EUROPEAN PATENT SPECIFICATION

MACHINE FOR THE PRODUCTION OF TUBES BY WINDING STRIPS OF WEBLIKE MATERIAL

MASCHINE ZUR HERSTELLUNG VON ROHREN DURCH WICKELN VON STREIFEN AUS BAHNARTIGEM MATERIAL

MACHINE DESTINEE A LA PRODUCTION DE TUBES PAR ENROULEMENT DE BANDES DE MATERIAU

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PT RO SE SI SK TR

Priority: 23.12.2005 IT FI20050258

Date of publication of application: 01.10.2008 Bulletin 2008/40

Proprietor: FABIO PERINI S.p.A.
55100 Lucca (IT)

Inventors:
• MADDALENI, Romano
56031 Bientina (IT)

• CIGALINI, Giancarlo
55062 Castelvecchio di Compito (IT)

• GELLI, Mauro
55066 Capannori (IT)

Representative: Mannucci, Michele et al
Ufficio Tecnico Ing.A. Mannucci
Via della Scala 4
50123 Firenze (IT)

References cited:
BE-A6-1 004 992
US-A1-5 873 806

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The present invention relates to a core-winder, i.e. a machine for the production of tubes by winding one or more strips of weblike material, e.g. set on top of one another and partially staggered in a helically shaped arrangement, or in a longitudinal arrangement.

Background of the invention

Machines of this type are commonly used for the production of tubes of cardboard or other sheet material on which to wind weblike material, such as paper, tissue paper, plastic film, aluminium sheets or the like. These tubes are usually circular in cross-section. Tubes thus produced can also have different shapes and cross sections, such as circular, square, rectangular, or other. Such tubes can be used not only as winding cores for the formation of rolls or logs of weblike material, but can also be designed for various different applications, as containers for foodstuff products, for soap powders, or for other applications. In sequel the present description reference will be made to the formation of circular tubes used as winding cores for weblike materials; however, the scope of protection of the present invention is not limited to this application, but it is understood as extending to all the sectors that regard formation of tubes from one or more wound strips of weblike material.

Winding of the weblike material can be obtained by winding one or more strips helically around the forming spindle, as represented and described with reference to the example of embodiment illustrated in what follows, or else they can be obtained by feeding longitudinally two or more strips that overlap one another until their sides are mated and wrap the forming spindle, as for example represented and described in WO-94/20281 (corresponding to US patent n. 5,593,375).

Consequently, by the term “winding” it is to be understood that the strips of weblike material can coat or wrap the forming spindle, it being possible for them to be fed to the latter either obliquely with respect to the axis of the spindle (helical winding), or else parallel to said axis (longitudinal winding). Consistently, a core-winder, machine for the production of tubes, or tube-forming machine should be understood as any machine in which strips of weblike material are wound around a mandrel to continuously form a tubular article of manufacture, such a winding cores, prismatic or cylindrical boxes and the like. Weblike material can be a cardboard strip, a plastic strip, or a strip of any other suitable material, depending upon the article of manufacture to be produced therewith. The web-like material strips can be adhered to one another by means of glue, adhesive, or any kind of bonding agent, by means of welding, such as ultrasound welding, or in any other suitable manner.

For the production of tubes of cardboard or other material via helical winding of one or more strips set staggered on top of one another a core-winder machine is used, typically comprising: a winding spindle, around which are wound helically the strip or strips to form the tube continuously, which is made to advance along the spindle; a device for supply and winding the strips around the spindle; at least one knife for cutting individual lengths of said tube being formed, which knife is provided with a reciprocating movement parallel to the spindle; a counter-knife within the tube being formed, provided with a movement of translation synchronized to the movement of translation of the knife.

In these machines, the tube is formed continuously by winding of two or more strips of weblike material, for example paper or cardboard, staggered with respect to one another, around the winding spindle, which is mounted in cantilever fashion, either fixed or able to turn (preferably idle).

Irrespective of how the strips of weblike material are wound and adhered to one another, a continuous tube is usually produced, which must be cut into individual lengths that are designed for the final use, for example for winding of paper for the production of rolls. Cutting is executed with one or more disk-shaped knives that can be motor-driven or else idle and drawn in rotation by friction with the tube. The cutting edge of the knives can be smooth or serrated according to the configuration of the machine. The knives have an axis of rotation parallel to the axis of the spindle and hence of the tube being formed and are pressed against the outer cylindrical surface of the tube and advance together therewith parallel to the axis of the forming spindle. Usually, during rotation and advance of the tube, the cut is performed by the knife or knives according to a cutting plane orthogonal to the axis of the tube being formed. Once cutting has been completed, the knife is moved away from the axis of the tube and brought back into the position in which the next cut will start.

Usually, provided within the tube being formed is a counter-knife, with which the knife or knives set on the outside of the tube co-operate. Said counter-knife must follow the movement of the knife or knives during cutting and hence must advance in synchronism with the tube being formed up to completion of the cut and then come back into the position in which also the knife or knives move back to start the next cut. In some machines this movement is obtained by setting the counter-knife on a guide rod constituting a prolongation of the forming spindle and constraining the counter-knife temporarily to the knife as a result of the force of friction that is generated by pressing the knife on the material to be cut. In this way, the counter-knife advances together with the knife.
When the latter is moved away from the tube, the counter-knife is recalled by a spring into its initial position.

[0010] The above constructively simple solution is not very reliable and entails in any case high pressure stresses between the knife and the counter-knife so that forces of friction will be generated sufficient to draw the counter-knife in the synchronous movement of advance with the knife. The aforesaid solution can moreover be critical in the case of particularly rigid tubes.

[0011] Furthermore, the return spring is frequently subject to failure due to fatigue, in so far as it must perform, in more modern machines, a travel of approximately 150 mm in every tenth of a second.

[0012] Other and more complex solutions envisage a positive system that advances the counter-knife during cutting and brings it back into its initial position during retraction of the knife.

[0013] A device according to the preamble of claim 1 is disclosed in EP-A 225235.

Objects and summary of the invention

[0014] An object of the present invention to provide a machine for the production of tubes from continuous wound strips, i.e., a so-called core-winder, that has a simpler and more reliable counter-knife, and that will overcome totally or in part the drawbacks of known systems for the advance and retraction of the counter-knife in synchronism with the tube-cutting knife.

[0015] The above and further objects and advantages that will emerge clearly to persons skilled in the art from the ensuing text are obtained basically by a core-winder of the type described above, in which the counter-knife is constrained magnetically to a mover member that transmits the motion of translation to said counter-knife.

[0016] In a preferred embodiment, the counter-knife is mounted in tandem to annular-shaped magnets, which, as a result of the magnetic field generated by them, are constrained to a mover member, which is also provided with magnets, transmitting the motion of translation to the counter-knife.

[0017] The magnetic coupling between the mover member and the counter-knife avoids the need for spring return members and also for mechanical connections for drawing the counter-knife in synchronous movement with the knife. In general, the mover member could also be set within a guide or a prolongation of the spindle, on which the counter-knife is fitted. In this case, the mover member will be controlled in a synchronized way with the reciprocating movement of translation of the knife, for example via an electronic coupling.

[0018] According to a particularly advantageous embodiment, the mover member is located on the outside of the tube being formed, and the coupling is obtained via interaction of magnetic fields through the thickness of the tube. The mover member is fixed with respect to a carriage that carries the knife. In this way, the mechanism that controls the movement of advance and retraction of the knife synchronized with the movement of advance of the tube being formed serves at the same time to bring about a synchronized movement of the counter-knife, without any need for auxiliary members or mechanisms.

[0019] According to a preferred embodiment, then, the knife is supported by a mobile carriage with reciprocating motion parallel to the spindle. On the carriage, first magnets are set adjacent to the tube being formed, and the counter-knife is constrained to second magnets inside said tube, the magnetic fields of said first and second magnets, interacting so that the counter-knife is drawn magnetically by the carriage that supports the knife.

[0020] In a practical embodiment, the counter-knife is carried by a slider that can slide on a guide rod fixed with respect to the spindle and coaxial thereto. The slider and the counter-knife are able to rotate about the axis of the guide rod and of the spindle. In this case, between the counter-knife and the slider there cannot be relative movement. The rod will have a circular cross section to enable rotation of the slider. Not excluded, however, is the possibility that the slider will be torsionally constrained to the rod, for example, envisaging that the latter will have a polygonal cross section. In this case, the counter-knife that appropriately rotates about the axis of the spindle and of the rod will be supported so that it can turn on the slider, for example with the interposition of a bearing.

[0021] Above all in the case where the slider is able to turn around the guide rod, it is advantageous to envisage that the magnets fixed thereto are annular in shape.

[0022] In general, the magnets can be electromagnets, but will preferably be permanent magnets.

[0023] In an advantageous embodiment, the magnets that are located on the outside of the tube are carried by an annular structure fixed with respect to the carriage and surrounding the axis of said spindle. With this structure, it is possible to arrange the magnets about the axis of the spindle.

Brief description of the drawings

[0024] The invention will be understood more clearly from the description and the attached drawings, which show a practical non-limiting embodiment of the invention. More in particular, in the drawings:

Figure 1 is a side view of a core-winder on which the invention can be implemented;

Figure 2 shows a longitudinal cross section in a plane containing the axis of the spindle, in a position corresponding to the area of cutting of the tube; and

Figure 3 shows a schematic and simplified view according to III-III. of Figure 2.

Detailed description of an embodiment of the invention

[0025] Figure 1 shows as a whole a possible embodi-
iment of a core-winder, to which the present invention is applied. It should, on the other hand, be appreciated that the invention can be applied also to machines of different structure, provided that they are equipped with a winding spindle for the formation of the tubes, which can be fixed or else rotary (advantageously supported idle) about its own axis, and that they call for a device for cutting, into lengths or tubular portions of given length, the tube that is formed continuously around the spindle.

[0026] In brief, and limitedly to what concerns the present description, the machine of Figure 1, designated as a whole by 1, comprises a load-bearing structure 3, by which a spindle 4 is supported in cantilever fashion, a first end of which is constrained to the load-bearing structure 3 via a sleeve 8. The opposite end of the spindle 4 terminates in the proximity of the area in which the tube is cut. A conveyor or equivalent mean (not shown) then moves away the individual tubular products obtained by cutting a tube T, formed continuously as described herein around the spindle 4.

[0027] To form the tube T, one or more strips made of cardboard or other continuous weblike material are fed to the core-winder 1. In the example shown, two strips designated by S1 and S2 are used. These are fed and wound helically around the spindle 4 with the aid of a feeding and winding device 5 comprising, in the example illustrated, a continuous belt 7, which has two branches 7A and 7B, entrained by two pulleys 9 and 17, the respective axes of rotation of which are designated by 9A and 17A. The branch 7A forms a helical turn around the spindle 4 and around the strips of weblike material S1 and S2 in the course of winding. Designated by 19 is the motor that carries the drive pulley 17, which causes movement of the belt 7, in rotation.

[0028] The inclination of the unit formed by the pulleys 9, 17, the belt 7 and the motor 19 is adjustable via a threaded bar 20 and a handwheel 22, to adjust the inclination of the helical turns formed by the two strips S1, S2 about the axis of the spindle 4.

[0029] The two strips S1 and S2 are wound set on top of one another and staggered, so that on a helix formed by the turns of the inner strip S2 there overlaps, with a staggering for example of half a pitch, a helix formed by the turns of the outer strip S1.

[0030] On the inner surface of the outer strip S1 and/or on the outer surface of the inner strip S2 there is applied, in a way known per se and not shown, a glue to cause the two strips to adhere to one another.

[0031] The tube T is produced continuously and must then be cut into portions of the desired length. For this purpose a cutting device is provided, as a whole designated by 21, set downstream of the winding system 7, 9, 17, 19 with respect to the direction of supply fT of the tube along the winding spindle 4.

[0032] The cutting device 21 represented in Figure 1 can be built in any known way. For example, it can be of the type described in detail in US patent No. 5,873,806, to which reference can be made. It should, on the other hand, be understood that the cutting device used can also be of another type, provided that it is equipped with at least one knife, preferably a disk-shaped knife turning about an axis parallel to the axis of the spindle 4 which, in Figure 1, is indicated by A-A. The specific configuration of the cutting device is not of interest here. Let it suffice to note that it comprises a carriage 23 provided with a reciprocating motion as indicated by the double-headed arrow f23 parallel to the axis A-A of the winding spindle 4. This movement enables cutting of the continuous tube T into individual lengths to be carried out without stopping advance of the tube itself that is generated continuously as a result of the supply of the strips S1, S2 and of the rotation of the pulleys 9, 17. As is known, the cutting knife or knives are pressed radially against the tube T being formed when the carriage 23 is located in a position of start of cutting. The carriage is then made to advance parallel to the spindle 4 for a travel equal to the advance of the tube T being formed during the time necessary for execution of the cut. In practice, the tube T must perform at least one complete revolution about its own axis to complete the cut when this is executed with a single knife. A smaller travel can be provided when the cut is executed, for example, with two knives, as specifically illustrated in the example of embodiment and described in the document No. US-A-5,873,806, in so far as in this case a rotation of 180° of the tube about its own axis is sufficient to complete cutting of the length of tube.

[0033] The characteristics that form a specific subject of the embodiment of the invention illustrated herein are shown in Figures 2 and 3. In particular, in the longitudinal cross section of Figure 2 the area of action of the disk-shaped knife, schematically designated by 51, and of which B-B indicates the axis of rotation, is visible. The knife can be either an idle or motor-driven knife. Designated by 23 is again the knife-supporting carriage.

[0034] Within the tube T that advances continuously according to the arrow F there extends a guide rod constituting a prolongation of the winding spindle 4 and having hence an axis coinciding with the axis of said spindle. Fitted on the rod 53, which in this embodiment has a circular cross section, is a slider 55, made for example of low-friction synthetic material, such as PTFE (or Teflon®) or the like. Fitted in sequence on the slider 55, which has an annular contrast element 55A, are the following components starting from the annular contrast element 55A itself towards the left (as viewed in the drawing): an annular counter-knife 57; a spacer 59; a pair of annular magnets 61A; a second spacer 63; a further pair of annular magnets 61B; and an elastic lock ring 65. Indicated in the drawing are the poles N and S of the two pairs of annular magnets 61A and 61B. The faces set alongside one another of the annular magnets of each pair have opposite polarities. It is to be appreciated that the polarities may also be reversed with respect to what is indicated, but typically the pairs of magnets 61A and 61B are mounted with the same poles facing one another, so as to tend to repel each other.
[0035] Fixed with respect to the carriage 23 is a bracket 67, which carries an annular element 69 surrounding the axis A-A of the spindle 4, of the guide rod 53, and of the tube T being formed around the spindle itself. This element or annular structure carries, distributed about the axis A-A of the spindle 4, pairs of magnets 71A and 71B. The ensemble formed by the elements 67, 69, 71 forms a mover member to bring about movement of the counter-knife. In the preferred embodiment illustrated herein, each of these magnets has a prismatic configuration, i.e., a plate-shaped configuration, even though different configurations, for example annular ones, are not excluded. In the example shown, six pairs of magnets 71A, 71B are provided, the polarities of which are indicated in the drawing by N and S.

[0036] In this embodiment, each magnet 71A, 71B has its South pole S facing inwards, i.e., in the position radially closer to the guide rod 53 and to the pairs of annular magnets 61A, 61B, and its North pole N facing outwards. Different configurations are not excluded. In this configuration the magnetic fields of the magnets 71A, 71B and of the pairs of magnets 61A, 61B are such that, thanks to the forces of mutual repulsion and attraction between magnets, the slider 55 to which the annular magnets 71A, 71B are fixed is drawn by the carriage 23 during its movement indicated by the double-headed arrow F23.

[0037] The arrangement is hence such that the counter-knife 55 follows the knife 51 during the movement of advance, with the knife 51 in the cutting position, as shown in Figure 2, and in the movement of retraction, once cutting of a length, of tube T is completed, towards the position of start of the next cut. The counter-knife 57 thus remains always in the right position to co-operate with the knife 51. With the arrangement of the magnets as shown, the influence is avoided of the magnets themselves on the counter-knife, which, though being made of metal material, is free to rotate. The magnets are in fact at a distance from the knife.

[0038] The magnetic coupling between the counter-knife 57, fixed with respect to the slider 55, and the carriage 23 is sufficient to guarantee the reciprocating movement in the direction F57 of the counter-knife 57 in synchronism with the movement in the direction F23 of the knife 51 and of the carriage 23 that carries it.

[0039] It should be appreciated that what is illustrated is only one example of the more general inventive idea illustrated above and defined in greater detail in the attached claims. In particular, the structure of the core-winder can even be substantially different from the one illustrated. The conformation of the pairs of magnets 61A, 61B, as well as 71A, 71B, can be different from the one illustrated. For example, it is possible to use magnets of shapes and dimension different from the ones described and represented. Advantageously, the arrangement of the polarity of the magnets mounted on the slider will be orthogonal to the arrangement of the polarity of the magnets mounted on the mover member. The number of the cutting knives, their conformation in particular as regards the motor drive, which can be present or absent, the configuration of the cutting edge and other features are not critical for the implementation of the present invention, even though it is preferable to use knives supported in an idle way about their own axis B-B and provided with a smooth cutting edge, instead of a serrated one. The counter-knife 57 can be made of any suitable material and have, for example, an interchangeable part or be completely interchangeable for replacement in the case of wear.

[0040] For certain applications, the counterknife 57 can have a slightly different function, i.e., only of support to the piece to be cut without function of contrast to the knife. In these cases, the tube to be cut is again supported internally by the forming spindle, the terminal part of which is mobile axially to follow the sliding and cutting of the tube. The knife can carry out a shearing cut or, preferably, can be serrated, turning at a high speed and cutting the tube by penetrating therein. In these applications, the spindle terminates with a sliding bushing, which, at the moment of cutting, slides axially to follow the cutting edge of the knife and prevent the tube from collapsing or in any case being deformed by the action of the blade.

[0041] These cutting systems are valid for all types and shapes of tube to be cut and in particular for tubes of a shape different from the circular one and/or for large thickness of the weblike material that is wound. The possibility of using sliding bearings that reduce the friction between the slider 55 and the guide rod 53 is not excluded. On the other hand, in the preferred embodiment illustrated herein, the slider 55 is made of low-friction material that guarantees a sufficient reduction of the forces of friction between the guide rod 53 and the slider itself.

[0042] A further embodiment envisages, for cutting tubes formed by longitudinal winding, that the knife or knives turn around the tube being formed. In this case, the counter-knife translates, without turning the tube that is being formed.

[0043] The shape and arrangement of the polarities of the magnets can vary with respect to what has been illustrated. What is important is that they should be able to exert a force of mutual attraction such as to draw the counter-knife in reciprocating motion parallel to the axis of the spindle. If the machine is configured in such a way that the counter-knife must rotate together with the tube being formed, the shape and polarities of the magnets will be such as not to hinder significantly the movement of rotation.

[0044] It is understood that the drawings merely show one example of embodiment, provided only as a practical illustration of the invention, given that the invention can vary in shapes and arrangements, without thereby departing from the scope of the invention as defined by the claims.
Claims

1. A machine for the production of tubes (T) by winding strips (S1, S2) of weblike material, comprising:
 - a winding spindle (4), around which are wound said strips (S1, S2) to form said tube (T) that is made to advance along said spindle (4);
 - a device (5) for supplying and winding said strips (S1, S2) around said spindle (4);
 - at least one knife (51) for cutting lengths of said tube being formed, said knife being provided with a reciprocating movement parallel to said spindle (1); and
 - a counter-knife (57) within the tube (T) being formed, provided with a movement of translation synchronized to the movement of translation of said knife (51), said counter-knife (57) being constrained magnetically to a mover member (67, 71) that transmits the motion of translation to said counter-knife;

 characterized in that said knife (51) is supported by a mobile carriage (23) with reciprocating motion parallel to said spindle (4); and that said mover member (67, 71) is fixed with respect to the carriage (23) that carries the knife (51).

2. The machine according to Claim 1, characterized in that it comprises first magnets (71A, 71B) arranged on said carriage (23), said first magnets being arranged on the outside of the tube (T) being formed and adjacent thereto; and that it further comprises second magnets (61A, 61B) constrained to said counter-knife (57) arranged inside said tube, the magnetic fields of said first and second magnets interacting so that the counter-knife (57) is drawn magnetically by the carriage (23) that supports the knife.

3. The machine according to Claim 2, characterized in that said first magnets (71A, 71B) are set with the polarities oriented according to a direction orthogonal to the direction of alignment of the polarity of said second magnets (61A, 61B).

4. The machine according to claim 2 or 3, characterized in that said magnets (71A, 71B, 61A, 61B) are configured and set in such a way that the force of mutual attraction between the first magnets (71A, 71B) and the second magnets (61A, 61B) does not hinder rotation of the counter-knife (57) about the axis (A-A) of the spindle (4).

5. The machine according to one or more of the preceding claims, characterized in that said counter-knife (57) is carried by a slider (55) that can slide on a guide rod (53) fixed with respect to the spindle (4) and coaxial thereto.

6. The machine according to Claim 5, characterized in that said slider (55) and said counter-knife (57) are able to rotate freely about the axis (A-A) of the guide rod (53).

7. The machine according to Claim 5, characterized in that said counter-knife (57) is able to turn with respect to said slider (55).

8. The machine according to one or more of the preceding claims, characterized in that said second magnets (61A, 61B) are annular.

9. The machine according to one or more of the preceding claims, characterized in that said second magnets (61A, 61B) are permanent magnets.

10. The machine according to one or more of the preceding claims, characterized in that said first magnets (71A, 71B) are permanent magnets.

11. The machine according to one or more of the preceding claims, characterized in that said first magnets (71A, 71B) are carried by an annular structure (69) fixed with respect to said carriage (23) and surrounding the axis (A-A) of said spindle (4).

12. The machine according to Claim 11, characterized in that said first magnets (71A, 71B) are set about the axis of the spindle (4).

13. The machine according to one or more of the preceding claims, characterized in that said first magnets (71A, 71B) have a plate-like configuration.

14. The machine according to one or more of the preceding claims, characterized in that said first magnets (71A, 71B) are set in pairs.

15. The machine according to one or more of the preceding claims, characterized in that said second magnets (61A, 61B) are set in pairs.

16. The machine according to one or more of the preceding claims, characterized in that said first magnets (71A, 71B, 61A, 61B) are set at a distance from said knife.

Patentansprüche

1. Maschine zum Herstellen von Rohren (T) durch Wickeln von Streifen (S1, S2) aus einem bahnartigen Material, umfassend:
 - eine Wickelspindel (4), um die die Streifen (S1, S2) werden winding
S2) gewickelt werden, um das Rohr (7) zu bilden, das entlang der Spindel (4) fortschreitend gefertigt wird;
- eine Einrichtung (5) zum Liefern und Wickeln der Streifen (S1, S2) um die Spindel (4);
- wenigstens ein Messer (51) zum Schneiden des zu bildenden Rohrs in Längen, welches Messer mit einem hin-und hergehenden Antrieb parallel zur Spindel (1) versehen ist; und
- ein Gegenmesser (57) innerhalb des zu bildenden Rohrs (T), versehen mit einem mit dem Verschiebeantrieb des Messers (51) synchronisierten Verschiebeantrieb, wobei das Gegenmesser (57) magnetisch an einem Treibglied (67, 71) gehalten ist, das die Verschiebewegung auf das Gegenmesser überträgt;

dadurch gekennzeichnet, dass das Messer (51) auf einem beweglichen Fahrgestell (23) mit einer parallel zur Spindel (4) hin- und hergehenden Bewegung abgestützt ist und dass das Treibglied (67, 71) in Bezug auf das Fahrwerk (23) festgelegt ist, das das Messer (51) trägt.

2. Maschine nach Anspruch 1, dadurch gekennzeichnet, dass sie erste auf dem Fahrwerk (23) angeordnete Magnete (71A, 71B) umfasst, die auf der Außenseite des zu bildenden Rohrs (T) und benachbart dazu angeordnet sind, und dass sie weiters zweite, am im Inneren des Rohrs angeordneten Gegenmesser (57) gehaltene Magnete (61A, 61B) umfasst, wobei das Magnetfeld der ersten und zweiten Magnete zusammenwirken, sodass das Gegenmesser (57) durch das Fahrwerk (23) magnetisch gezogen wird, das das Messer abstützt.

3. Maschine nach Anspruch 2, dadurch gekennzeichnet, dass die ersten Magnete (71A, 71B) mit Polarisitäten gesetzt sind, die entsprechend einer zur Richtung der Ausrichtung der Polarität der zweiten Magnete (61A, 61B) senkrechten Richtung orientiert sind.

4. Maschine nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Magnete (71A, 71B, 61A, 61B) so angeordnet und ausgerichtet sind, dass die Kraft der gegenseitigen Anziehung zwischen den ersten Magneten (71A und 71B) und den zweiten Magneten (61A und 61B) nicht die Drehung des Gegenmessers (57) um die Achse (A-A) der Spindel (4) behindert.

5. Maschine nach einem oder mehreren der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass das Gegenmesser (57) durch einen Gleiter (55) getragen ist, der auf einer in Bezug auf die Spindel (4) koaxial dazu festgelegten Führungsstange (53) verschiebbar ist.

6. Maschine nach Anspruch 5, dadurch gekennzeichnet, dass der Gleiter (55) und das Gegenmesser (57) frei drehbar um die Achse (A-A) der Führungsstange (53) angeordnet sind.

7. Maschine nach Anspruch 5, dadurch gekennzeichnet, dass das Gegenmesser (57) gegenüber dem Gleiter (55) drehbar ist.

8. Maschine nach einem oder mehreren der vorausgehenden Ansprüchen, dadurch gekennzeichnet, dass die zweiten Magnete (61A, 61B) ringförmig sind.

10. Maschine nach einem oder mehreren der vorausgehenden Ansprüchen, dadurch gekennzeichnet, dass die ersten Magnete (71A, 71B) Permanentmagnete sind.

11. Maschine nach einem oder mehreren der vorausgehenden Ansprüchen, dadurch gekennzeichnet, dass die ersten Magnete (71A, 71B) durch eine ringförmige Struktur getragen werden, die in Bezug auf das Fahrwerk (23) festgelegt ist und die Achse (A-A) der Spindel (4) umschließt.

12. Maschine nach Anspruch 11, dadurch gekennzeichnet, dass die ersten Magnete (71A, 71B) um die Achse der Spindel (4) gesetzt sind.

13. Maschine nach einem oder mehreren der vorausgehenden Ansprüchen, dadurch gekennzeichnet, dass die ersten Magnete (71A, 71B) eine plattenförmige Konfiguration aufweisen.

14. Maschine nach einem oder mehreren der vorausgehenden Ansprüchen, dadurch gekennzeichnet, dass die ersten Magnete (71A, 71B) paarweise versetzt sind.

15. Maschine nach einem oder mehreren der vorausgehenden Ansprüchen, dadurch gekennzeichnet, dass die zweiten Magnete (61A, 61B) paarweise versetzt sind.

Revendications

1. Machine pour la fabrication de tubes (T) par enroulement de bandes (S1, S2) de matière en rouleau, comprenant :
 - un mandrin d’enroulement (4) autour duquel sont enroulées lesdites bandes (S1, S2) afin de former ledit tube (T) qui est amené à avancer le long dudit mandrin (4) ;
 - un dispositif (5) pour faire venir et enrouler lesdites bandes (S1, S2) autour dudit mandrin (4) ;
 - au moins un couteau (51) pour couper des longueurs dudit tube en formation, ledit couteau étant animé d’un mouvement alternatif parallèlement audit mandrin (1) ; et
 - un contre-couteau (57) à l’intérieur du tube (7) qui transmet le mouvement de translation audit contre-couteau ;

 caractérisée en ce que
 ledit couteau (51) est supporté par un chariot mobile (23) à mouvement alternatif parallèlement audit mandrin (4) ; et en ce que
 ledit organe moteur (67, 71) est fixe par rapport au chariot (23) qui porte le couteau (51).

2. Machine selon la revendication 1, caractérisée en ce qu’elle comprend des premiers aimants (71A, 71B) montés sur ledit chariot (23), ledits premiers aimants étant montés à l’extérieur du tube (T) en formation et au voisinage immédiat de celui-ci ; et en ce qu’elle comprend aussi des seconds aimants (61A, 61B) asservis audit contre-couteau (57) disposé à l’intérieur dudit tube (7), les champs magnétiques desdits premiers et seconds aimants entrant en interaction de façon que le contre-couteau (57) soit entraîné magnétiquement par le chariot (23) qui supporte le couteau.

3. Machine selon la revendication 2, caractérisée en ce que lesdits premiers aimants (71A, 71B) sont disposés avec les polarités orientées suivant une direction orthogonale à la direction d’alignement de la polarité desdits seconds aimants (61A, 61B).

4. Machine selon la revendication 2 ou 3, caractérisée en ce que lesdits aimants (71A, 71B, 61A, 61B) sont conçus et disposés de façon que la force d’attraction mutuelle entre les premiers aimants (71A, 71B) et les seconds aimants (61A, 61B) ne gêne pas la rotation du contre-couteau (57) autour de l’axe (A-A) du mandrin (4).

5. Machine selon une ou plusieurs des revendications précédentes, caractérisée en ce que ledit contre-couteau (57) est porté par un coulisseau (55) apte à coulisser sur une tige de guidage (53) fixe par rapport au mandrin (4) et coaxiale à celui-ci.

6. Machine selon la revendication 5, caractérisée en ce que ledit coulisseau (55) et ledit contre-couteau (57) sont aptes à tourner librement autour de l’axe (A-A) de la tige de guidage (53).

7. Machine selon la revendication 5, caractérisée en ce que ledit contre-couteau (57) est apte à tourner par rapport audit coulisseau (55).

8. Machine selon une ou plusieurs des revendications précédentes, caractérisée en ce que lesdits seconds aimants (61A, 61B) sont annulaires.

9. Machine selon une ou plusieurs des revendications précédentes, caractérisée en ce que lesdits seconds aimants (61A, 61B) sont des aimants permanents.

10. Machine selon une ou plusieurs des revendications précédentes, caractérisée en ce que lesdits premiers aimants (71A, 71B) sont des aimants permanents.

11. Machine selon une ou plusieurs des revendications précédentes, caractérisée en ce que lesdits premiers aimants (71A, 71B) sont portés par une structure annulaire (69) fixe par rapport audit chariot (23) et entourant l’axe (A-A) dudit mandrin (4).

12. Machine selon la revendication 11, caractérisée en ce que lesdits premiers aimants (71A, 71B) sont disposés autour de l’axe du mandrin (4).

13. Machine selon une ou plusieurs des revendications précédentes, caractérisée en ce que lesdits premiers aimants (71A, 71B) se présentent sous une forme analogue à des plaques.

14. Machine selon une ou plusieurs des revendications précédentes, caractérisée en ce que lesdits premiers aimants (71A, 71B) sont disposés par paires.

15. Machine selon une ou plusieurs des revendications précédentes, caractérisée en ce que lesdits seconds aimants (61A, 61B) sont disposés par paires.

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 5873806 A [0006] [0032]
- US 2502638 A [0006]
- US 2623445 A [0006]
- US 3150575 A [0006]
- US 3220320 A [0006]
- US 3636827 A [0006]
- US 3942418 A [0006]
- US 4378966 A [0006]
- WO 2004101265 A [0006]
- WO 2004106017 A [0006]