similar to those in the in-vehicle audio apparatus 100. Thus, the in-vehicle audio apparatus 100 is connected to the connector 212, via which a serial communication signal, a PND-connection detection signal, an in-vehicle-apparatus detection signal, a video signal, and an audio signal are communicated between the in-vehicle audio apparatus 100 and the PND 200.

The operation unit 213 is, for example, a touch panel and is operated by the user. The MPU 210 performs various types of control in accordance with a user operation. Under the control of the MPU 210, the sound volume/quality controller 214 sets the sound volume and sound quality of an audio signal received from the MPU 210, outputs the audio signal to the sound amplifier 216, and also transmits the audio signal to the in-vehicle audio apparatus 100.
apparatus 100 via the connector 212. The sound amplifier 216 amplifies the audio signal input from the sound volume/quality controller 214, and the speaker 118 outputs sound. The display memory 220 stores various image data, such as data for a menu screen. Under the control of the MPU 210, the OSD processor 222 generates an image corresponding to image data stored in the display memory 220 and outputs a video signal to the display controller 224. Under the control of the MPU 210, the display controller 224 receives the video signals from the MPU 210 and the OSD processor 222, performs image synthesis and so on as needed, displays an image on the display 226, and transmits the video signal to the in-vehicle audio apparatus 100 via the connector 212.

The GPS receiver 228 receives, from a GPS in-vehicle audio apparatus 100 via the connector 212.

The GPS receiver 228 receives, from a GPS satellite, a GPS signal required for detecting the location of the PND 200. Based on the GPS signal, the MPU 210 can detect the location of the PND 200.

Next, a description will be given of an operation of a case in which the PND 200 is mounted in the in-vehicle audio apparatus 100 and the in-vehicle audio apparatus 100 and the PND 200 perform processing in cooperation with each other, an operation of a case in which the PND 200 is removed from the in-vehicle audio apparatus 100 and independently performs processing, and an operation of a case in which the PND 200 is re-mounted in the in-vehicle audio apparatus 100 and the in-vehicle audio apparatus 100 and the PND 200 perform processing in cooperation with each other.

FIG. 4 is a flowchart of an operation of the in-vehicle audio apparatus 100 when the PND 200 is mounted in the in-vehicle audio apparatus 100 and the in-vehicle audio apparatus 100 and the PND 200 perform processing in cooperation with each other.

In step S101, the MPU 110 in the in-vehicle audio apparatus 100 determines whether or not the current operation mode is a route-guidance operation mode (a route guidance mode). When the current operation mode is the route guidance mode, the MPU 110 transmits a serial communication signal to the PND 200 via the connector 112 to request for vehicle-location coordinates (longitude and latitude), destination coordinates, via-point coordinates, and guidance-route information.

Upon receiving a vehicle-location-requesting serial communication signal via the connector 212, the MPU 210 in the PND 200 detects the coordinates of the location of the PND 200 as vehicle-location coordinates, based on the GPS signal received from the GPS receiver 228. The MPU 210 then transmits the detected vehicle-location coordinates to the MPU 110 via the connector 212 and the connector 112 of the in-vehicle audio apparatus 100. Upon receiving the vehicle-location coordinates, the MPU 110 reads destination coordinates, via-point coordinates, and guidance-route information stored in the memory 111, generates mode information including the vehicle-location coordinates, the destination coordinates, the via-point coordinates, and the guidance-route information, and stores the generated mode information in the memory 111 in step S102.

FIG. 5A is a table showing one example of the mode information when the operation mode is the route-guidance mode. In FIG. 5A, the mode information for the route-guidance mode (the mode information will herein-after be referred to as "route-guidance mode information") has six fields. The second field from the top contains the vehicle-location coordinates, the third field contains destination and via-point coordinates, and the fourth field contains the guidance-route information. The guidance-route information includes a collection of links corresponding to routes from a start point to a destination. Information in the first field is described below.

FIG. 5B is a table showing one example of the mode information when the operation mode is the audio playback mode. In FIG. 5B, the mode information for the audio playback mode (the mode information will herein-after be referred to as "audio-playback mode information") has six fields. The fifth field from the top contains the playback track number and the sixth field contains the playback time position. The first field is described below.

A description will now be given with reference back to FIG. 4. Upon determining that the current operation mode is not the route-guidance mode in step S101, the MPU 110 determines whether or not the current operation mode is an audio-playback operation mode (an audio-playback mode) in step S103. When the current operation mode is not the audio-playback mode, the process returns to S101 in which the MPU 110 again determines whether or not the current operation is the route-guidance mode.

On the other hand, when the current operation mode is the audio playback mode, MPU 110 generates mode information including a track number for audio data that is currently played back (the track number will here-inafter be referred to as a "playback track number") and a playback time position of the audio data, and stores the generated mode information in the memory 111 in step S104.

FIG. 5B is a table showing one example of the mode information when the operation mode is the audio playback mode. In FIG. 5B, the mode information for the audio playback mode (the mode information will herein-after be referred to as "audio-playback mode information") has six fields. The fifth field from the top contains the playback track number and the sixth field contains the playback time position. The first field is described below.

A description will now be given with reference back to FIG. 4. After the route-guidance mode information is stored in step S102 or after the audio-playback mode information is stored in step S104, the MPU 110 stores the current operation mode in the memory 111 in step S105 by adding corresponding information to the route-guidance mode information or the audio-playback mode information. More specifically, when the route-guidance mode information is stored in step S102, the MPU 110 adds identification information for the route-guidance mode to the first field shown in FIG. 5A. On the other hand, when the audio-playback mode information is stored in step S104, the MPU 110 adds identification information for the audio playback mode to the first area shown in FIG. 5B.

Next, in step S106, the MPU 110 determines whether or not the PND 200 is removed from the in-vehicle audio apparatus 100. The MPU 210 in the PND 200
periodically outputs a PND-connection detection signal. In this case, while the PND 200 is mounted in the in-vehicle audio apparatus 100, the PND 200 periodically transmits the PND-connection detection signal to the MPU 110 via the connector 212 and the connector 112 of the in-vehicle audio apparatus 100. Thus, when the MPU 110 cannot periodically receive the PND-connection detection signal, it can determine that the PND 200 is removed from the in-vehicle audio apparatus 100.

[0059] When the PND 200 is removed, the above-described series of operations is finished. On the other hand, upon determining that the PND 200 is not removed, in step S107, the MPU 110 determines whether or not a predetermined time has passed from when the determination (step S101) was made as to whether or not the current operation mode is the route-guidance mode. When the predetermined time has not passed from the operation performed in step S101, the process returns to step S106 in which the MPU 110 again determines whether or not PND 200 is removed. On the other hand, when the predetermined time has passed from the operation performed in step S101, the operations in step S101 and the subsequent steps are repeated. The route-guidance mode information and audio-playback mode information generated and stored when the operation in step S102 or S104 is performed for the second and subsequent times are overwritten to the mode information already stored in the memory 111 at the point of time.

[0060] As described above, until the PND 200 is removed from the in-vehicle audio apparatus 100, the mode information for the operation mode at the point of time is stored and updated in the memory 111. Thus, when the PND 200 is removed from the in-vehicle audio apparatus 100, the mode information for the operation mode in which the in-vehicle audio apparatus 100 and the PND 200 performed processing in cooperation with each other immediately before the PND 200 was removed from the in-vehicle audio apparatus 100 (the mode information will hereinafter be referred to as "latest cooperation mode information") is stored in the memory 111.

[0061] FIG. 6 is a flowchart of an operation of the PND 200 when the PND 200 is removed from the in-vehicle audio apparatus 100 and independently performs operation.

[0062] In step S201, The MPU 210 in the PND 200 determines whether or not the current operation mode is the route-guidance mode. When the current operation mode is the route-guidance mode, the MPU 210 detects the coordinates of the location of the PND 200 as vehicle-location coordinates, based on the GPS signal received from the GPS receiver 228. Next, in step S202, the MPU 210 reads destination coordinates, via-point coordinates, and guidance-route information stored in the memory 211, generates route-guidance mode information including the vehicle-location coordinates, the destination coordinates, the via-point coordinates, and the guidance-route information, and stores the generated route-guidance mode information in the memory 211.

[0063] On the other hand, upon determining that the current operation mode is not the route-guidance mode in step S201, the MPU 210 determines whether or not the current operation mode is the audio-playback mode in step S203. When the current operation mode is not the audio-playback mode, the process returns to step S201 and the MPU 111 again determines whether or not the current operation is the route-guidance mode.

[0064] On the other hand, when the current operation mode is the audio playback mode, the MPU 210 generates audio-playback mode information including a playback track number for audio data that is currently played back and a playback time position of the audio data, and stores the generated audio-playback mode information in the memory 211 in step S204.

[0065] After the route-guidance mode information is stored in step S202 or after the audio-playback mode information is stored in step S204, the MPU 210 stores the current operation mode in the memory 211 in step S205 by adding corresponding information to the route-guidance mode information or the audio-playback mode information.

[0066] Next, in step S206, the MPU 210 determines whether or not the PND 200 is re-mounted in the in-vehicle audio apparatus 100. The MPU 110 in the in-vehicle audio apparatus 100 periodically outputs an in-vehicle apparatus connection detection signal. In this case, when the PND 200 is re-mounted in the in-vehicle audio apparatus 100, the MPU 110 periodically transmits the in-vehicle apparatus connection detection signal to the MPU 210 via the connector 112 and the connector 212 of the PND 200. Thus, upon receiving the in-vehicle apparatus connection detection signal, the MPU 210 can determine that the PND 200 is re-mounted in the in-vehicle audio apparatus 100.

[0067] When the PND 200 is re-mounted, the above-described series of operations is finished. On the other hand, upon determining that the PND 200 is not re-mounted, in step S207, the MPU 210 determines whether or not a predetermined time has passed from when the determination (step S201) was made as to whether or not the current operation mode is the route-guidance mode. When the predetermined time has not passed from the operation performed in step S201, the process returns to step S206 in which the MPU 210 determines whether or not the PND 200 is re-mounted. On the other hand, when the predetermined time has passed from the operation performed in step S201, the operations in step S201 and the subsequent steps are repeated. The route-guidance mode information or audio-playback mode information generated and stored when the operation in step S102 or S104 is performed for the second and subsequent times are overwritten to the mode information already stored in the memory 211 at the point of time.

[0068] As described above, until the PND 200 is re-mounted in the in-vehicle audio apparatus 100, the mode
When the latest cooperation mode and the latest independence mode match each other, the MPU 110 reads pieces of information (hereinafter referred to as "latest independence mode processing data") in the latest independence information in step S305. More specifically, the MPU 110 transmits a serial communication signal for requesting the latest independence mode processing data to the PND 200 via the connector 112. Upon receiving the latest-independence-mode-requesting serial communication signal via the connector 212, the MPU 210 in the PND 200 reads information other than the mode information in the latest independence mode information stored in the memory 211. Examples of the read information include the vehicle-location coordinates, the destination and via-points coordinates, and the guidance-route information shown in FIG. 5A and the playback track number and the playback time position shown in FIG. 5B. Next, the MPU 210 transmits the read information, as the latest independence mode processing data, to the MPU 110 via the connector 212 and the connector 112 of the in-vehicle audio apparatus 100. By receiving the latest independence mode processing data, the MPU 110 reads the processing data.

In step S306, the MPU 110 sets the operation mode to the latest independence mode read in step S303, that is, to the operation mode in which the PND 200 independently performed processing immediately before the PND 200 was re-mounted in the in-vehicle audio apparatus 100. In this case, for example, identification information for the latest cooperation mode is stored in the memory 111. Examples of the read information include the vehicle-location coordinates, the destination and via-points coordinates, and the guidance-route information shown in FIG. 5A and the playback track number and the playback time position shown in FIG. 5B. Next, the MPU 210 transmits the read information, as the latest independence mode processing data, to the MPU 110 via the connector 212 and the connector 112 of the in-vehicle audio apparatus 100. By receiving the latest independence mode processing data, the MPU 110 reads the processing data.

When the latest cooperation mode and the latest independence mode match each other, the MPU 110 reads pieces of information (hereinafter referred to as "latest independence mode processing data") in the latest independence information in step S305. More specifically, the MPU 110 transmits a serial communication signal for requesting the latest independence mode processing data to the PND 200 via the connector 112. Upon receiving the latest-independence-mode-requesting serial communication signal via the connector 212, the MPU 210 in the PND 200 reads information other than the mode information in the latest independence mode information stored in the memory 211. Examples of the read information include the vehicle-location coordinates, the destination and via-points coordinates, and the guidance-route information shown in FIG. 5A and the playback track number and the playback time position shown in FIG. 5B. Next, the MPU 210 transmits the read information, as the latest independence mode processing data, to the MPU 110 via the connector 212 and the connector 112 of the in-vehicle audio apparatus 100. By receiving the latest independence mode processing data, the MPU 110 reads the processing data.
location coordinates. Upon receiving the vehicle-location-coordinate-requesting serial communication signal via the connector 112, the MPU 210 in the PND 200 detects the vehicle-location coordinates based on the GPS signal received from the GPS receiver 228. The MPU 210 then transmits the detected vehicle-location coordinates to the MPU 110 via the connector 212 and the connector 112 of the in-vehicle audio apparatus 100. By receiving the vehicle-location coordinates, the MPU 110 obtains the vehicle-location coordinates.

Next, in step S403, the MPU 110 determines whether or not the destination coordinates in the latest independence mode processing data and the destination coordinates in the latest cooperation mode processing data match each other. More specifically, when the latest independence mode processing data stored in the memory 111 in the PND 200 is read in step S305, the MPU 110 reads the latest cooperation mode processing data stored in the memory 111 and determines whether or not the destination coordinates in the latest independence mode processing data and the destination coordinates in the latest cooperation mode processing data match each other. When the latest cooperation mode processing data stored in the memory 111 is read in step S307, the MPU 110 reads the latest independence mode processing data stored in the memory 211 in the PND 200 and determines whether or not the destination coordinates in the latest independence mode processing data and the destination coordinates in the latest cooperation mode processing data match each other.

When the destination coordinates in the latest independence mode processing data and the destination coordinates in the latest cooperation mode processing data match each other, in step S404, the MPU 110 determines whether or not the vehicle location obtained in step S402 is within a predetermined distance from a guidance route (including a case in which the vehicle location is on a guidance route). More specifically, when the latest independence mode processing data stored in the memory 211 in the PND 200 is read in step S305, the MPU 110 determines whether or not the vehicle location obtained in step S402 is within a predetermined distance from a guidance route by comparing a guidance-route location identified by the guidance-route information in the latest independence mode processing data with the vehicle location obtained in step S402. When the latest cooperation mode processing data stored in the memory 111 is read in step S307, the MPU 110 determines whether or not the vehicle location is within a predetermined distance from a guidance route by comparing a guidance-route location identified by the guidance-route information in the latest cooperation mode processing data with the vehicle location obtained in step S402.

When the vehicle location is within the predetermined distance from the guidance route and the latest independence mode processing data stored in the memory 211 in the PND 200 is read in step S305, the MPU 110 starts route guidance in step S405, based on the guidance-route information in the latest independence mode processing data. On the other hand, when the vehicle location is within the predetermined distance from the guidance route and the latest cooperation mode processing data stored in the memory 111 is read in step S307, the MPU 110 starts route guidance in step S405, based on the guidance-route information in the latest cooperation mode processing data. In the route guidance, the MPU 110 periodically obtains the vehicle location from the PND 200. The MPU 110 also reads map data stored in the memory 111 or the memory 211 in the PND 200, generates an image of the vicinity of the vehicle location, and outputs a video signal to the display controller 124. The display controller 124 receives the video signal and displays an image on the display 126. The MPU 110 outputs an audio signal for various types of voice and sound for guidance, including left turn and right turn, to the sound volume/quality controller 114. The sound volume/quality controller 114 sets the sound volume and sound quality of the audio signal and outputs the resulting audio signal to the sound amplifier 116. The sound amplifier 116 amplifies the audio signal input from the sound volume/quality controller 114 and the speaker 118 outputs sound.

On the other hand, when determining that the vehicle location is not within the predetermined distance from the guidance route in step S404, in step S406, the MPU 110 searches for a guidance route from the vehicle location obtained in step S402. More specifically, when the latest independence mode processing data stored in the memory 211 in the PND 200 is read in step S305, the MPU 110 searches for a guidance route from the vehicle location obtained in step S402, and the map data stored in the memory 111 or the memory 211 in the PND 200. On the other hand, when the latest cooperation mode processing data stored in the memory 111 is read in step S307, the MPU 110 searches for a guidance route from the vehicle location obtained in step S402, and the map data stored in the memory 111 or the memory 211 in the PND 200. Thereafter, in step S405, route guidance based on the found guidance route is performed.

When it is determined that the destination coordinates are not the same in step S403 and the latest independence mode processing data stored in the memory 211 in the PND 200 is read in step S305, the MPU 110 searches for a guidance route from the vehicle location to the destination, based on the destination coordinates and the via-point coordinates in the latest cooperation mode processing data, the vehicle location obtained in step S402, and the map data stored in the memory 111 or the memory 211 in the PND 200. The MPU 110 searches for a guidance route from the vehicle location to the destination, based on the destination coordinates and the via-point coordinates in the latest cooperation mode processing data, the vehicle location obtained in step S402, and the map data stored in the memory 111 or the memory 211 in the PND 200. On the other hand, when the latest cooperation mode processing data stored in the memory 111 is read in step S307, the MPU 110 searches for a guidance route from the vehicle location obtained in step S402, and the map data stored in the memory 111 or the memory 211 in the PND 200.
stored in the memory 111 is read in step S307, in step S407, the MPU 110 searches for a guidance route from the vehicle location to the destination, based on the destination coordinates and the via-point coordinates in the latest cooperation mode processing data, the vehicle location obtained in step S402, and the map data stored in the memory 111 or the memory 211 in the PND 200. Thereafter, in step S405, route guidance based on the found guidance route is performed.

[0084] When it is determined in step S401 that the set operation mode is not the route-guidance mode, in other words, when it is determined that the set operation mode is the audio-playback mode, and also the latest independence mode processing data stored in the memory 211 in the PND 200 is read in step S305, the MPU 110 reads audio data that corresponds to a playback track number in the latest independence mode processing data and that is stored in the memory 111 or the memory 211 in the PND 200, and further specifies a playback time position in the latest independence mode processing data as a resume position in step S408. In step S409, the MPU 110 resumes audio playback from the resume position. In the audio playback, the MPU 110 outputs, to the sound volume/quality controller 114, an audio signal corresponding to the read audio data. The sound volume/quality controller 114 sets the sound volume and sound quality of the audio signal and outputs the resulting audio signal to the sound amplifier 116. The sound amplifier 116 amplifies the audio signal input from the sound volume/quality controller 114, and the speaker 118 outputs sound.

[0085] When it is determined in step S401 that the set operation mode is not the route-guidance mode and the latest cooperation mode processing data stored in the memory 111 is read in step S307, the MPU 110 reads audio data that corresponds to a playback track number in the latest cooperation mode processing data and that is stored in the memory 111 or the memory 211 in the PND 200, and further specifies a playback time position in the latest cooperation mode processing data as a resume position in step S408. In step S409, the MPU 110 resumes audio playback from the resume position. Therefore, in step S405, route guidance based on the found guidance route is performed.

[0086] Thus, when the operation mode (the latest cooperation mode) in which the in-vehicle audio apparatus 100 and the PND 200 perform processing in cooperation with each other immediately before the PND 200 is removed and the operation mode (the latest independence mode) in which the PND 200 independently performs processing immediately before the PND 200 is re-mounted in the in-vehicle audio apparatus 100 after being removed therefrom are the same, the in-vehicle audio apparatus 100 performs processing using the processing data in the latest independence mode and can take over the route-guidance operation or content-playback operation independently performed by the PND 200. On the other hand, when the latest cooperation mode and the latest independence mode are different from each other, the in-vehicle audio apparatus 100 performs processing using the processing data in the latest cooperation mode and can take over the route-guidance operation or content-playback operation performed by the in-vehicle audio apparatus 100 and the PND 200 in cooperation with each other.

[0087] Although the MPU 110 in the in-vehicle audio apparatus 100 generates the route-guidance mode information and stores the mode information in the memory 111 in step S102 shown in FIG. 4 and generates the audio-playback mode information and stores the mode information in the memory 111 in step S104 in the above-described embodiment, the arrangement may also be such that the MPU 110 transmits the route-guidance mode information and the audio-playback mode information to the MPU 210 in the PND 200 and the MPU 210 stores the route-guidance mode information and the audio-playback mode information in the memory 211. In such a case, in step S105 shown in FIG. 4, the MPU 110 transmits the current operation mode to the MPU 210 in the PND 200 and the MPU 210 stores the route-guidance mode information and the audio-playback mode information in the memory 211. In such a case, the MPU 210 in the PND 200 may perform the operations shown in FIGS. 4, 7, and 8. That is, in accordance with the flowchart shown in FIG. 4, the MPU 210 in the PND 200 determines whether or not the current operation mode is the route guidance mode in step S101. When the current operation mode is the route guidance mode, the MPU 210 detects the vehicle location coordinates based on the GPS signal received from the GPS receiver 228. In step S102, the MPU 210 further reads destination coordinates, via-point coordinates, and guidance-route information stored in the memory 211, generates route-guidance mode information including the vehicle location coordinates, the destination coordinates, the via-point coordinates, and the guidance-route information, and stores the generated route-guidance mode information in the memory 211.

[0088] On the other hand, when the current operation mode is not the route-guidance mode, the MPU 210 determines whether or not the current operation mode is the audio playback mode in step S103. When the current operation mode is not the audio playback mode, the process returns to S101 in which the MPU 210 again determines whether or not the current operation is the route-guidance mode. On the other hand, when the current operation mode is the audio playback mode, the MPU 210 generates audio-playback mode information including a playback track number for audio data that is currently played back and a playback time position of the audio data, and stores the generated audio-playback mode information in the memory 211 in step S104.

[0090] After the route-guidance mode information is
stored in step S102 or after the audio-playback mode information is stored in step S104, the MPU 210 stores the current operation mode in the memory 211 in step S105 by adding corresponding information to the route-guidance mode information or the audio-playback mode information.

Next, in step S106, the MPU 210 determines whether or not the PND 200 is removed from the in-vehicle audio apparatus 100. The MPU 110 in the in-vehicle audio apparatus 100 periodically outputs an in-vehicle-apparatus connection detection signal. In this case, while the PND 200 is mounted in the in-vehicle audio apparatus 100, the MPU 110 periodically transmits the in-vehicle-apparatus connection detection signal to the MPU 210 via the connector 112 and the connector 212 of the PND 200. Thus, when the MPU 210 cannot periodically receive the in-vehicle-apparatus connection detection signal, it can determine that the PND 200 is removed from the in-vehicle audio apparatus 100.

When the PND 200 is removed, the above-described series of operations is finished. On the other hand, upon determining that the PND 200 is not removed, in step S107, the MPU 210 determines whether or not a predetermined time has passed from when the determination (step S101) was made as to whether or not the current operation mode is the route-guidance mode. When the predetermined time has not passed from the operation performed in step S101, the process returns to step S106 in which the MPU 210 again determines whether or not the PND 200 is removed. On the other hand, when the predetermined time has passed from the operation performed in step S101, the operations in step S101 and the subsequent steps are repeated.

As described above, until the PND 200 is removed from the in-vehicle audio apparatus 100, the mode information for the operation mode at the point of time is stored and updated in the memory 211. Thus, when the PND 200 is removed from the in-vehicle audio apparatus 100, the latest cooperation mode information corresponding to the operation mode in which the in-vehicle audio apparatus 100 and the PND 200 performed processing in cooperation with each other immediately before the PND 200 was removed from the in-vehicle audio apparatus 100 is stored in the memory 211.

A description will now be given with reference back to the flowcharts shown in FIGS. 7 and 8. In step S301, the MPU 210 in the PND 200 determines whether or not the PND 200 is re-mounted in the in-vehicle audio apparatus 100. More specifically, upon periodically receiving the in-vehicle-apparatus connection detection signal from the MPU 110 in the in-vehicle audio apparatus 100, the MPU 210 can determine that the PND 200 is reconnected to the in-vehicle audio apparatus 100.

When the PND 200 is re-mounted in the in-vehicle audio apparatus 100, the MPU 210 reads the latest cooperation mode in the latest cooperation mode information in step S302 which is stored in the memory 211. Next, in step S303, the MPU 110 reads the latest independence mode in the latest independence mode information stored in the memory 211. In addition, in step S304, the MPU 210 determines whether or not the read latest cooperation mode and the latest independence mode match each other, that is, whether or not the operation mode in which the in-vehicle audio apparatus 100 and the PND 200 performed processing in cooperation with each other immediately before the PND 200 was removed from the in-vehicle audio apparatus 100 and the operation mode in which the PND 200 independently performed processing immediately before the PND 200 was re-mounted in the in-vehicle audio apparatus 100 match each other.

When the latest cooperation mode and the latest independence mode match each other, in step S305, the MPU 210 reads the latest independence mode processing data in the latest independence mode information stored in the memory 211. In step S306, the MPU 210 sets the operation mode to the latest independence mode read in step S303, that is, to the operation mode in which the PND 200 independently performed processing immediately before the PND 200 was removed from the in-vehicle audio apparatus 100. In this case, for example, identification information for the latest independence mode is stored in the memory 211.

On the other hand, upon determining that the latest independence mode and the latest cooperation mode do not match each other, in step S307, the MPU 210 reads the latest cooperation mode processing data in the latest cooperation mode information stored in the memory 211. In step S308, the MPU 210 sets the operation mode to the latest cooperation mode read in step S304, that is, to the operation mode in which the in-vehicle audio apparatus 100 and the PND 200 performed processing in cooperation with each other immediately before the PND 200 was removed from the in-vehicle audio apparatus 100.

After the operation mode is set to the latest independence mode in step S306 or after the operation mode is set to the latest cooperation mode in step S308, the process proceeds to the operations shown in FIG. 8. In step S401, the MPU 210 determines whether or not the operation mode set in step S306 or S308 is the route-guidance mode. When the operation mode set in step S306 or S308 is the route guidance mode, the MPU 210 obtains the vehicle location in step S402. More specifically, the MPU 210 detects the vehicle-location coordinates based on the GPS signal received from the GPS receiver 228.

Next, in step S403, the MPU 210 determines whether or not the destination coordinates in the latest independence mode processing data and the destination coordinates in the latest cooperation mode processing data match each other. More specifically, when the latest independence mode processing data stored in the memory 211 is read in step S305, the MPU 210 reads the
latest cooperation mode processing data stored in the memory 211 and determines whether or not the destination coordinates in the latest independence mode processing data and the destination coordinates in the latest cooperation mode processing data match each other. When the latest cooperation mode processing data stored in the memory 211 is read in step S307, the MPU 210 reads the latest independence mode processing data stored in the memory 211 and determines whether or not the destination coordinates in the latest independence mode processing data and the destination coordinates in the latest cooperation mode processing data match each other.

[0100] When the destination coordinates in the latest independence mode processing data and the destination coordinates in the latest cooperation mode processing data match each other, in step S404, the MPU 210 determines whether or not the vehicle location obtained in step S402 is within a predetermined distance from a guidance route (including a case in which the vehicle location is located on a guidance route). More specifically, when the latest independence mode processing data stored in the memory 211 is read in step S305, the MPU 210 determines whether or not the vehicle location is within the predetermined distance from the guidance route by comparing a guidance-route location identified by the guidance-route information in the latest independence mode processing data with the vehicle location obtained in step S402. When the latest cooperation mode processing data stored in the memory 211 is read in step S307, the MPU 210 determines whether or not the vehicle location is within the predetermined distance from the guidance route by comparing a guidance-route location identified by the guidance-route information in the latest cooperation mode processing data with the vehicle location obtained in step S402.

[0101] When the vehicle location is within the predetermined distance from the guidance route and the latest independence mode processing data stored in the memory 211 is read in step S305, the MPU 210 starts route guidance in step S405, based on the guidance-route information in the latest independence mode processing data. On the other hand, when the vehicle location is within the predetermined distance from the guidance route and the latest cooperation mode processing data stored in the memory 211 is read in step S307, the MPU 210 starts route guidance in step S405, based on the guidance-route information in the latest cooperation mode processing data. In the route guidance, the MPU 210 periodically obtains the vehicle location. The MPU 210 also reads map data stored in the memory 211, generates an image of the vicinity of the vehicle location, and outputs a video signal to the display controller 224. The display controller 224 outputs the video signal to the display controller 124 via the connector 212 and the connector 112 of the in-vehicle audio apparatus 100. The display controller 124 causes the display 126 to display the image. The MPU 210 outputs an audio signal for various types of voice and sound for guidance, including left turn and right turn, to the sound volume/quality controller 114. The sound volume/quality controller 114 sets the sound volume and sound quality of the audio signal and outputs the resulting audio signal to the sound amplifier 116 via the connector 212, the connector 112, and the sound volume/quality controller 114. The sound amplifier 116 amplifies the audio signal and the speaker 118 outputs sound.

[0102] On the other hand, upon determining that the vehicle location is not within the predetermined distance from the guidance route in step S404, in step S406, the MPU 210 searches for a guidance route from the vehicle location obtained in step S402. More specifically, when the latest independence mode processing data stored in the memory 211 is read in step S305, the MPU 210 searches for a guidance route from the vehicle location to the destination, based on the destination coordinates and the via-point coordinates in the latest independence mode processing data, the vehicle location obtained in step S402, and the map data stored in the memory 211. On the other hand, when the latest cooperation mode processing data stored in the memory 211 is read in step S307, the MPU 210 searches for a guidance route from the vehicle location to the destination in step S407, based on the destination coordinates and the via-point coordinates in the latest cooperation mode processing data, the vehicle location obtained in step S402, and the map data stored in the memory 211. Thereafter, in step S405, route guidance based on the found guidance route is performed.

[0103] When it is determined in step S403 that the destination coordinates are not the same and the latest independence mode processing data stored in the memory 211 is read in step S305, the MPU 210 searches for a guidance route from the vehicle location to the changed destination in step S407, based on the destination coordinates and the via-point coordinates in the latest independence mode processing data, the vehicle location obtained in step S402, and the map data stored in the memory 211. On the other hand, when the latest cooperation mode processing data stored in the memory 211 is read in step S307, the MPU 210 searches for a guidance route from the vehicle location to the changed destination in step S407, based on the destination coordinates and the via-point coordinates in the latest cooperation mode processing data, the vehicle location obtained in step S402, and the map data stored in the memory 211. Thereafter, in step S405, route guidance based on the found guidance route is performed.

[0104] When it is determined in step S401 that the set operation mode is not the route guidance mode and the latest independence mode processing data stored in the memory 211 is read in step S305, the MPU 210 reads audio data that corresponds to a playback track number in the latest independence mode processing data and that is stored in the memory 211, and further specifies a playback time position in the latest independence mode.
processing data as a resume position in step S408. In step S409, the MPU 210 resumes audio playback from the resume position. In the audio playback, the MPU 210 outputs, to the sound volume/quality controller 214, an audio signal corresponding to the read audio data. The sound volume/quality controller 214 sets the sound volume and sound quality of the audio signal and outputs the resulting audio signal to the sound amplifier 216 via the connector 212, the connector 112, and the sound volume/quality controller 114 of the in-vehicle audio apparatus 100. The sound amplifier 116 amplifies the audio signal and the speaker 118 outputs sound.

[0105] When it is determined in step S401 that the set operation mode is not the route guidance mode and the latest cooperation mode processing data stored in the memory 211 is read in step S307, the MPU 210 reads audio data that corresponds to a playback track number in the latest cooperation mode processing data and that is stored in the memory 211, and further specifies a playback time position in the latest cooperation mode processing data as a resume position in step S408. In step S409, the MPU 210 resumes audio playback from the resume position.

[0106] Although the determination is made in step S106 in FIG. 4 as to whether or not the PND 200 is removed from the in-vehicle audio apparatus 100, a determination may be made as to whether or not the PND 200 is disconnected from power supply. When the PND 200 is disconnected from the power supply, the series of operations is finished, and when the PND 200 is not disconnected from the power supply, the determination (step S107) may be made as to whether or not the predetermined time has passed from the operation performed in step S101. With this arrangement, a determination as to whether or not the PND 200 is re-connected to the power supply is made instead of the operation performed in step S206 in FIG. 6, and when the PND 200 is re-connected to the power supply, the series of operations is finished. When the PND 200 is not connected to the power supply, the determination (step S207) is made as to whether or not the predetermined time has passed from the operation performed in step S201. In addition, a determination as to whether or not the PND 200 is re-connected to the power supply is made instead of the operation performed in step S301 in FIG. 7, and when the PND 200 is re-connected to the power supply, the latest cooperation mode is read in step S302.

[0107] Although a case in which audio data is played back has been described in the above-described embodiment, the present invention is also applicable to a case in which, for example, visual content, other than audio data, is played back.

[0108] As described above, the navigation system, the in-vehicle apparatus, and the portable terminal according to the present invention are capable of appropriately taking over a route-guidance operation and a content-playback operation and are advantageously used for, for example, a navigation system and so on.

Claims

1. A navigation system comprising:

an in-vehicle apparatus installed in a vehicle, and

a portable terminal that is removably mounted in the in-vehicle apparatus, characterized in that the system is configured such that when the portable terminal is mounted in the in-vehicle apparatus, the in-vehicle apparatus and the portable terminal selectively perform processing in a route-guidance operation mode and processing in a content-playback operation mode in cooperation with each other, and when the portable terminal is removed from the in-vehicle apparatus, the portable terminal independently and selectively performs processing in the route-guidance operation mode and processing in the content-playback operation mode; further characterized in that the in-vehicle apparatus includes first storing means for storing a first operation mode read by the first reading means and the second operation mode read by the second reading means independently and selectively perform processing in the first operation mode and the second operation mode before the portable terminal is re-mounted in the in-vehicle apparatus after being removed therefrom or is re-connected to the power supply after being disconnected therefrom and processing data in the second operation mode, the portable terminal independently performing processing in the second operation mode; and in that the in-vehicle apparatus includes:

first reading means configured to read the first operation mode stored in the first storing means and the second operation mode stored in the second storing means, when the portable terminal is re-mounted in the in-vehicle apparatus or is re-connected to the power supply after being disconnected therefrom, same/different-mode determining means configured to determine whether or not the first operation mode and the second operation mode read by the first reading means are the same,

second reading means configured to read the processing data in the second operation mode, when the same/different-mode determining means determines that the first operation mode and the second operation
An in-vehicle apparatus installed in a vehicle, the in-vehicle apparatus comprising:

processing means configured to perform processing using the processing data read by the second reading means, in cooperation with the portable terminal.

operation-mode determining means determines that the first operation mode and the second operation mode are the same, and configured to read the processing data in the first operation mode, when the same/different-mode determining means determines that the first operation mode and the second operation mode are different from each other, the processing data in the second operation mode being stored in the portable terminal and the processing data in the first operation mode being stored in the first storing means, and processing means configured to perform processing using the processing data read by the second reading means, in cooperation with the portable terminal.

The in-vehicle apparatus according to claim 2, wherein the processing means comprises:

2. An in-vehicle apparatus installed in a vehicle, the in-vehicle apparatus being arranged to receive a removably mountable portable terminal, wherein when the portable terminal is mounted in the in-vehicle apparatus, the in-vehicle apparatus selectively performs processing in a route-guidance operation mode and processing in a content-playback operation mode in cooperation with the portable terminal, the in-vehicle apparatus comprising:

storing means configured to store a first operation mode before the portable terminal is removed from the in-vehicle apparatus or is disconnected from power supply and processing data in the first operation mode, the in-vehicle apparatus and the portable terminal performing processing in cooperation with each other in the first operation mode;

first reading means configured to read the first operation mode stored in the first storing means, when the portable terminal is re-mounted in the in-vehicle apparatus after being removed therefrom or is re-connected to the power supply after being disconnected therefrom, and to read a second operation mode before the portable terminal is re-mounted in the in-vehicle apparatus after being removed therefrom or is re-connected to the power supply after being disconnected therefrom, and to read a second operation mode before the portable terminal is re-mounted in the in-vehicle apparatus after being removed therefrom or is re-connected to the power supply after being disconnected therefrom, the second operation mode being stored in the portable terminal and the portable terminal independently performing processing in the second operation mode;

same/different-mode determining means configured to determine whether or not the first operation mode and the second operation mode are the same; and

content playback means for performing, when the same/different-mode determining means determines that the first operation mode and the second operation mode are the same, and configuring to read the processing data in the first operation mode, when the same/different-mode determining means determines that the first operation mode and the second operation mode are different from each other, the processing data in the second operation mode being stored in the portable terminal and the processing data in the first operation mode being stored in the first storing means; and

processing means configured to perform processing using the processing data read by the second reading means, in cooperation with the portable terminal.

3. The in-vehicle apparatus according to claim 2, wherein the processing means comprises:

operation-mode determining means for determining whether or not the second operation mode is the route-guidance operation mode, when the same/different-mode determining means determines that the first operation mode and the second operation mode are the same, and for determining whether or not the first operation mode is the route-guidance operation mode, when the same/different-mode determining means determines that the first operation mode and the second operation mode are different from each other;

route guiding means for performing, when the same/different-mode determining means determines that the first operation mode and the second operation mode are the same and the operation-mode determining means determines that the second operation mode is the route-guidance operation mode, route guidance based on processing data in the route-guidance operation mode, the processing data being read by the second reading means and being the processing data in the second operation mode, and performing, when the same/different-mode determining means determines that the first operation mode and the second operation mode are different from each other and the operation-mode determining means determines that the first operation mode is the route-guidance operation mode, route guidance based on processing data in the route-guidance operation mode, the processing data being read by the second reading means and being the processing data in the first operation mode; and

content playback means for performing, when the same/different-mode determining means determines that the first operation mode and the second operation mode are the same and the operation-mode determining means determines
that the second operation mode is the content-playback operation mode, content playback based on processing data in the content-playback operation mode, the processing data being read by the second reading means and being the processing data in the second operation mode, and performing, when the same/different-mode determining means determines that the first operation mode and the second operation mode are different from each other and the operation-mode determining means determines that the first operation mode is the content-playback operation mode, content playback based on processing data in the content-playback operation mode, the processing data being read by the second reading means and being the processing data in the first operation mode.

4. The in-vehicle apparatus according to claim 3, wherein the processing data in the route-guidance operation mode includes a destination location and guidance-route information, and wherein the route guiding means comprises vehicle-location obtaining means for obtaining a location of the vehicle, and route searching means for searching for, when the vehicle location obtained by the vehicle-location obtaining means is at a predetermined distance or more away from a guidance route identified by the guidance-route information, a guidance route from the vehicle location to the destination location, and for searching for, when the destination location is different from a destination location in immediately preceding route guidance, a guidance route from the vehicle location to the changed destination location.

5. The in-vehicle apparatus according to claim 3 or 4, wherein the processing data in the content-playback operation mode includes playback-position information of content, and the content-playback means resumes playback of the content from a playback position specified by the playback-position information.

6. A portable terminal that is removably mountable in an in-vehicle apparatus installed in a vehicle, configured such that when the portable terminal is mounted in the in-vehicle apparatus, the portable terminal selectively performs processing in a route-guidance operation mode and processing in a content-playback operation mode in cooperation with the in-vehicle apparatus, and when the portable terminal is removed from the in-vehicle apparatus, the portable terminal independently and selectively performs processing in the route-guidance operation mode and processing in the content-playback operation mode, the portable terminal comprising:

- first storing means configured to store a first operation mode before the portable terminal is removed from the in-vehicle apparatus or is disconnected from power supply and processing data in the first operation mode, the in-vehicle apparatus and the portable terminal performing processing in cooperation with each other in the first operation mode;
- second storing means configured to store a second operation mode before the portable terminal is re-mounted in the in-vehicle apparatus after being removed therefrom or is re-connected to the power supply after being disconnected therefrom and processing data in the second operation mode, the portable terminal independently performing processing in the second operation mode;
- first reading means configured to read the first operation mode stored in the first storing means and the second operation mode stored in the second storing means, when the portable terminal is re-mounted in the in-vehicle apparatus after being removed therefrom or is re-connected to the power supply after being disconnected therefrom; and
- same/different-mode determining means configured to determine whether or not the first operation mode and the second operation mode read by the first reading means are the same;

second reading means configured to read the processing data in the second operation mode, when the same/different-mode determining means determines that the first operation mode and the second operation mode are the same, and for reading the processing data in the first operation mode, when the same/different-mode determining means determines that the first operation mode and the second operation mode are different from each other, the processing data in the second operation mode being stored in the second storing means and the processing data in the first operation mode being stored in the first storing means; and

processing means configured to perform processing using the processing data read by the second reading means, in cooperation with the in-vehicle apparatus.

7. The portable terminal according to claim 6, wherein the processing means comprises:

operation-mode determining means for determining whether or not the second operation mode is the route-guidance operation mode, when the same/different-mode determining means determines that the first operation mode and the second operation mode are the same, and for determining whether or not the first operation mode is the route-guidance operation mode, when the same/different-mode determining means determines that the first operation mode and the second operation mode are different from each other;
8. The portable terminal according to claim 7, wherein the processing data in the route-guidance operation mode includes a destination location and guidance-route information, and wherein the route guiding means for performing, when the same/different-mode determining means determines that the first operation mode and the second operation mode are the same and the operation-mode determining means determines that the second operation mode is the route-guidance operation mode, route guidance based on processing data in the route-guidance operation mode, the processing data being read by the second reading means and being the processing data in the second operation mode, and performing, when the same/different-mode determining means determines that the first operation mode and the second operation mode are different from each other and the operation-mode determining means determines that the first operation mode is the route-guidance operation mode, route guidance based on processing data in the route-guidance operation mode, the processing data being read by the second reading means and being the processing data in the first operation mode; and content playback means for performing, when the same/different-mode determining means determines that the first operation mode and the second operation mode are the same and the operation-mode determining means determines that the second operation mode is the content-playback operation mode, content playback based on processing data in the content-playback operation mode, the processing data being read by the second reading means and being the processing data in the second operation mode, and performing, when the same/different-mode determining means determines that the first operation mode and the second operation mode are different from each other and the operation-mode determining means determines that the first operation mode is the content-playback operation mode, content playback based on processing data in the content-playback operation mode, the processing data being read by the second reading means and being the processing data in the first operation mode.

9. The portable terminal according to claim 7 or 8, wherein the processing data in the content-playback operation mode includes playback-position information of content, and the content-playback means resumes playback of the content from a playback position specified by the playback-position information.

Patentansprüche

1. Navigationssystem, umfassend:

 eine fahrzeuginterne Vorrichtung, die in ein Fahrzeug eingebaut ist, und ein tragbares Endgerät, das entferbar in der fahrzeuginternen Vorrichtung montiert ist, dadurch gekennzeichnet, dass das System derart konfiguriert ist, dass, wenn das tragbare Endgerät in die fahrzeuginterne Vorrichtung montiert ist, die fahrzeuginterne Vorrichtung und das tragbare Endgerät selektiv Verarbeitung in einem Betriebsmodus für Streckenführung und Verarbeitung in einem Betriebsmodus für Inhaltswiedergabe in Kooperation miteinander ausführen und, wenn das tragbare Endgerät aus der fahrzeuginternen Vorrichtung entfernt wird, führt das tragbare Endgerät unabhängig und selektiv Verarbeitung im Betriebsmodus für Streckenführung und Verarbeitung im Betriebsmodus für Inhaltsbedienung aus; ferner dadurch gekennzeichnet, dass die fahrzeuginterne Vorrichtung erste Speichermedium zum Speichern eines ersten Betriebsmodus einschließt, bevor das tragbare Endgerät aus der fahrzeuginternen Vorrichtung entfernt oder von der Stromversorgung und Verarbeitungsdaten im ersten Betriebsmodus getrennt wird, die fahrzeuginterne Vorrichtung und das tragbare Endgerät Verarbeitung in Kooperation miteinander im ersten Betriebsmodus ausführen; und dadurch, dass das tragbare Endgerät zweite Speichermedium zum Speichern eines zweiten Betriebsmodus einschließt, bevor das tragbare Endgerät erneut in die fahrzeuginterne Vorrichtung, nach dem Entfernen daraus, montiert oder wieder an die Stromversorgung, nach dem Trennen davon und Verarbeitungsdaten im zweiten Betriebsmodus, angeschlossen wird, führt das tragbare Endgerät unabhängig Verarbeitung im zweiten Betriebsmodus aus; und dadurch, dass die fahrzeuginterne Vorrichtung einschließt:
erstes Lesemittel, das konfiguriert ist, den ersten im ersten Speichermittel gespeicherten Betriebsmodus und den zweiten im zweiten Speichermittel gespeicherten Betriebsmodus zu lesen, wenn das tragbare Endgerät erneut in die fahrzeuginterne Vorrichtung montiert oder wieder an die Stromversorgung angeschlossen wird, nach dem es davon getrennt wurde.

Bestimmungsmittel für gleichen/verschiedenen Modus, das konfiguriert ist, zu bestimmen ob der erste Betriebsmodus und der zweite Betriebsmodus, die vom ersten Lesemittel gelesen werden die gleichen sind oder nicht;

zweites Lesemittel, das konfiguriert ist, die Verarbeitungsdaten im zweiten Betriebsmodus zu lesen, wenn das Bestimmungsmittel für gleichen/verschiedenen Modus bestimmt, dass der erste Betriebsmodus und der zweite Betriebsmodus die gleichen sind und, die Verarbeitungsdaten im ersten Betriebsmodus zu lesen, wenn das Bestimmungsmittel für gleichen/verschiedenen Modus bestimmt, dass der erste Betriebsmodus und der zweite Betriebsmodus von einander verschieden sind.

Verarbeitungsmittel, die konfiguriert sind, Verarbeitung unter Verwendung der vom zweiten Lesemittel gelesenen Verarbeitungsdaten in Kooperation mit dem tragbaren Endgerät auszuführen.

2. Fahrzeuginterne Vorrichtung, die in einem Fahrzeug eingebaut ist, wobei die fahrzeuginterne Vorrichtung eingerichtet ist, ein entfernbarem montierbares tragbares Endgerät aufzunehmen, wobei, wenn das tragbare Endgerät in der fahrzeuginternen Vorrichtung montiert ist, die fahrzeuginterne Vorrichtung selektiv Verarbeitung im Betriebsmodus für Streckenführung und Verarbeitung in einem Betriebsmodus für Inhaltswiedergabe in Kooperation mit dem tragbaren Endgerät ausführt, wobei die fahrzeuginterne Vorrichtung umfasst:

Speichermittel, dass konfiguriert ist, einen ersten Betriebsmodus zu speichern, bevor das tragbare Endgerät aus der fahrzeuginternen Vorrichtung entfernt oder von der Stromversorgung und den Verarbeitungsdaten im ersten Betriebsmodus getrennt wird, wobei die fahrzeuginterne Vorrichtung und das tragbare Endgerät Verarbeitung in Kooperation miteinander im ersten Betriebsmodus ausführen;

Bestimmungsmittel für Betriebsmodus zum Bestimmen, ob oder nicht der zweite Betriebsmodus der Betriebsmodus für Streckenführung ist, wenn das Bestimmungsmittel für gleichen/verschiedenen Modus bestimmt, dass der erste Betriebsmodus und der zweite Betriebsmodus voneinander verschieden sind, die Verarbeitungsdaten im ersten Betriebsmodus im tragbaren Endgerät gespeichert sind und die Verarbeitungsdaten im ersten Betriebsmodus im tragbaren Endgerät auszuführen.

3. Fahrzeuginterne Vorrichtung nach Anspruch 2, wobei das Verarbeitungsmittel umfasst:

Bestimmungsmittel für Betriebsmodus zum Bestimmen, ob oder nicht der zweite Betriebsmodus der Betriebsmodus für Streckenführung ist, wenn das Bestimmungsmittel für gleichen/verschiedenen Modus bestimmt, dass der erste Betriebsmodus und der zweite Betriebsmodus gleich sind, und zum Bestimmen ob oder nicht
4. Fahrzeuginterne Vorrichtung nach Anspruch 3, wo-

der erste Betriebsmodus der Betriebsmodus für
Streckenführung ist, wenn das Bestimmungs-
mittel für gleichen/verschiedenen Betriebsmo-

dus bestimmt, dass der erste Betriebsmodus
und der zweite Betriebsmodus voneinander ver-

schieden sind; Streckenführungsmittel zum Ausführen, wenn
das Bestimmungsmittel für gleichen/verschie-
denen Modus bestimmt, dass der erste Be-
triebsmodus und der zweite Betriebsmodus
gleich sind und das Bestimmungsmittel für Be-
triebsmodus bestimmt, dass der zweite Be-
triebsmodus der Betriebsmodus für Strecken-
führung ist, von Streckenführung basierend auf
Verarbeitungsinformation im Betriebsmodus für Stre-
ckenführung, wobei die Verarbeitungsdaten
vom zweiten Lesemittel gelesen werden und die
Verarbeitungsinformationen im zweiten Betriebsmodus
sind, und Ausführen, wenn das Bestimmungs-
mittel für gleichen/verschiedenen Modus be-

stimmt, dass der erste Betriebsmodus und der
zweite Betriebsmodus voneinander verschie-
den sind; und das Bestimmungsmittel für Be-
triebsmodus bestimmt, dass der erste Betriebs-
modus der Betriebsmodus für Streckenführung
ist, von Streckenführung basierend auf Verar-
beitungsinformationen im Betriebsmodus für Stre-
ckenführung, wobei die Verarbeitungsdaten
vom zweiten Lesemittel gelesen werden und die Ver-
arbeitungsinformationen im ersten Betriebsmodus sind;
und Wiedergabemittel für Inhalt zum Ausführen, wenn
das Bestimmungsmittel für gleichen/verschie-
denen Modus bestimmt, dass der erste Betriebs-
modus und der zweite Betriebsmodus

gleich sind und das Bestimmungsmittel für Be-
triebsmodus bestimmt, dass der zweite Betriebs-
modus der Betriebsmodus für Inhaltswiedergabe
ist, von Inhaltswiedergabe basierend
auf Verarbeitungsinformationen im Betriebsmodus für In-
haltswiedergabe, wobei die Verarbeitungsda-
ten vom zweiten Lesemittel gelesen werden und die Ver-
arbeitungsinformationen im zweiten Betriebsmo-
dus sind, und Ausführen, wenn das Bestim-
mungsmittel für gleichen/verschiedenen Modus
bestimmt, dass der erste Betriebsmodus und der
zweite Betriebsmodus voneinander ver-
schieden sind, und das Bestimmungsmittel für Be-
triebsmodus bestimmt, dass der erste Be-
triebsmodus der Betriebsmodus für Inhaltswiedem-
gabe ist, von Inhaltswiedergabe basierend
auf Verarbeitungsinformationen im Betriebsmodus für In-
haltswiedergabe, wobei die Verarbeitungsda-
ten vom zweiten Lesemittel gelesen werden und die Ver-
arbeitungsinformationen im ersten Betriebsmo-
dus sind.

5. Fahrzeuginterne Vorrichtung nach Anspruch 3 oder

4. Fahrzeuginterne Vorrichtung nach Anspruch 3, wo-

bei die Verarbeitungsinformationen im Betriebsmodus für
Streckenführung einen Zielort und Führungs-Stre-
ckeninformation einschließen, und

wobei das Streckenführungsmittel umfasst:

Fahrzeug-Ortungsmittel zum Orten eines
Standorts des Fahrzeugs, und

Streckensuchmittel zum Suchen, wenn sich der
Standort des von Fahrzeug-Ortungsmittel er-
langten Standort des Fahrzeugs in einer vorge-
gebenen Entfernung oder mehr von einer Füh-
rungsstrecke befindet, die durch die Führungs-
Streckeninformation identifiziert wurde, einer
Führungsstrecke vom Standort des Fahrzeugs
zum Zielort, und zum Suchen, wenn der Zielort
verschieden von einem Zielort in unmittelbar
vorhergehender Streckenführung ist, einer Füh-
rungsstrecke vom Standort des Fahrzeugs zum
geänderten Zielort.

5. Fahrzeuginterne Vorrichtung nach Anspruch 3 oder

4, wobei die Verarbeitungsinformationen im Betriebsmodus
für Inhaltswiedergabe Wiedergabe-Positionsinfo-
mation von Inhalt einschließen und das Mittel für In-
haltswiedergabe die Wiedergabe des Inhalts ab ei-
nier von der Wiedergabe-Positionsinformation spe-
zifizierten Wiedergabeposition fortsetzt.

6. Tragbares Endgerät, das entfernbar in einer fahr-
zeuginternen Vorrichtung montierbar ist, die in ein
Fahrzeug eingebaut ist, derartig konfiguriert, dass,

wenn das tragbare Endgerät in die fahrzeuginterne
Vorrichtung entfernt wurde oder wieder an die Strom-

ersten Speichermittel, dass konfiguriert ist, ei-

enen ersten Betriebsmodus zu speichern, bevor

das tragbare Endgerät aus der fahrzeuginternen
Vorrichtung entfernt oder von der Stromversor-
gung und den Verarbeitungsinformationen im ersten Be-
triebsmodus getrennt wird, wobei die fahrzeug-
interne Vorrichtung und das tragbare Endgerät
Verarbeitung in Kooperation miteinander im erst-
en Betriebsmodus ausführen; zweites Speichermittel, das konfiguriert ist, ei-
en zweiten Betriebsmodus zu speichern, bevor
das tragbare Endgerät erneut in die fahrzeugin-
terne Vorrichtung montiert wird, nach dem es
daraus entfernt wurde oder wieder an die Strom-
versorgung angeschlossen wird, nach dem es davon und Verarbeitungsdaten im zweiten Betriebsmodus getrennt wurde, wobei das tragbare Endgerät unabhängig Verarbeitung im zweiten Betriebsmodus ausführt; erstes Lesemittel, das konfiguriert ist, den im ersten Speichermittel gespeicherten Betriebsmodus und den zweiten im zweiten Speicher­mittel gespeicherten Betriebsmodus zu lesen, wenn das tragbare Endgerät erneut in die fahrzeuginterne Vorrichtung montiert wird, nach dem es daraus entfernt wurde oder wieder an die Stromversorgung angeschlossen wird, nach dem, es davon getrennt wurde; Bestimmungsmittel für gleichen/verschiedenen Modus, konfiguriert zu bestimmen, ob der erste Betriebsmodus und der zweite Betriebsmodus, die vom ersten Lesemittel gelesen werden die gleichen sind oder nicht; zweites Lesemittel, das konfiguriert ist, die Verarbeitungsdaten im zweiten Betriebsmodus zu lesen, wenn das Bestimmungsmittel für gleichen/verschiedenen Modus bestimmt, dass der erste Betriebsmodus und der zweite Betriebsmodus die gleichen sind und die Verarbeitungsdaten im ersten Betriebsmodus zu lesen, wenn das Bestimmungsmittel für gleichen/verschiedenen Modus bestimmt, dass der erste Betriebsmodus und der zweite Betriebsmodus voneinander verschieden sind, wobei die Verarbeitungsdaten im zweiten Speichermittel gespeichert werden und die Verarbeitungsdaten im ersten Speichermittel gespeichert werden; und in the first storing means; and Verarbeitungsmittel, die konfiguriert sind, Verarbeitung unter Verwendung der vom zweiten Lesemittel gelesenen Verarbeitungsdaten in Kooperation mit der fahrzeuginternen Vorrichtung auszuführen.

7. Tragbares Endgerät nach Anspruch 6, wobei das Verarbeitungsmittel umfasst:

Bestimmungsmittel für Betriebsmodus zum Bestimmen, ob oder nicht der zweite Betriebsmodus der Betriebsmodus für Streckenführung ist, wenn das Bestimmungsmittel für gleichen/verschiedenen Modus bestimmt, dass der erste Betriebsmodus und der zweite Betriebsmodus gleich sind, und zum Bestimmen ob oder nicht der erste Betriebsmodus der Betriebsmodus für Streckenführung ist, wenn das Bestimmungsmittel für gleichen/verschiedenen Betriebsmodus bestimmt, dass der erste Betriebsmodus und der zweite Betriebsmodus voneinander verschieden sind;

Streckenführungsmittel zum Ausführen, wenn das Bestimmungsmittel für gleichen/verschiedenen Modus bestimmt, dass der erste Betriebsmodus und der zweite Betriebsmodus gleich sind und das Bestimmungsmittel für Betriebsmodus bestimmt, dass der zweite Betriebsmodus der Betriebsmodus für Streckenführung ist, von Streckenführung basierend auf Verarbeitungsdaten im Betriebsmodus für Streckenführung, wobei die Verarbeitungsdaten vom zweiten Lesemittel gelesen werden und die Verarbeitungsdaten im zweiten Betriebsmodus sind, und Ausführen, wenn das Bestimmungsmittel für gleichen/verschiedenen Modus bestimmt, dass der erste Betriebsmodus und der zweite Betriebsmodus voneinander verschieden sind, und das Bestimmungsmittel für Betriebsmodus bestimmt, dass der erste Betriebsmodus der Betriebsmodus für Streckenführung ist, von Streckenführung basierend auf Verarbeitungsdaten im Betriebsmodus für Streckenführung, wobei die Verarbeitungsdaten vom zweiten Lesemittel gelesen werden und die Verarbeitungsdaten im ersten Betriebsmodus sind; und Wiedergabemittel für Inhalt zum Ausführen, wenn das Bestimmungsmittel für gleichen/verschiedenen Modus bestimmt, dass der erste Betriebsmodus und der zweite Betriebsmodus gleich sind und das Bestimmungsmittel für Betriebsmodus bestimmt, dass der zweite Betriebsmodus der Betriebsmodus für Inhaltswiedergabe ist, von Inhaltswiedergabe basierend auf Verarbeitungsdaten im Betriebsmodus für Inhaltswiedergabe, wobei die Verarbeitungsdaten vom zweiten Lesemittel gelesen werden und die Verarbeitungsdaten im zweiten Betriebsmodus sind, und Ausführen, wenn das Bestimmungsmittel für gleichen/verschiedenen Modus bestimmt, dass der erste Betriebsmodus und der zweite Betriebsmodus voneinander verschieden sind, und das Bestimmungsmittel für Betriebsmodus bestimmt, dass der erste Betriebsmodus der Betriebsmodus für Inhaltswiedergabe ist, von Inhaltswiedergabe basierend auf Verarbeitungsdaten im Betriebsmodus für Inhaltswiedergabe, wobei die Verarbeitungsdaten vom zweiten Lesemittel gelesen werden und die Verarbeitungsdaten im ersten Betriebsmodus sind.

8. Tragbares Endgerät nach Anspruch 7, wobei die Verarbeitungsdaten im Betriebsmodus für Streckenführung einen Zielort und Führungs-Streckeninformation einschließen, und wobei das Streckenführungsmittel umfasst:

Fahrzeug-Ortungsmittel zum Orten eines
Standorts des Fahrzeugs, und Streckensuchmittel zum Suchen, wenn sich der Standort des vom Fahrzeug-Ortungsmittel erlangten Standort des Fahrzeugs in einer vorgegebenen Entfernung oder mehr von einer Führungsstrecke befindet, die durch die Führungsstreckeninformation identifiziert wurde, einer Führungsstrecke vom Standort des Fahrzeugs zum Zielort, und zum Suchen, wenn der Zielort verschieden von einem Zielort in unmittelbar vorhergehender Streckenführung ist, einer Führungsstrecke vom Standort des Fahrzeugs zum geänderten Zielort.

9. Tragbares Endgerät nach Anspruch 7 oder 8, wobei die Verarbeitungsdaten im Betriebsmodus für Inhaltswiedergabe Wiedergabe-Positionsinformation von Inhalt einschließend und das Mittel für Inhaltswiedergabe die Wiedergabe des Inhalts ab einer von der Wiedergabe-Positionsinformation spezifizierten Wiedergabeposition fortsetzt.

Revidcations

1. Système de navigation, comprenant :

 un appareil embarqué installé dans un véhicule, et
 un terminal portable qui est monté de façon amovible dans l’appareil embarqué, caractérisé en ce que le système est configuré de sorte que, lorsque le terminal portable est monté dans l’appareil embarqué, l’appareil embarqué et le terminal portable réalisent sélectivement le traitement dans un mode de fonctionnement de guidage d’itinéraire et le traitement dans un mode de fonctionnement à reproduction de contenus en coopération l’un avec l’autre, et lorsque le terminal portable est enlevé de l’appareil embarqué, le terminal portable effectue indépendamment et sélectivement le traitement dans le mode de fonctionnement de guidage d’itinéraire et le traitement dans le mode de fonctionnement à reproduction de contenus ; caractérisé en outre en ce que l’appareil embarqué comporte des premiers moyens de stockage pour stocker un premier mode de fonctionnement, avant que le terminal portable ne soit à nouveau monté dans l’appareil embarqué, après en avoir été enlevé, ou ne soit à nouveau connecté à l’alimentation en énergie, après en avoir été déconnecté, et traiter des données dans le deuxième mode de fonctionnement, le terminal portable réalisant indépendamment le traitement dans le deuxième mode de fonctionnement ; et en ce que l’appareil embarqué comporte :

 des premiers moyens de lecture configurés pour lire le premier mode de fonctionnement stocké dans les premiers moyens de stockage et le deuxième mode de fonctionnement stocké dans les deuxième moyens de stockage, lorsque le terminal portable est à nouveau monté dans l’appareil embarqué ou est à nouveau connecté à l’alimentation en énergie, après en avoir été déconnecté, des moyens de détermination de mode identique/différent configurés pour déterminer si oui ou non le premier mode de fonctionnement et le deuxième mode de fonctionnement, lus par les premiers moyens de lecture, sont les mêmes, des deuxième moyens de lecture configurés pour lire les données de traitement dans le deuxième mode de fonctionnement, lorsque les moyens de détermination de mode identique/différent déterminent que le premier mode de fonctionnement et le deuxième mode de fonctionnement sont les mêmes, et pour lire les données de traitement dans le premier mode de fonctionnement, lorsque les moyens de détermination de mode identique/différent déterminent que le premier mode de fonctionnement et le deuxième mode de fonctionnement sont différents l’un de l’autre, les données de traitement dans le deuxième mode de fonctionnement étant stockées dans les deuxième moyens de stockage et les données de traitement dans le premier mode de fonctionnement étant stockées dans les premiers moyens de stockage, et des moyens de traitement configurés pour réaliser le traitement grâce à l’utilisation des données de traitement lues par les deuxième moyens de lecture, en coopération avec le terminal portable.

2. Appareil embarqué installé dans un véhicule, l’appareil embarqué étant agencé de façon à recevoir un terminal portable apte à être monté de façon amovible, cas dans lequel lorsque le terminal portable est monté dans l’appareil embarqué, l’appareil embarqué réalise sélectivement le traitement dans un
mode de fonctionnement de guidage d’itinéraire et
le traitement dans un mode de fonctionnement à re-
production de contenus en coopération avec le ter-

minal portable, l’appareil embarqué comprenant :

3. Appareil embarqué selon la revendication 2, les
moyens de traitement comprenant :

des moyens de stockage configurés pour stoc-
ker un premier mode de fonctionnement avant
que le terminal portable ne soit enlevé de l’ap-
pareil embarqué ou ne soit déconnecté de l’ali-
mentation en énergie, et traiter des données
dans le premier mode de fonctionnement, l’ap-
pareil embarqué et le terminal portable réalisant
le traitement en coopération l’un avec l’autre
dans le premier mode de fonctionnement ;
des premiers moyens de lecture configurés pour
lire le premier mode de fonctionnement stocké
dans les premiers moyens de stockage, lorsque le
terminal portable est à nouveau monté dans
l’appareil embarqué, après en avoir été enlevé,
or est à nouveau connecté à l’alimentation en
énergie, après en avoir été déconnecté, et pour
lire un deuxième mode de fonctionnement avant
que le terminal portable ne soit à nouveau monté
dans l’appareil embarqué, après en avoir été en-
levé, ou ne soit à nouveau connecté à l’alimen-
tation en énergie, après en avoir été déconnecté,
le deuxième mode de fonctionnement étant
stocké dans le terminal portable et le terminal
portable réalisant indépendamment le traite-
ment dans le deuxième mode de
fonctionnement ;
des moyens de détermination de mode identi-
que/différent configurés pour déterminer si oui
ou non le premier mode de fonctionnement et
le deuxième mode de fonctionnement, lus par
les premiers moyens de lecture, sont les
mêmes :
des deuxièmes moyens de lecture configurés
pour lire les données de traitement dans le
deuxième mode de fonctionnement, avant que
le terminal portable ne soit à nouveau monté
dans l’appareil embarqué, après en avoir été en-
levé, ou ne soit à nouveau connecté à l’alimen-
tation en énergie, après en avoir été déconnecté,
toujours que les moyens de détermination de mo-
de identique/différent déterminent que le pre-
mier mode de fonctionnement et le deuxième
mode de fonctionnement sont les mêmes, et
configurés pour lire les données de traitement
dans le premier mode de fonctionnement, lors-
que les moyens de détermination de mode iden-
tique/différent déterminent que le premier mode
de fonctionnement et le deuxième mode de
fonctionnement sont différents l’un de l’autre, les
données de traitement dans le deuxième mode
de fonctionnement étant stockées dans le ter-

minal portable et les données de traitement dans
le premier mode de fonctionnement étant stoc-
kées dans les premiers moyens de stockage ; et
des moyens de traitement configurés pour réa-
liser le traitement grâce à l’utilisation des don-
nées de traitement, lues par les deuxièmes
moyens de lecture, en coopération avec le ter-

minal portable.

4. Appareil embarqué selon la revendication 3, les
moyens de détermination de mode de fonc-
tionnement pour déterminer si oui ou non le
deuxième mode de fonctionnement est le mode
de fonctionnement de guidage d’itinéraire, lors-
que les moyens de détermination de mode iden-
tique/différent déterminent que le premier mode
de fonctionnement et le deuxième mode de
fonctionnement sont les mêmes, et pour déter-
miner si oui ou non le premier mode de fonction-
nement est le mode de fonctionnement de gui-
dage d’itinéraire, lorsque les moyens de déter-
mination de mode identique/différent détermini-
ent que le premier mode de fonctionnement et
le deuxième mode de fonctionnement sont dif-
férents l’un de l’autre ;
des moyens de guidage d’itinéraire qui, lorsque les
moyens de détermination de mode identi-
que/différent déterminent que le premier mode
de fonctionnement et le deuxième mode de
fonctionnement sont les mêmes et les moyens
de détermination de mode de fonctionnement
déterminent que le deuxième mode de fonction-
nement est le mode de fonctionnement de gui-
dage d’itinéraire, réalisent un guidage d’itinéra-
ire sur la base des données de traitement dans
le mode de fonctionnement de guidage d’itinéra-
ire, alors que les données de traitement sont
lues par les deuxièmes moyens de lecture et
sont les données de traitement dans le deuxiè-
me mode de fonctionnement, et qui, lorsque les
moyens de détermination de mode identi-
que/différent déterminent que le premier mode
de fonctionnement et le deuxième mode de
fonctionnement sont différents l’un de l’autre et
les moyens de détermination de mode de fonc-
tionnement déterminent que le premier mode de
fonctionnement est le mode de fonctionnement
de guidage d’itinéraire, réalisent un guidage d’itinéra-
ire sur la base des données de traitement dans
le mode de fonctionnement de guidage d’itinéra-
ire, alors que les données de traitement sont
lues par les deuxièmes moyens de lecture et
sont les données de traitement dans le premier
mode de fonctionnement ; et
49

50
de fonctionnement sont les mêmes et les moyens de détermination de mode de fonctionnement déterminent que le deuxième mode de fonctionnement est le mode de fonctionnement à reproduction de contenus, réalisent une reproduction du contenu sur la base des données de traitement dans le mode de fonctionnement à reproduction de contenus, alors que les données de traitement sont lues par les deuxièmes moyens de lecture et sont les données de traitement dans le deuxième mode de fonctionnement, et qui, lorsque les moyens de détermination de mode identique/différent déterminent que le premier mode de fonctionnement et le deuxième mode de fonctionnement sont différents l’un de l’autre et les moyens de détermination de mode de fonctionnement déterminent que le premier mode de fonctionnement est le mode de fonctionnement à reproduction de contenus, réalisent une reproduction du contenu sur la base des données de traitement dans le mode de fonctionnement à reproduction de contenus, alors que les données de traitement sont lues par les deuxièmes moyens de lecture et sont les données de traitement dans le premier mode de fonctionnement.

4. Appareil embarqué selon la revendication 3, les données de traitement dans le mode de fonctionnement de guidage d’itinéraire et des informations d’itinéraire de guidage, et cas dans lequel les moyens d’indication d’itinéraire comprennent :

- des moyens d’obtention de la localisation du véhicule pour obtenir une localisation du véhicule, et
- des moyens de recherche d’itinéraire qui, lorsque la localisation de véhicule obtenue par les moyens d’obtention de la localisation du véhicule est éloignée d’une distance prédéterminée, ou davantage, d’un itinéraire de guidage identifié par les informations d’itinéraire de guidage, recherchent un itinéraire de guidage à partir de la localisation du véhicule jusqu’à la localisation de destination, et, lorsque la localisation de destination est différente d’une localisation de destination dans le guidage d’itinéraire immédiatement antérieur, recherchent un itinéraire de guidage à partir de la localisation du véhicule jusqu’à la localisation de destination ayant été changée.

5. Appareil embarqué selon la revendication 3 ou 4, les données de traitement dans le mode de fonctionnement à reproduction de contenus incluant des informations de position de reproduction du contenu, et les moyens à reproduction de contenus reprenant la reproduction du contenu à partir d’une position de reproduction spécifiée par les informations de position de reproduction.

6. Terminal portable apte à être monté de façon amovible dans un appareil embarqué installé dans un véhicule, configuré de sorte que, lorsque le terminal portable est monté dans l’appareil embarqué, le terminal portable réalise sélectivement le traitement dans un mode de fonctionnement de guidage d’itinéraire et le traitement dans un mode de fonctionnement à reproduction de contenus en coopération avec l’appareil embarqué, et lorsque le terminal portable est enlevé de l’appareil embarqué, le terminal portable effectue indépendamment et sélectivement le traitement dans le mode de fonctionnement de guidage d’itinéraire et le traitement dans le mode de fonctionnement à reproduction de contenus, le terminal portable comprenant :

des premiers moyens de stockage configurés pour stocker un premier mode de fonctionnement avant que le terminal portable ne soit enlevé de l’appareil embarqué ou ne soit déconnecté de l’alimentation en énergie, et traiter des données dans le premier mode de fonctionnement, l’appareil embarqué et le terminal portable réalisant le traitement en coopération l’un avec l’autre dans le premier mode de fonctionnement ;
des deuxièmes moyens de stockage configurés pour stocker un deuxième mode de fonctionnement avant que le terminal portable ne soit à nouveau monté dans l’appareil embarqué, après en avoir été enlevé, ou ne soit à nouveau connecté à l’alimentation en énergie, après en avoir été déconnecté, et traiter des données dans le deuxième mode de fonctionnement, le terminal portable réalisant indépendamment le traitement dans le deuxième mode de fonctionnement ;
des premiers moyens de lecture configurés pour lire le premier mode de fonctionnement stocké dans les premiers moyens de stockage et le deuxième mode de fonctionnement stocké dans les deuxièmes moyens de stockage, lorsque le terminal portable est à nouveau monté dans l’appareil embarqué, après en avoir été enlevé, ou est à nouveau connecté à l’alimentation en énergie, après en avoir été déconnecté ;
des moyens de détermination de mode identique/différent configurés pour déterminer si oui ou non le premier mode de fonctionnement et le deuxième mode de fonctionnement, lus par les premiers moyens de lecture, sont les mêmes ;
des deuxièmes moyens de lecture configurés.
Terminal portable selon la revendication 6, les moyens de traitement comprenant:

- des moyens de détermination de mode de fonctionnement pour déterminer si oui ou non le deuxième mode de fonctionnement est le mode de fonctionnement de guidage d’itinéraire, lorsqu’ils déterminent que le premier mode de fonctionnement et le deuxième mode de fonctionnement sont identiques/différents ;
- des moyens de guidage d’itinéraire qui, lorsque les moyens de détermination de mode identique/différent déterminent que le premier mode de fonctionnement et le deuxième mode de fonctionnement sont différents l’un de l’autre ;
- des moyens de guidage d’itinéraire incluant une localisation de véhicule qui, lorsque les moyens de détermination de mode identique/différent déterminent que le premier mode de fonctionnement et le deuxième mode de fonctionnement sont différents l’un de l’autre et les moyens de détermination de mode de fonctionnement déterminent que le deuxième mode de fonctionnement est le mode de fonctionnement de guidage d’itinéraire, réalisant un guidage d’itinéraire sur la base des données de traitement dans le mode de fonctionnement de guidage d’itinéraire, alors que les données de traitement sont lues par les deuxièmes moyens de lecture et sont les données de traitement dans le premier mode de fonctionnement ; et
- des moyens à reproduction de contenus qui, lorsque les moyens de détermination de mode identique/différent déterminent que le premier mode de fonctionnement et le deuxième mode de fonctionnement sont les mêmes et les moyens de détermination de mode de fonctionnement déterminent que le deuxième mode de fonctionnement est le mode de fonctionnement à reproduction de contenus, réalisent une reproduction du contenu sur la base des données de traitement dans le mode de fonctionnement à reproduction de contenus, alors que les données de traitement sont lues par les deuxièmes moyens de lecture et sont les données de traitement dans le premier mode de fonctionnement.

8. Terminal portable selon la revendication 7, les moyens de traitement dans le mode de fonctionnement de guidage d’itinéraire incluant une localisation de destination et des informations d’itinéraire de guidage, et cas dans lequel les moyens d’indication d’itinéraire comprennent:

- des moyens d’obtention de la localisation du véhicule pour obtenir une localisation du véhicule, et
- des moyens de recherche d’itinéraire qui, lorsque la localisation du véhicule obtenue par les moyens d’obtention de la localisation du véhicule est éloignée d’une distance prédéterminée,
ou davantage, d’un itinéraire de guidage identifié par les informations d’itinéraire de guidage, recherchent un itinéraire de guidage à partir de la localisation du véhicule jusqu’à la localisation de destination, et, lorsque la localisation de destination est différente d’une localisation de destination dans le guidage d’itinéraire immédiatement antérieur, recherchent un itinéraire de guidage à partir de la localisation du véhicule jusqu’à la localisation de destination ayant été changée.

9. Terminal portable selon la revendication 7 ou 8, les données de traitement dans le mode de fonctionnement à reproduction de contenus incluant des informations de position de reproduction du contenu, et les moyens à reproduction de contenus reprenant la reproduction du contenu à partir d’une position de reproduction spécifiée par les informations de position de reproduction.
FIG. 4

START

ROUTE-GUIDANCE MODE?

YES

NO

S101

S102

S103

S104

S105

S106

S107

GENERATE AND STORE MODE INFORMATION INCLUDING VEHICLE LOCATION, DESTINATION, VIA-POINT, AND ROUTE-GUIDANCE DATA

GENERATE AND STORE MODE INFORMATION INCLUDING PLAYBACK TRACK NO. AND PLAYBACK TIME POSITION

STORE CURRENT OPERATION MODE

PND REMOVED?

YES

NO

PREDETERMINED TIME PASSED?

YES

NO

END
FIG. 5A

ROUTE-GUIDANCE MODE INFORMATION

<table>
<thead>
<tr>
<th>OPERATION MODE (ROUTE GUIDANCE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEHICLE-LOCATION COORDINATES</td>
</tr>
<tr>
<td>DESTINATION AND VIA-POINT COORDINATES</td>
</tr>
<tr>
<td>GUIDANCE-ROUTE INFORMATION</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

FIG. 5B

AUDIO-PLAYBACK MODE INFORMATION

<table>
<thead>
<tr>
<th>OPERATION MODE (AUDIO PLAYBACK)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PLAYBACK TRACK NO.</td>
</tr>
<tr>
<td>PLAYBACK TIME POSITION</td>
</tr>
</tbody>
</table>
FIG. 6

START

S201

ROUTE-GUIDANCE MODE?

NO

S202

YES

GENERATE AND STORE MODE INFORMATION INCLUDING VEHICLE LOCATION, DESTINATION, VIA-POINT, AND ROUTE-GUIDANCE DATA

STORE CURRENT OPERATION MODE

S205

S206

PND RE-MOUNTED?

YES

NO

PREDETERMINED TIME PASSED?

S207

YES

END

S203

NO

S204

YES

GENERATE AND STORE MODE INFORMATION INCLUDING PLAYBACK TRACK NO. AND PLAYBACK TIME POSITION
FIG. 7

START

S301 PND RE-MOUNTED?

NO

YES

READ LATEST COOPERATION MODE S302

READ LATEST INDEPENDENCE MODE S303

S304 DO LATEST COOPERATION MODE AND LATEST INDEPENDENCE MODE MATCH EACH OTHER?

NO

YES

S305 READ LATEST INDEPENDENCE-MODE PROCESSING DATA

S307 READ LATEST COOPERATION-MODE PROCESSING DATA

S306 SET OPERATION MODE TO LATEST INDEPENDENCE MODE

S308 SET OPERATION MODE TO LATEST COOPERATION MODE

A
FIG. 8

A

S401

IS SET OPERATION MODE ROUTE-GUIDANCE MODE?

NO

S408

SELECT AUDIO DATA CORRESPONDING TO TRACK NO. AND DETERMINE PLAYBACK TIME POSITION

YES

RESUME AUDIO PLAYBACK

S409

END

S402

OBTAIN VEHICLE LOCATION

S403

SAME DESTINATION?

NO

S407

SEARCH FOR ROUTE TO CHANGED DESTINATION

YES

S404

IS VEHICLE LOCATION WITHIN PREDETERMINED DISTANCE FROM GUIDANCE ROUTE?

NO

S406

SEARCH FOR GUIDANCE ROUTE FROM OBTAINED VEHICLE LOCATION

YES

S405

START ROUTE GUIDANCE

END

END
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• JP 2005207934 A [0004]