The present invention relates to a ligand which specifically binds to the human tumor necrosis factor type 1 receptor (huTNFR1), the ligand comprising one or more amino acid sequences of human origin capable of reducing the immunogenic response of the ligand in human beings and one or more amino acid sequences capable of selectively binding to huTNFR1. The present invention further relates to a nucleic acid encoding said ligand and to a pharmaceutical composition for the treatment of disorders connected to huTNFR1.
The present invention relates to a ligand which specifically binds to the human tumor necrosis factor type 1 receptor (huTNFR1), the ligand comprising one or more amino acid sequences of human origin capable of reducing the immunogenic response of the ligand in human beings and one or more amino acid sequences capable of selectively binding to huTNFR1. The present invention further relates to a nucleic acid encoding said ligand and to a pharmaceutical composition for the treatment of disorders connected to huTNFR1.

TNF is a key cytokine regulating inflammation and apoptosis. Depending on the cell type and environmental context, TNF can have opposing effects, immune stimulation or immune suppression. TNF can mediate apoptosis as well as resistance to apoptosis (Locksley et al., Cell, 2001, No. 104, p. 487-501; Aggarwal B. B., Nat. Rev. Immunol., 2003, No. 3, p. 745-756). In man, TNF is an essential cytokine regulating the function of the innate immune system and inflammatory responses as a whole, yet has also been recognized as a central pathogenic mediator of a number of chronic and acute diseases. Specifically, in Rheumatoid Arthritis (RA), in inflammatory bowel diseases such as Morbus Crohn and colitis ulcerosa, in psoriasis and in a few rare, inheritable diseases such as Cherubism and periodic fever syndrome, associated with TNF and TNFR1 overexpression, respectively (Chatzantoni K, Mouzaki A., Curr. Top. Med. Chem., 2006, No. 6, p. 1707-1714; Ueki et al., Cell, 2007, No. 128, p. 71-83; Simon A., Van der Meer J. W., Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, No. 292, p. R86-R98), the TNF system has been identified as the pathologically relevant mediator. In fulminant viral or bacterial infections leading to the so called cytokine syndrome, TNF is known to be critically involved and its crucial role as the mediator of septic shock and multiorgan failure is well documented. TNF has also been implicated in a number of other diseases, in particular metabolic diseases including obesity and type-2 diabetes (Hotamisligil G. S., Nature, 2006, No. 444, p. 860-867; Storz et al., FEBS Lett., 1998, No. 440, p 41-45) and some forms of hepatitis (Kusters et al., Eur. J. Immunol., 1997, No. 27, p. 2870-2875). Moreover, TNF, despite its known therapeutic activity in the local treatment of certain cancers, is considered as a tumor promoter in other malignant diseases, likely via NF-κB mediated apoptosis resistance and other survival pathways (Luo et al., Antibody engineering methods and protocols, 2004, Humana Press, Towota, p. 135-159). Therefore, clinical trials presently also exploit anti TNF strategies as a therapeutic regimen for certain hematologic malignancies (e.g. AML). From a mechanistic point of view, it has been demonstrated in numerous models including TNFR knock-out mice that TNFR1 is the major mediator of TNF’s pathological phenotypes (Locksley et al., Cell, 2001, No. 104, p 487-501; Aggarwal et al., Nat. Rev. Immunol., 2003, No. 3, p. 745-756).

In several chronic inflammatory diseases TNF neutralizing reagents, specifically anti TNF antibodies and soluble TNFR-Fc fusion proteins, are clinically widely applied. Three drugs are approved that interfere with TNF action: Remicade (Vilcek and Feldmann, 2004) (Centocor/Tanabe), Enbrel (Immunex/Wyeth) and Humira (Celltech/Abbott). The drugs all target TNF itself. The drugs are approved for treatment of rheumatoid arthritis (RA), juvenile RA, psoriatic arthritis, Crohn’s disease and ankylosing spondylitis. TNF targeting drugs show great success in RA, but the therapeutic effect is only for a restricted time period, and some patients are a priori refractory to anti TNF antibody treatment or develop resistance. Further, the outcome of clinical trials with CDP571, a humanized TNF specific monoclonal antibody, e.g. in Morbus Crohn, are certainly less promising then expected, demanding development of new concepts and reagents targeting the TNF/TNF system.

Besides an expected general immune suppression, the approved anti TNF drugs show additional side effects such as the production of anti-dsDNA antibodies, lupus and neuroinflammatory disease. The immune suppressed status of patients under general TNF blockade is associated with increased risk of infectious diseases, including commensal organisms. In the “Lenercr et study” (1999), clinical trials of an anti-TNF agent for treatment of MS had to be stopped because the disease status became worse, not better. The mechanistic background for this at that time unexpected adverse response is now clearer and related to the differential role of TNFR1 and TNFR2 in this disease, with TNFR1 signals propagating neuronal death and TNFR2 signals activating myelin sheath regeneration. Altogether, as outlined below there is increasing evidence that new therapeutic strategies aiming at a receptor selective targeting of TNF action should in many cases be superior to a general blockade of TNF signalling. For example, in some animal disease models detailed below, the contradictory effects of TNF action are explained by a differential function of the distinct receptors, TNFR1 and TNFR2. The gained knowledge on the mechanisms of action of TNF at the receptor level now indeed opens up new therapeutic strategies aiming at a pharmacological blockade of one of the receptors, thus potentially resulting in more specific effects.

For instance, retinal ischemia is a complication of diabetes where retinal neurons undergo TNF-induced apoptosis to cause blindness. Retinas of TNFR2 knockout mice show increased apoptosis, but the retinas of TNFR1 knockout mice show decreased apoptosis compared to the wild type (Fontaine et al., J. Neurosci., 2002, No. 22, RC216).

Similarly, EAE is an animal model of multiple sclerosis (MS). It is characterized by an initial autoimmune inflammation directed against myelin. The myelin-specific reaction later subsides but other epitopes take over as autoimmune antigens. While TNF knock-out mice show a weaker initial inflammatory reaction to myelin, the myelin-specific immune reaction does not subside. In TNFR1 knockout mice, the initial inflammatory reaction is equally reduced, but it...

[0007] Likewise, in a mouse model of toxin (cuprizone) induced, reversible CNS demyelination, resembling the demyelination/regeneration phases in multiple sclerosis (MS), there is compelling evidence that the remyelination process upon toxin withdrawal is TNF dependent and selectively requires TNFR2 signaling, triggering oligodendrocyte progenitor expansion and differentiation into mature myelin sheet forming oligodendrocytes (Arnett et al., Nat. Neurosci., 2001, No. 4, p. 1116-1122). These findings of TNF dependence of oligodendrocyte regeneration mirror the situation in humans suffering from MS: In clinical trials aiming at complete TNF blockade in MS with a TNFR1-Fc fusion protein, the blocking of TNF was associated with aggravation of disease rather than therapeutic benefit, which is in accordance with the results of the animal model described above.

[0008] Moreover, for instance cortical neurons of mice succumb to excitotoxic death upon overt triggering of the NMDA receptor by neurotransmitter glutamate. Glutamate is released from dying tissue upon ischemic conditions (Oxygen deprivation) such as occurring in stroke. Primary cultures of neurons can be made fully resistant to excitotoxicity in a TNFR2 dependent manner involving a PI3K - AKT - NF-κB pathway. By contrast, TNFR1 signals enhance glutamate induced cell death (Marchetti et al., J. Biol. Chem., 2004, No. 279, p. 32869-32881), indicating a differential role of TNFR1 and TNFR2 in the CNS.

[0009] Therefore, in various models of both acute and chronic neurodegeneration, retinal ischemia, stroke models and in Multiple Sclerosis, a complete block of TNF has no apparent therapeutic effects but rather is directly detrimental or reduces regenerative capacity of the affected tissue. Accordingly, specific blocking of TNFR1, the inflammatory TNFR, and maintenance of TNFR2 function, presents a promising therapeutic approach for these diseases.

[0010] Likewise, both in Rheumatoid Arthritis (RA), in psoriasis and in more rare, inheritable diseases such as Chernesbism and periodic fever syndrome, associated with TNF and TNFR1 overexpression, respectively, TNFR1 is considered or has been clearly identified as the pathologically relevant receptor. A differential role of TNFR1 and 2 becomes also apparent in Morbus Crohn, in which only a fraction of the patients respond to anti TNF therapeutics, and in SLE (Komata et al., Tissue Antigens, 1999, No. 53, p. 527-533), with resistance to treatment and disease susceptibility, respectively, both correlating with TNFR2 mutation(s).

[0011] Accordingly, using receptor selective antibody to target TNFR1 represents an alternative to established anti TNF strategies in these chronic inflammatory diseases. This appears of particular relevance in patients becoming refractory to anti TNF reagents upon repeated treatment cycles. Moreover, as global and continued blocking of TNF is associated with a functional deficiency in the innate and adaptive immune response, the risk of complications due to infectious diseases is considerably increased in these patients. Selective interference with TNFR1 maintains TNF responses via TNFR2, which should be of benefit for the overall immune competence of the patients.

[0012] Support for a selective TNFR1 blockade as a powerful therapeutic regimen comes from previous studies of the inventors on the in vitro and in vivo function of the antagonistic mouse monoclonal antibody (mab) H398 specific for human TNFR1 (Thoma et al., J. Exp. Med., 1990, No. 172, p. 1019-1023; Grell et al., Cell, 1995, No. 83, p. 793-802; Moosmayer et al., Ther. Immunol., 1995, No. 2, p. 31-40). This murine antibody and its recombinant mouse scFv derivatives are capable to neutralize a wide spectrum of TNF activities in vitro through competitive inhibition of TNF binding to human TNFR1; the mab was shown to be effective in preventing bacterially induced lethal shock syndrom in baboons, where H398 shows crossreactivity with the TNFR1 of this species. The therapeutic efficacy of antibody H398 in TNF dependent, chronic diseases cannot be evaluated in clinical trials due to mouse origin of the antibody, bearing the risk of acute adverse reactions towards the mouse antibody and/or the rapid development of an immune response upon repeated treatment cycles.

[0013] Therefore, a need exists for novel substances which should effectively and specifically interact with human TNFR1 (huTNFR1) as TNF-antagonists in a patient and which should have a reduced (i.e. tolerable) immunogenic response upon administration to human beings.

[0014] Thus, the technical problem underlying the present invention is to provide novel low-immunogenic huTNFR1-ligands as antagonists of TNF action suitable for application in human beings as a therapeutic for treatment of a variety of TNF mediated disorders.

[0015] According to the present invention, the above-described problem is solved by providing a huTNFR1-ligand comprising a proteinaceous construct having (i) one or more amino acid sequences of human origin capable of reducing the immunogenic response of said huTNFR1-ligand in humans, and (ii) one or more amino acid sequences of non-human origin capable of selectively binding to huTNFR1.

[0016] Herein, the term “huTNFR1-ligand” means any molecule or group of molecules which can selectively bind the human TNF type 1 receptor (huTNFR1) and at the same time shows a reduced immunogenic response when administered to a human being. By binding to huTNFR1, said huTNFR1-ligand acts as an antagonist to TNF and lymphotaxon alpha (LTα) which are the natural ligands inter alia of TNFR1.

[0017] The term “huTNFR1” used herein does not only relate to the human TNF type 1 receptor as such, but does
also include any portion thereof, or any other receptor which is structurally and/or functionally related to the huTNFR1.

The expression "reduced immunogenic response" means an immunogenic response which is reduced as compared to the immunogenic response of a huTNFR1-ligand comprising exclusively amino acid sequences of non-human origin. Examples of huTNFR1-ligands comprising exclusively amino acid sequences of non-human origin include peptides, proteins and nucleic acids of non-human mammal origin, such as rodent origin, for example a murine antibody.

The expression "proteinaceous construct" used herein is not specifically restricted and means any molecule or group of molecules which contains one or more peptide bonds, preferably peptide sequences, and binds to huTNFR1 while showing a reduced immunogenic response in a human being. The proteinaceous construct according to the present invention may further comprise nucleic acids and organic and inorganic compounds, such as sugars or fatty acids. Further, the proteinaceous construct may comprise a group of molecules which are independently associated via covalent or non-covalent bonds, such as fusion proteins. According to another embodiment of the present invention, the proteinaceous construct may further be coupled with additional molecules, for example polyethyleneglycol or methoxy-poly-ethylenglycol, i.e. it might be PEGylated.

The huTNFR1-ligand and/or the proteinaceous construct according to the present invention may be produced by any suitable method known to the person skilled in the art, such as for example by recombinant methods involving the construction of a suitable plasmid or vector and expression in a microorganism or in any higher organism, or by automated peptide synthesis, such as solid phase peptide synthesis.

The expression "amino acid sequences of human origin" used herein means such amino acid sequences which can be found in the human body. However, the expression is not only restricted to such amino acid sequences which can exactly be found in the human body but also include those amino acid sequences which have a similarity of 50% or higher with human amino acid sequences. Specific examples of amino acid sequences of human origin are the amino acid sequences contained in a human antibody or a fragment thereof.

Moreover, the expression "amino acid sequences of non-human origin" used herein means any amino acid sequence, which can be found in a non-human animal, such as a non-human mammal. For example, the amino acid sequence of non-human origin may be a sequence of a non-human antibody, for example a murine antibody.

In the proteinaceous construct of the present invention the advantages of amino acid sequences of human origin, which reduce the risk of e.g. immunogenicity in a patient, are combined with the selectivity towards huTNFR1 of amino acid sequences of non-human origin, such as for example of those found in the murine antibody H398.

According to another embodiment of the huTNFR1-ligand as defined above the proteinaceous construct comprises a humanized antibody or at least one fragment thereof.

The term "antibody" used herein means any kind of antibody which can bind to an antigen, including natural antibodies, mutated antibodies and (semi-)synthetic antibodies, as long as the antibody allows an administration to a human being with a reduced immunogenic response thereto. In a preferred embodiment, the antibody or fragment thereof is a humanized antibody obtainable by e.g. recombinant nucleic acid technology ("humanized recombinant antibody") or at least one fragment thereof or an antibody-like recombinant protein. As an example, without limitation thereto, a fragment may be contained in an antibody like recombinant protein such as diabodies, scFv-Fc fusion proteins, and scFv-CH3 fusion proteins.

The antibody, or at least one fragment thereof, or an antibody-like recombinant protein, may contain one or more mutations or variations, such as added, deleted or substituted amino acids or nucleic acids, as long as it has no negative effect on the interaction with huTNFR1. Further, the antibody or at least one fragment thereof, or an antibody-like recombinant protein, may contain one or more mutations or variations, such as added, deleted or substituted amino acids or nucleic acids, which have a positive effect on the interaction of huTNFR1 and which improve the antagonistic activity of said molecule. In particular, such mutated variants have a better affinity and/or a better inhibitory activity.

According to the present invention, the term "fragment" means any portion of an antibody as defined above as long as it has the ability to bind to the desired antigen through one (monovalent) or two (bivalent) antigen (huTNFR1) binding sites. Moreover, a fragment of the present invention may comprise different portions from said antibody. Examples of proteolytically or recombinantly produced monovalent fragments of an antibody include antigen binding fragment (Fab), single chain variable fragment (scFv), variable fragment (Fv), disulfide-stabilized Fv (dsFv), variable domain of the immunoglobulin heavy chain (VH), variable domain of the immunoglobulin light chain (VL), complementary determining regions (CDRs), and combinations thereof. Examples of proteolytically processed or recombinant bivalent fragments of the present invention include F(ab)2, diabodies, scFv-Fc fusion proteins, and scFv-CH3 fusion proteins.

For example, the antibody or the at least one fragment thereof may be a humanized antibody or at least one fragment thereof derived from the murine antibody H398.

There is no limitation as to the technique of humanization of the antibody, as long as the antibody binds to the desired antigen. Examples of humanization include, without limitation thereto, complementarity determining region grafting (CDR grafting) (Jones et al. 1986, Nature 321, 522-525), specificity determining residue grafting (SDR grafting) (Kashmiri et al., 2005, Methods 36, 25-34), resurfacing of variable domains (Roguska et al., 1994, Proc. Natl. Acad. Sci. USA 91, 969-973), structure-based selection and humanization by CDR grafting (Hwang et al., 2005, Methods 36, 35-42),
and delmmunization strategies (Hellendorn et al., 2004, Cancer Cell International 4 (Sppl. I), 20).

[0030] The expression “humanized antibody” used herein means any antibody in which protein engineering is used to reduce the amount of foreign (“non-human”) protein sequence by swapping e.g. rodent antibody constant regions and/or variable-domain frameworks or framework residues with sequences that are found in human antibodies.

[0031] In a specific embodiment of the present invention, the proteinaceous construct of the above-defined huTNFR1-ligand may be a humanized antibody, which contains amino acid sequences of human origin and such of non-human, e.g. rodent origin.

[0032] The term “scFv” used herein means a fusion of the variable regions of the heavy and light chains of any immunoglobulin, linked together with a linker, such as for example a peptide composed of serine, glycine, or any other natural or non-natural amino acid.

[0033] In a further embodiment of the huTNFR1-ligand as defined above, the at least one fragment is selected from the group consisting of a Fab-region, a scFv, a genetically engineered or post-translationally processed recombinant derivative of said fragments, and a chemically modified derivative of said fragments.

[0034] According to a specific embodiment of the above-defined huTNFR1-ligand, the at least one fragment is a scFv comprising the amino acid sequence according to SEQ ID NO.:9.

[0035] In a further embodiment of the huTNFR1-ligand as defined above, the proteinaceous construct comprises one or more of the complementary determining regions (CDRs) selected from the group, consisting of SEQ ID NOs: 1 to 6, or parts thereof, conferring binding to huTNFR1, wherein said CDRs are preferably contained in the one or more amino acid sequences of non-human origin capable of selectively binding to huTNFR1 as outlined under (ii) of the proteinaceous construct, above.

[0036] The CDRs of the above-defined huTNFR1-ligand, such as those of SEQ ID NOs: 1 to 6, may be present in any combination, for example two, three, four, five or six of said CDRs may be present. Additionally, multiple copies or genetic variants of any of the CDRs may be present in the huTNFR1-ligand of the present invention, as long as the ligand shows sufficient affinity towards human TNFR1 and allows a reduced immunogenic response when administered to a human being.

[0037] According to a specific embodiment of the huTNFR1-ligand, the proteinaceous construct comprises the amino acid sequence according to SEQ ID NO.: 7 as variable domain of the heavy chain (VH) and the amino acid sequence according to SEQ ID NO.: 8 as variable domain of the light chain (VL).

[0038] In yet another embodiment of the present invention, the above-defined huTNFR1-ligand comprises an additional tag allowing specific interaction with a biologically acceptable compound. There is not a specific limitation with respect to the tag usable in the present invention, as far as it has no or tolerable negative impact on the binding of the huTNFR1-ligand to huTNFR1 or the immunogenic response when administered to a human being. Examples of suitable tags include His-tag, Myc-tag, FLAG-tag, Strep-tag, Calmodulin-tag, GST-tag, MBP-tag, and S-tag.

[0039] In another embodiment of the huTNFR1-ligand as defined above, the proteinaceous construct further comprises a biologically acceptable compound non-covalently bound thereto or covalently bound thereto by posttranslational chemical conjugation or by recombinant gene technology.

[0040] The expression “biologically acceptable compound” used herein is not specifically restricted and means any compound usable in a biological environment, such as in a living organism, including also pharmaceutical acceptance of said biologically acceptable compound. Examples of the biologically acceptable compounds according to the present invention are, without any limitation thereto, peptides, proteins, nucleic acids, carbohydrates, lipids, as well as other organic and inorganic compounds. The biologically acceptable compound preferably exerts additional positive effects, for example improved biochemical/biophysical properties, such as enhanced solubility, prolonged stability, improved antagonistic activity, and improved pharmacokinetic properties, such as increased in vivo half-life, increased tissue penetration, blood brain barrier passage and reduced toxicity.

[0041] According to one specific embodiment aiming at improving pharmacokinetic properties of the above-defined huTNFR1-ligand, the biologically acceptable compound is selected from the group consisting of serum proteins.

[0042] In another embodiment of the huTNFR1-ligand as defined above the biologically acceptable compound is albumin. According to a specific embodiment, the biologically acceptable compound is human serum albumin (HSA).

[0043] In a further embodiment of the above-defined huTNFR1-ligand, the biologically acceptable compound comprises an albumin-binding domain (e.g. from bacteria), an albumin-binding peptide composed of natural or non-natural amino acids, one or more acyl chains with albumin-binding activity, polyethylene glycol or methoxy-polyethylene glycol. In yet a further embodiment of the above-defined huTNFR1-ligand, the biologically acceptable compound comprises another antibody or fragment thereof specific for a serum protein component or a natural or synthetic ligand, which binds to a serum component (e.g. albumin).

[0044] In a further specific embodiment aiming at improving pharmacokinetic properties of the above-defined huTNFR1-ligand, the biologically acceptable compound comprises another antibody targeting a cell surface molecule or extracellular matrix component. As an example, anti-HIR (human Insulin receptor) or anti-TR (Transferrin receptor) antibodies have been used for active transport via the blood-brain-barrier and delivery of compounds into the brain.
According to another specific embodiment of the huTNFR1-ligand as defined above, the proteinaceous construct comprises a fusion protein according to SEQ ID NO.: 10.

A further aspect of the present invention relates to a vector comprising the nucleic acid sequence as defined above. The vector of the present invention is not specifically restricted as long as it can be used in the transfection of a suitable host cell and is suitable for heterologous gene expression.

Methods used to construct vectors are well known to a person skilled in the art and described in various publications. In particular, techniques for constructing suitable vectors, including a description of the functional components such as promoters, enhancers, termination and polyadenylation signals, selection markers, origins of replication, splicing signals, and leader sequence, are reviewed in considerable details in (Sambrook et al., 1989) and references cited therein. Vectors may include, without any limitation thereto, plasmid vectors, phagemids, cosmids, artificial/mini-chromosomes (e.g. ACE), MAR vectors, or viral vectors such as baculovirus, retrovirus, adenovirus, adeno-associated virus, herpes simplex virus, retroviruses, bacteriophages. Examples of vectors suitable for prokaryotic expression include pAB1 (Kontermann et al., 1997). The eukaryotic expression vectors will typically contain also prokaryotic sequences that facilitate the propagation of the vector in bacteria such as an origin of replication and antibiotic resistance genes for selection in bacteria. A variety of eukaryotic expression vectors, containing cloning sites into which one or more polynucleotides can be operatively linked, are well known in the art and some are commercially available from companies such as Stratagene, La Jolla, CA; Invitrogen, Carlsbad, CA; Promega, Madison, WI; BD Biosciences Clontech, Palo Alto, CA; Lonza Biologics PLC, Slough, Berkshire, England. Examples of eukaryotic vectors are pCDNA3, pSecTag, and pEE 6.4.

In a preferred embodiment the expression vector comprises at least one nucleic acid sequence which is a regulatory sequence necessary for transcription and translation of nucleotide sequences that encode for a peptide/polypeptide/protein of interest.

A further aspect of the present invention relates to a host cell containing the above-defined nucleic acid or the above-defined vector. The host cell of the present invention is not specifically restricted and includes all cells usable in the production of the huTNFR1-ligand and/or the proteinaceous construct or parts thereof. Examples of host cells suitable for the present invention include prokaryotic cells and eukaryotic cells, such as yeast, plant cells, insect cells, and mammalian cells of different species origin and whole transgenic organisms (transgenic plants, transgenic animals). Examples of prokaryotic cells include E. coli, TG1, and Pseudomonas spec. Examples of animal cells include hamster cells, preferably BHK21, BHK TK-, CHO, CHO-K1, CHO-DUKX, CHO-DUKX B1, and CHO-DG44 cells or the derivatives/progenies of any of such cell line. In a further embodiment of the present invention host cells are murine myeloma cells, preferably NSO and Sp2/0 cells or the derivatives/progenies of any of such cell line. Examples of mammalian cells which can be used for expression of huTNFR1 ligands according to the present invention are summarized in Table 1.

TABLE 1: Eukaryotic production cell lines

<table>
<thead>
<tr>
<th>CELL LINE</th>
<th>ORDER NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSO</td>
<td>ECACC No. 85110503</td>
</tr>
<tr>
<td>Sp2/0-Ag14</td>
<td>ATCC CRL-1581</td>
</tr>
<tr>
<td>BHK21</td>
<td>ATCC CCL-10</td>
</tr>
<tr>
<td>HaK</td>
<td>ATCC CCL-15</td>
</tr>
<tr>
<td>2254-62.2 (BHK-21 derivative)</td>
<td>ATCC CRL-8544</td>
</tr>
<tr>
<td>CHO</td>
<td>ECACC No. 8505302</td>
</tr>
<tr>
<td>CHO wild type</td>
<td>ECACC 00102307</td>
</tr>
<tr>
<td>CHO-K1</td>
<td>ATCC CCL-61</td>
</tr>
<tr>
<td>CHO-DUKX (= CHO duk-, CHO/dhfr-)</td>
<td>ATCC CRL-9096</td>
</tr>
</tbody>
</table>
Further, a process is provided for the production of a huTNFR1-ligand to huTNFR1, obtainable by guided selection using a proteinaceous construct as defined above as a template. Therefore, according to another aspect of the present invention, a huTNFR1-ligand as defined above may be used for the procedure of guided selection according to the state of the art (Jespers et al., 1994, Biotechnology) for isolation of a functionally equivalent huTNFR1 specific antibody from human immunoglobulin gene libraries, thus further minimizing potential immunogenicity of said reagent.

Moreover, there is provided a pharmaceutical composition comprising a therapeutically effective amount of the huTNFR1-ligand as defined above and optionally one or more additional components selected from the group consisting of a pharmaceutically acceptable carrier, pharmaceutically acceptable salts, an auxiliary agent, a stabilizer, a diluent and a solvent, or any combination thereof. The huTNFR1-ligand of the present invention may further be used in the preparation of a medicament for the treatment of any TNF-related disorder, such as those mentioned above.

There is further provided a method for treating a patient suffering from a disease selected from rheumatoid arthritis, psoriasis, Morbus Crohn, colitis ulcerosa and other chronic inflammatory and/or autoimmune diseases, acute fulminant viral or bacterial infections, metabolic diseases, acute neurodegenerative diseases, chronic neurodegenerative diseases, preferably selected from multiple sclerosis, Parkinson and Alzheimer’s disease, genetically inherited diseases with TNF/TNFRI as the causative pathologic mediator, preferably selected from periodic fever syndrome and Cherubism, and cancer, comprising the step of administering a therapeutically effective amount of the above-defined huTNFR1-ligand to a patient in need thereof.
(b) identifying one or more amino acid sequences of human origin capable of binding selectively to huTNFR1 by guided selection using one or more of the amino acid sequences of said proteinaceous construct, particularly the amino acid sequences of non-human origin, as a template, and (c) constructing said ligand comprising at least one or more of the amino acid sequences identified under step (b).

[0061] Another aspect of the present invention relates to a use of a huTNFR1-ligand comprising a proteinaceous construct having (i) one or more amino acid sequences of human origin capable of reducing the immunogenic response of said huTNFR1-ligand in humans, and (ii) one or more amino acid sequences of non-human origin capable of selectively binding to huTNFR1, as template for guided selection in the identification and construction of another low-immunogenic huTNFR1-ligand comprising amino acid sequences which are essentially or only of human origin.

[0062] The figures show:

Fig. 1 shows the alignment of mouse monoclonal antibody H398 V_H and V_L sequences, the closest human germline sequences for V_H (VH1-69 = 1-e = DP-88) and V_L (A3 = DPK15), as well as the humanized V_H and V_L sequences (IZI-06.1 VH, IZI-06.1 VL) generated by CDR-grafting. Amino acids differing between H398 and the human germline sequences are marked with asterisks. Framework regions (FR) and complementarity determining regions (CDRs) are indicated.

Fig. 2 shows the DNA sequences of codon-optimized IZI-06.1 VH and IZI-06.1 VL (upper lane) and corresponding amino acids (lower lane); the italic characters at the beginning and at the end of each amino acid sequence do not belong to IZI-06.1 VH and IZI-06.1 VL and relate to amino acid sequences used for cloning/processing and contain cleavage sites for certain restriction enzymes.

Fig. 3 shows the superimposed model structures of H398 Fv (light gray) and IZI-06.1 Fv (dark gray) backbone. a) side view of the two model structures. b) top view of the CDR regions H1-H3 and L1-L3. Models were generated with WAM (Whitelegg and Rees, 2000) WAM - an improved algorithm for modelling antibodies on the Web. Prot. Eng. 13, 819-824). Structures were visualized with Pymol (DeLano Scientific, San Carlos, CA, USA).

Fig. 4 shows a cloning strategy to generate a bacterial vector for the expression of Fab fragments.

Fig. 5a shows a Western Blot on nitrocellulose after SDS PAGE using a non reducing 12% gel after IMAC (1) preparation. Detection via anti human Fab-AP, AP staining according to standard procedures, 15 µL samples were applied to the gel. Abbreviations: PP = Periplasm extract, DL = Flow through IMAC, W = Wash fraction, F = Fraction.

Fig. 5b shows a Coomassie staining of an IMAC (1) purification after SDS PAGE on a 12% gel. The left part from the marker represents a non-reducing gel, the right part a gel under reducing conditions. Sample volume was 15 µL.

Fig. 6 shows a saturation binding curve and the derived Scatchard plot of IZI-06.1-Fab binding to receptor positive cells. Nonspecific binding has been subtracted. The resulting data show that IZI-06.1-Fab binding to TNFR1-Fas is saturable and specific, with an apparent affinity of K_D = 0.778 nM.

Fig. 7 shows flow cytometry analyses of mouse embryonic fibroblasts that stably express chimeric receptors comprised of the extracellular domain (ED) of TNFR1 and the cytoplasmic domain of death receptor Fas, TNFR1-Fas (A), or chimeric receptors comprised of TNFR2-ED and Fas (TNFR2-Fas) (B), or chimeric receptors with a deletion of cystein rich domain (CRD) 1 of TNFR1, ΔCRD1-TNFR1-Fas (C and D) or a CRD1 exchange mutant, comprised of a TNFR1-Fas molecule containing the CRD1 of TNFR2, CRD1TNFR2-TNFR1-Fas (E and F). These transfectants were incubated on ice for two hours with 2.5 µg/ml of IZI-06.1-Fab (A - C, E, white histograms), the TNFR1-specific antibody mAb225 (D and F, white histograms), the TNFR2-specific antibody 80M2 (B, white-bold histogram) or were only treated with secondary antibodies as control (gray histograms). The incubation buffer was PBA (PBS + 0.05% bovine serum albumin + 0.02% NaN3). Cells were incubated with FITC-labeled secondary antibodies (80M2 and mAb225: Goat anti-murine IgG ; IZI-06.1 Fab: Goat anti-HIS-tag) and cells were analyzed by flow cytometry. Cells were gated for viable cells and total fluorescence intensities (MnX) are given for each antibody. (Con = control values).

Fig. 8 shows diagrams relating to TNFR1 inhibition by IZI-06.1. Kym I cells were seeded one day before treatment in a 96-well plate (10.000 cells/well in RPM11640 + 5% FCS). Next day cells were treated with 100 ng/ml huTNF in trifold dilution steps. Control was titration of PBS. After 16 hours cells were analyzed by cristal violet assay. OD absorbance was measured at 550 nm. Results are displayed as percent of control (PBS treated cells). Upper panel: 1.25 ng/ml huTNF was estimated as a dose sufficient to induce maximum toxicity. Lower panel: A constant amount
shows In silico generation of an anti-Synthesis of DNA sequence of IZI-Cloning of IZI-

[0063] The huTNFR1-ligand according to the present invention binds to human TNFR1 with high specificity, interacting with the CRD1 of this receptor. Unexpectedly, the huTNFR1-ligand binds TNFR1 with a very high affinity, advantageously exceeding that of the murine antibody H398. Thus, the human TNFR1 ligand as described above very efficiently prevents the action and bioactivity of the naturally occurring ligands for TNFR1. TNF and LTx and is superior in its antagonistic activity to the murine H398 antibody described in prior art. Due to the content of amino acid sequence(s) of human origin this ligand is of advantageously low immunogenicity. Thus, the huTNFR1-ligand of the present invention allows the treatment of a patient suffering from a disorder connected to TNFR1 without the risk of acute adverse reactions towards the ligand and/or the rapid development of an immune response, while at the same time benefiting from the high selectivity and blocking efficiency of the amino acid sequence of non-human origin directed against huTNFR1.

[0064] The present invention will be further illustrated in the following examples, without any limitation thereto.

Examples

Example 1: In silico generation of an anti-TNF receptor 1 antagonist based on mouse monoclonal antibody H398 sequences and human germ line Ig V gene sequences

Example 2: Synthesis of DNA sequence of IZI-06.1 VH and IZI-06.1 VL

Example 3: Model structures of H398 and IZI-06.1 Fv fragments

Example 4: Cloning of IZI-06.1 and construction of a monovalent Ig fragment (Fab format)

[0065] The amino acid sequences of H398 heavy chain variable domain (VH) and light chain variable domain (VL) (Moosmayer et al., Ther. Immunol., 1995, No. 2, p. 31-40) was used to search for similar human germline V segments using the V base database (http://vbase.mrc-cpe.cam.ac.uk/) as well as IgBlast. This search identified several VH germline sequences (DP75, DP8, DP88) with 61.2-62.2% overall similarity and several VL germline sequences (DPK15, DPK13, DPK27, DPK28) with 80.0-81.0% similarity. The identified sequences were aligned with H398 VH and VL and amino acids critical for CDR conformation, the VH_Nj interface as well as the Vernier zone were identified as described (O’Brien S., Jones T., Antibody engineering, a lab manual, Springer, 2001, p. 567-590; Lo B. K. C., Antibody engineering, methods and protocols, Humana Press, 2004, p. 135-159). CDR regions were assigned using the definitions of Kabat, Chothia, AbM and Contact (Martin A. C. R., Antibody engineering, a lab manual, Springer, 2001, p. 422-439). Furthermore, canonical classes of L1-L3 and H1-H2 were determined as following: L1-4, L2-1, L3-1, H1-1, H2-3 (Martin A. C. R., Antibody engineering, a lab manual, Springer, 2001, p. 567-590). For CDR replacement, the CDRs were defined as following: amino acids L24-L34 (CDRL1), L46-L56 (CDRL2), L89-L97 (CDRL3), H26-H35 (CDRH1), H47-H65 (CDRH3), and H95-H102 (CDRH3). As human acceptor sequences, we chose VH germline segment VH1-69 (1-e, DP88) and VL germline segment A3 (DPK15). All six CDRs were inserted into these human variable germline segments (Fig. 1). The resulting unique sequences were designated IZI-06.1 VH (SEQ ID NO.: 7) and IZI-06.1 VL (SEQ ID NO.: 8), respectively.

Example 4: Cloning of IZI-06.1 and construction of a monovalent Ig fragment (Fab format)

[0066] Codon-optimized DNA encoding the two humanized variable domains (IZI-06.1 VH, (SEQ ID NO.: 7), IZI-06.1 VL (SEQ ID NO.: 8)) was synthesized by GeneArt (Regensburg, Germany) adding appropriate cloning sites (Fig. 2).
EP 1 972 637 A1

06.1-VH is digested with restriction enzymes SfiI and XhoI and the resulting fragment is cloned into vector pAB1-CH1 (containing the gene for the CH1 domain of the human immunoglobulin γ1 heavy chain) digested with the same enzymes. For cloning of the light chain (VL-CH1) (= construct pAB1-IZI-06.1-L) plasmid pPCR-Script-IZI-06.1-VL is digested with restriction enzymes SfiI and Ascl and the resulting fragment is cloned into vector pAB1-CH1 (containing the gene for the human CH2 domain) digested with the same enzymes. The light chain gene including the vector encoded ribosome binding site (RBS) and the pelB leader sequence is amplified by PCR from plasmid pAB1-IZI-06.1-L using primers A (5'-GAC CAT GAT TAC GCC AAG CTT TCC ACG GCA TGC AAA TTC-3') (SEQ ID NO.: 11) and B (5'-ACG ACG GCC AGT TCT AGA TTA ACA CTC TCC CCT GTT GAA-3') (SEQ ID NO.: 12). With this step a HindIII and a XbaI site are introduced at the 5' and 3' end, respectively. The PCR product is digested with restriction enzymes HindIII and XbaI and cloned into plasmid pAB1-IZI-06.1-Fd digested with the same enzymes. This results in a final bacterial expression plasmid pAB1-IZI-06.1-Fab encoding a Fab fragment of antibody IZI-06.1 including a hexahistidyl-tag at the C-terminus of the Fd fragment.

Example 5: Expression system

Vector: pAB1 (Kontermann et al., 1997)
Cells: E.coli TG1 (Stratagene, La Jolla, U.S.A.)
Basic Principle: Expression of IZI-06.1 Fab is under control of PLac and induced by IPTG according to standard procedures. Selection is achieved through addition of Ampicillin (bla-Gen). The N-terminal pelB leader sequence allows periplasmic expression of the target gene product, the former being removed from the target protein through proteolytic processing in the periplasm. Target protein (IZI-06.1) is isolated as soluble protein upon destabilisation of bacterial cell wall with EDTA and Lysozyme. The remaining bacterial cells are osmotically stabilised as spheroblasts with Saccharose/MgSO4 buffer to avoid cell lysis and cells are separated by centrifugation.

Expression:

Procedure: Pre culture: Batch, shaking flask culture. 50 mL LB-Medium plus 100 μg/mL Ampicillin and 1 % Glucose, inoculated with a single E.coli colony. Incubation ON at 30°C on a rocking platform (125 rpm).
Main culture: 1 L LB-Medium plus 100 μg/mL Ampicillin and 0.1 % Glucose, inoculated with 5 % (V/V) pre-culture. Incubation at 30°C on a rocking platform (125 rpm). At OD600 (~ 3 h incubation time) induction of protein expression by addition of IPTG (1 mM final concentration). Expression time was 3.5 h at 25°C.
Extraction: Spin down culture for 10 min at 4000 g. Resuspend pellets in 50 mL periplasma solubilisation buffer PPA (PPA: 30 mM Tris-HCl, 1 mM EDTA, 20% Saccharose). Add 50 μg/mL Lysozyme and incubate suspension for 30 min on ice. Spheroblasts are then removed by centrifugation at 18,000 g. The supernatant (periplasma extract) is dialysed ON with 200 x Vol. PBS. The typical yield of this expression/extraction protocol is - 1-2 mg Fab IZI-06.1/L culture.

Example 6: Purification

Basic Principle: Three step purification protocol with two consecutive IMAC runs followed by size exclusion chromatography (SEC). IZI-06.1 carries a C-terminal myc-His-Tag (see pAB1, Cloning strategy). First and second purification step is IMAC (Immobilised Metal-ion Affinity Chromatography). Histidine residues within the His-Tag bind specifically to ligand- chelated Ni-Ions on a Sepharose Matrix. The second IMAC
step is for concentrating the product. SEC is performed in a semi-preparative manner using FPLC (Pharmacia, Germany). This step separates according to apparent MW and allows the separation of higher MW aggregates of the target protein as well as higher and lower MW protein and non protein contaminants. Specifically, misfolded and/or nonprocessed target protein IZI-06.1 shows apparent higher MW in SEC and can be separated from correctly folded, bioactive product.

Example 7: Functional activity of IZI-06.1 Fab

Binding characteristics, determination of binding affinity by equilibrium binding studies:

For the determination of the affinity to TNFR1, saturation binding studies at 4°C with radioactively labelled IZI-06.1 Fab are performed. The antibody is labelled with 125Iodine using the chloramine T method. In brief, 10 µg of purified protein are incubated in phosphate buffer (pH 7.4) at room temperature with 3.7 x 107 Becquerel of Na125I together with chloramine T. The reaction is stopped with Na-disulfite and excess NaI and labelled proteins are separated by gel-filtration using a PD10 column (Pharmacia). One millilitre fractions are collected. The protein eluted in fractions 2 and 3, free 125I is detected in fractions 7 to 9. The resulting protein concentration is 2.7 µg/ml and radioactivity is 120.000 cpm/ng. Bioactive material is determined by incubating constant amounts of labelled IZI-06.1 Fab with increasing numbers of TNFR1-Fas expressing mouse fibroblast cells. The resulting hyperbolic curve is used to fit a one-site binding equation by linear regression and the extrapolated maximal binding value (B_{max}) represents the percentage of bioactive material
(approx. 10%). Data from this analysis are used to calculate the applied antibody concentrations in the following experiments.

[0077] To determine the affinity (K_D value) of IZI-06.1 Fab, 200,000 TNFR1-Fas positive cells are incubated on ice for three hours with increasing concentrations of labelled IZI-06.1 (2.5 - 50 ng in a total volume of 150 µl). As binding buffer, phosphate buffered saline + 2% fetal calf serum + 0.02 % NaN₃ is used. Non-specific binding is determined by co-incubating cells with the 180-fold respective concentration of unlabelled IZI-06.1. Bound 125I-Fab is determined with a gamma-counter and resulting data is used to fit a one-site binding hyperbola that contains the saturation binding constant K_D:

$$\text{Bound} = \frac{B_{\text{max}} \times [\text{IZIFab}]}{([\text{IZIFab}] + K_D)}$$

[0078] The goodness of data is evaluated by performing a linearization transformation, also known as Scatchard plot. The resulting data show that IZI-06.1 binding to TNFR1 is saturable and specific, with an apparent affinity of $K_D = 0.778$ nM.

[0079] Binding characteristics, TNFR1 selectivity and epitope mapping by receptor domain swapping and FACs analyses:

[0080] A His-tag positive IZI-06.1-Fab is used to determine specificity of TNFR1 binding or TNFR1-Fas binding, respectively as well as for characterization of the epitope recognized by the antibody derivative. Figure 7A shows an indirect immunofluorescence flow cytometry analysis. IZI-06.1-Fab positively stains TNFR1-Fas chimera expressing cells in comparison to the negative control (detection reagent: FITC-labeled His-specific antibody. The comparably low intensity of the staining in comparison to indirect IF with TNFR1 specific mab225 (Fig. 7D) is known to be largely due to the different secondary detection reagents used (His-tag specific detection antibody versus anti mouse-Ig detection antibody). No specific binding occurs on TNFR2-Fas expressing cells in comparison to the negative control, the TNFR2-specific antibody 80M2 served as a positive control (Fig. 7B). No specific staining occurs on a cell positive for TNFR1-Fas constructs, where the membrane distal cysteine rich domain (CRD) 1 has been removed (Fig. 7C). This construct, however, is readily detected by another TNFR1-specific mab, mab225 (Fig 7D). Further, no specific staining occurs on a cell expressing a functional (signal competent) TNFR1-Fas construct, where the membrane distal CRD1 has been replaced by that of TNFR2 (Fig. 7E). Again, this receptor chimera is readily detected by the mab225, known to bind TNFR1 outside of CRD1. Data shown in Fig. 7C-F therefore allow to conclude that IZI-06.1 recognizes the CRD1 of TNFR1. The inventors know that CRD1 is critically involved in TNF binding through influencing the conformation of CRD2, the latter providing, together with CRD3, one of the direct ligand contact site (unpublished data of the inventors).

Inhibition of TNF action:

[0081] Purified IZI-06.1 Fab is tested for antagonistic activity in a Kym-1 human rhabdomyo-sarcoma cell line model, which is highly TNF sensitive (LD50 below 100 pg/ml sTNF, no inhibition of protein synthesis required) and responds through both TNFR1 and TNFR2 (the latter signal pathway was previously shown to induce via NF-κB signaling endogeneous TNF expression and subsequently autotrophic signaling of apoptosis of the membrane expressed TNF via TNFR1. (Grell et al., EMBO J., 1999, No. 18, p. 3034-3043). Antagonistic activity of IZI-06.1 Fab is compared with murine mab H398 and enzymatically prepared Fab from H398. Figure 8 shows efficient and complete block of TNF mediated cytotoxic action on Kym-1 cells by IZI-06.1 Fab, at a two to fourfold lower concentration as compared to H398 Fab. The full length mab, as expected from previous results, shows a higher neutralizing activity compared to monovalent Fabs at lower concentrations, likely due to lower off rate of the divalent reagent (higher avidity). Importantly, mab H398 does not reach complete block of TNF activity in this sensitive in vitro assay, because of conversion from an antagonist into a partial agonist at high concentrations. This is explained by dose dependent increase in TNF crosslinking, thus potentially forming ligand independent, functional TNF signaling complexes (see also Moosmayer et al., Ther. Immunol., 1995, No. 2, p. 31-30)

[0082] In summary, according to the present invention, one of the surprising and unexpected key features is that TNFR1 specific antagonist IZI-06.1 Fab displays superior TNFR1 blocking activity compared to an existing murine Fab of same specificity and is superior to a full length mab because of complete lack of receptor crosslinking capability, i.e. IZI-06.1 Fab is devoid of any intrinsic signaling potential and thus a veritable antagonist of TNFR1.
Example 8: Single-chain Fv IZI-06.1 and derivatives thereof

Cloning and expression of scFv IZI-06.1 (V\textsubscript{H}-V\textsubscript{L}):

[0083] ScFv IZI-06.1 (V\textsubscript{H}-V\textsubscript{L}) is generated by a two-step cloning into phagemid vector pHEN2 introducing a vector encoded 15 residue linker (GGGGSGGGGSGGSAQ) (SEQ ID NO.: 13) as well as a N-terminal pelB leader sequence and a C-terminal myc-tag and hexahistidyl-tag (His6). For soluble expression the scFv encoding sequence is obtained by digestion of pHEN2-scFv IZI-06.1 (V\textsubscript{H}-V\textsubscript{L}) plasmid DNA with restriction enzymes Sfil and NotI and cloning of the resulting fragment into expression vector pAB1 digested with the same enzymes. Expression and purification is performed as follows: 2 L of 2xTY, 100 μg/mL ampicillin, 0.1% glucose are inoculated with 20 ml overnight culture of transformed TG1 and grown to exponential phase (OD\textsubscript{600} = 0.8) at 37°C. Protein expression is induced by addition of 1 mM IPTG and bacteria are grown for additional 3 h at RT. Cells are harvested by centrifugation and resuspended in 100 ml of 30 mM Tris-HCl, pH 8.0, 1 mM EDTA, 20% sucrose. After addition of 5 mg lysozyme, cells are incubated for 15-30 min on ice. After addition of 10 mM Mg\textsubscript{2}SO\textsubscript{4}, cells are centrifuged at 10,000 g for 30 min, 4°C. Supernatant is dialyzed against PBS and loaded onto a Ni-NTA column (Qiagen, Hilden, Germany) equilibrated with 50 mM sodium phosphate buffer, pH 7.5, 500 mM NaCl, 20 mM imidazole. After a washing step (50 mM sodium phosphate buffer, pH 7.5, 500 mM NaCl, 35 mM imidazole) the His-tagged recombinant antibody fragments are eluted with 50 mM sodium phosphate buffer, pH 7.5, 500 mM NaCl, 100 mM imidazole. Protein fractions are pooled and dialyzed against PBS. Protein concentration is determined spectrophotometrically and calculated using the calculated e-value of each protein.

Cloning and expression of a scFv IZI-06.1-albumin fusion protein:

[0084] A scFv IZI-06.1 (V\textsubscript{H}-V\textsubscript{L}) human albumin fusion protein (SEQ ID NO.: 10) is generated by cloning DNA encoding scFv IZI-06.1 (V\textsubscript{H}-V\textsubscript{L}) from plasmid pAB1 as Sfil-NotI fragment into plasmid pSecTagA-HSA containing the cDNA encoding human albumin. The plasmid DNA is transfected with LipofectamineTM 2000 (Invitrogen, Karlsruhe, Germany) into HEK293 cells. Stable transfectants are generated by selection with zeocin (300 μg/ml). Cells are expanded and grown in RPMI, 5% FCS to 90% confluence. For protein production cells are cultured in Opti-MEM (Invitrogen, Karlsruhe, Germany) replacing media every 3 days for 3-4 times. Supernatants are pooled and proteins are concentrated by ammonium sulfate precipitation (60% saturation), before loading onto a Ni-NTA column (Qiagen, Hilden, Germany). Purification by IMAC is performed as described above.
SEQUENCE LISTING

University Stuttgart
Pfizenmaier, Klaus

huTNFR1 Selective Antagonists

none

17

PatentIn version 3.3

1

10

PRT

Mus musculus

1

Gly Tyr Thr Phe Thr Asp Phe Tyr Ile Asn

5

10

Trp Ile Gly Glu Ile Tyr Pro Tyr Ser Gly His Ala Tyr Tyr Asn Glu

1

5

10

15

Lys Phe Lys Ala

20

Trp Asp Phe Leu Asp Tyr

1

5

Arg Ser Ser Gln Ser Leu Leu His Ser Asn Gly Asn Thr Tyr Leu His

1

5

10

15

Trp Tyr

5

11

PRT
<213> Mus Musculus

5
Leu Leu Ile Tyr Thr Val Ser Asn Arg Phe Ser
1 5

<210> 6
<211> 9
<212> PRT
<213> Mus Musculus

<400> 6
Ser Gln Ser Thr His Val Pro Tyr Thr
1 5

<210> 7
<211> 115
<212> PRT
<213> Artificial

<220> IZI-06.1 VH - humanized antibody fragment
<223> IZI-06.1 VH - humanized antibody fragment

<400> 7
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
1 5 10 15
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Phe
20 25 30
Tyr Ile Asn Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45
Gly Glu Ile Tyr Pro Tyr Ser Gly His Ala Tyr Tyr Asn Glu Lys Phe
50 55 60
Lys Ala Arg Val Thr Ile Thr Ala Asp Lys Ser Thr Ser Thr Ala Tyr
65 70 75 80
Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Trp Asp Phe Leu Asp Tyr Trp Gly Gln Gly Thr Thr Val Thr
100 105 110
Val Ser Ser
115

<210> 8
<211> 113
<212> PRT
<213> Artificial

<220> IZI-06.1 VL - humanized antibody fragment
<223> IZI-06.1 VL - humanized antibody fragment
<table>
<thead>
<tr>
<th>8</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asp Ile Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu His Ser</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>Asn Gly Asn Thr Tyr Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser</td>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>Pro Gln Leu Leu Ile Tyr Thr Val Ser Asn Arg Phe Ser Gly Val Pro</td>
<td>50</td>
<td>55</td>
</tr>
<tr>
<td>Asp Arg Phe Ser Gly Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile</td>
<td>65</td>
<td>70</td>
</tr>
<tr>
<td>Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Ser Gln Ser</td>
<td>85</td>
<td>90</td>
</tr>
<tr>
<td>Thr His Val Pro Tyr Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys</td>
<td>100</td>
<td>105</td>
</tr>
<tr>
<td>Arg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<210> 9
<211> 288
<212> PRT
<213> Artificial

<220> scFv IZI-06.1 VH-VL - humanized antibody fragment

<400> 9

<table>
<thead>
<tr>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Met Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu Leu Leu Leu Ala</td>
<td>1</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Ala Gln Pro Ala Met Ala Gln Val Gln Leu Val Gln Ser Gly Ala Glu</td>
<td>20</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>Val Lys Lys Pro Gly Ser Ser Val Lys Val Ser Cys Lys Ala Ser Gly</td>
<td>35</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>Tyr Thr Phe Thr Asp Phe Tyr Ile Asn Trp Val Arg Gln Ala Pro Gly</td>
<td>50</td>
<td>55</td>
<td>60</td>
</tr>
<tr>
<td>Gln Gly Leu Glu Trp Ile Gly Glu Ile Tyr Pro Tyr Ser Gly His Ala</td>
<td>65</td>
<td>70</td>
<td>75</td>
</tr>
<tr>
<td>Tyr Tyr Asn Glu Lys Phe Lys Ala Arg Val Thr Ile Thr Ala Asp Lys</td>
<td>85</td>
<td>90</td>
<td>95</td>
</tr>
</tbody>
</table>
Ser Thr Ser Thr Ala Tyr Met Glu Leu Ser Ser Leu Arg Ser Glu Asp
100 105

Thr Ala Val Tyr Tyr Cys Ala Arg Trp Asp Phe Leu Asp Tyr Trp Gly
115 120 125

Gln Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly
130 135 140

Gly Gly Ser Gly Gly Ser Ala Gln Asp Ile Val Met Thr Gln Ser Pro
145 150 155 160

Leu Ser Leu Pro Val Thr Pro Gly Glu Pro Ala Ser Ile Ser Cys Arg
165 170 175

Ser Ser Gln Ser Leu Leu His Ser Asn Gly Asn Thr Tyr Leu His Trp
180 185 190

Tyr Leu Gln Lys Pro Gly Gln Ser Pro Gln Leu Leu Ile Tyr Thr Val
195 200 205

Ser Asn Arg Phe Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser
210 215 220

Gly Thr Asp Phe Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Val
225 230 235 240

Gly Val Tyr Tyr Cys Ser Gln Ser Thr His Val Pro Tyr Thr Phe Gly
245 250 255

Gly Gly Thr Lys Val Glu Ile Lys Arg Ala Ala Ala Glu Gln Lys Leu
260 265 270

Ile Ser Glu Glu Asp Leu Asn Gly Ala Ala His His His His His
275 280 285

<210> 10
<211> 867
<212> PRT
<213> Artificial

<220> scFv IZI-06.1 HSA Fusion protein
<223> 10

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
1 5 10 15

Pro Val Asp Ala Ala Gln Pro Ala Met Ala Gln Val Gln Leu Val Gln
20 25 30

Ser Gly Ala Glu Val Lys Lys Pro Gly Ser Ser Val Lys Val Ser Cys
55
Lys Ala Ser Gly Tyr Thr Phe Thr Asp Phe Tyr Ile Asn Trp Val Arg
Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile Gly Glu Ile Tyr Pro Tyr
Ser Gly His Ala Tyr Tyr Asn Glu Lys Phe Lys Ala Arg Val Thr Ile
Thr Ala Asp Lys Ser Thr Ser Thr Ala Tyr Met Glu Leu Ser Ser Leu
Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Trp Asp Phe Leu
Asp Tyr Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly
Gly Ser Gly Gly Gly Ser Gly Gly Ser Ala Gln Asp Ile Val Met
Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly Glu Pro Ala Ser
Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu His Ser Asn Gly Asn Thr
Tyr Leu His Trp Tyr Leu Gln Pro Gly Gln Ser Pro Gln Leu Leu
Ile Tyr Thr Val Ser Asn Arg Phe Ser Gly Val Pro Asp Arg Phe Ser
Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile Ser Arg Val Glu
Ala Glu Asp Val Gly Val Tyr Tyr Cys Ser Gln Ser Thr His Val Pro
Tyr Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys Arg Ala Ala Ala
Gly Gly Ser Gly Asp Ala His Lys Ser Glu Val Ala His Arg Phe
Lys Asp Leu Gly Glu Glu Asn Phe Lys Ala Leu Val Leu Ile Ala Phe
Ala Gln Tyr Leu Gln Gln Cys Pro Phe Glu Asp His Val Lys Leu Val
Asn Glu Val Thr Glu Phe Ala Lys Thr Cys Val Ala Asp Glu Ser Ala
Glu Asn Cys Asp Lys Ser Leu His Thr Leu Phe Gly Asp Lys Leu Cys
Thr Val Ala Thr Leu Arg Glu Thr Tyr Glu Thr Met Ala Asp Cys Cys
Ala Lys Gln Glu Pro Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp
Asp Asn Pro Asn Leu Pro Arg Leu Val Arg Pro Glu Val Asp Val Met
Cys Thr Ala Phe His Asp Asn Glu Thr Phe Leu Lys Tyr Leu
Tyr Glu Ile Ala Arg Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu Leu
Phe Phe Ala Lys Arg Tyr Lys Ala Ala Phe Thr Glu Cys Cys Gln Ala
Ala Asp Lys Ala Ala Cys Leu Leu Pro Lys Leu Asp Glu Leu Arg Asp
Glu Gly Lys Ala Ser Ser Ala Lys Gln Arg Leu Lys Cys Ala Ser Leu
Gln Lys Phe Gly Glu Arg Ala Phe Lys Ala Trp Ala Val Ala Arg Leu
Ser Gln Arg Phe Pro Lys Ala Glu Phe Ala Glu Val Ser Lys Leu Val
Thr Asp Leu Thr Lys Val His Thr Glu Cys Cys His Glu Asp Leu Leu
Glu Cys Ala Asp Asp Arg Ala Asp Leu Ala Lys Tyr Ile Cys Glu Asn
Gln Asp Ser Ile Ser Ser Lys Leu Lys Glu Cys Cys Glu Lys Pro Leu
Leu Glu Lys Ser His Cys Ile Ala Glu Val Glu Asn Asp Glu Met Pro
Ala Asp Leu Pro Ser Leu Ala Ala Asp Phe Val Glu Ser Lys Asp Val
Cys Lys Asn Tyr Ala Glu Ala Lys Asp Val Phe Leu Glu Met Phe Leu
Tyr Glu Tyr Ala Arg Arg His Pro Asp Tyr Ser Val Val Leu Leu Leu
Arg Leu Ala Lys Thr Tyr Glu Thr Thr Leu Glu Lys Cys Cys Ala Ala
Ala Asp Phe His Glu Cys Tyr Ala Lys Val Phe Asp Glu Phe Lys Pro
Leu Val Glu Glu Pro Glu Asn Leu Ile Lys Gln Asn Cys Glu Leu Phe
Glu Gln Leu Gly Glu Tyr Lys Phe Gln Asn Ala Leu Leu Val Arg Tyr
Thr Lys Lys Val Pro Gln Val Ser Thr Pro Thr Leu Val Glu Val Ser
Arg Asn Leu Gly Lys Val Gly Ser Lys Cys Cys Lys His Pro Glu Ala
Lys Arg Met Pro Cys Ala Glu Asp Tyr Leu Ser Val Val Leu Asn Gln
Leu Cys Val Leu His Glu Lys Thr Pro Val Ser Asp Arg Val Thr Lys
Cys Cys Thr Glu Ser Leu Val Asn Arg Arg Pro Cys Phe Ser Ala Leu
Glu Val Asp Glu Thr Tyr Val Pro Lys Glu Phe Asn Ala Glu Thr Phe
Thr Phe His Ala Asp Ile Cys Thr Leu Ser Glu Lys Glu Arg Gln Ile
Lys Lys Gln Thr Ala Leu Val Glu Leu Val Lys His Lys Pro Lys Ala
Thr Lys Glu Gln Leu Lys Ala Val Met Asp Asp Phe Ala Ala Phe Val
Glu Lys Cys Lys Ala Asp Asp Lys Glu Thr Cys Phe Ala Glu Glu
Gly Lys Lys Leu Val Ala Ala Ser Gln Ala Ala Gly Gly His His
His His His
865

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

<210> 11
<211> 39
<212> DNA
<213> Artificial

<220>
<223> Primer A

<400> 11
gaccatgatt acgcacgccgct tttccacggca tgcaaatcc

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

<210> 12
<211> 39
<212> DNA
<213> Artificial

<220>
<223> Primer B

<400> 12
acgcagcgccttctagatt aacactctcc cctgtgtaa

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

<210> 13
<211> 15
<212> PRT
<213> Artificial

<220>
<223> Residue linker

<400> 13
Gly Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Ala Gin

1 5 10 15

<210> 14
<211> 345
<212> DNA
<213> Artificial

<220>
<223> IZI–06.1 VH - humanized antibody fragment VH

<400> 14
caggttcagc tggttcagag cgggtccgga atggaaaaac cgggcacgcag cgtgaagtg
agctgcaaaag cgagcggcata tacctttacc gatttctaca tttactgtgg ggtcaggca
cgggtcagg gcctggaatgt gattgcccc-gatttatatcg tgtcaggca tggcatattac
aacgaaaaat tcaaaagcgcg tgtgaccatt acgcggggata aagcaccag caccgcgtat
atggaaagtga gctggcttcgc taggagagat accgggtggt attattgcgc gcgtggcgat
tttctggtatt atgggggccg gggcaccacc gttacggtct cggat

<210> 15
220 IZI-06.1 VL - humanized antibody fragment

<400> 15
gatattgtaga tgaccagag cccgctgtct ctgccggctca gccgggtgta accgggcagc 60
gttgctgcgt ccgagagcg gcagctgtct cattagcaac gcgaacacct tctgcatattg 120
tatctgcaga aaccgccccg cagcgcgctag atacccctgg caaacccttt 180
agcggcgcggc gcggacgcct gttgacgggct ggttagacgc gcggattttgct cttgaaatt 240
agccggtagg aaccggcagaga tgtgggtggtg cattattcgc gcgacagcacc ccatgtgcgg 300
tataccttgg gcggctgacca caaagttgcc attaaacgt 339

210 scFv IZI-06.1 - humanized antibody fragment

<400> 16
atgaaatcctt cttcgaacct cggacgcccc ggttgtattg tacgccgtccg ccaagccccggc 60
atggccgggg ttcagctgctct ctagcagcctcg gacggaggtc aaatatccgggg cagcagctcg 120
aaagctgctg ccaaatgctc gggctatacc tttacgcatt ctatcataa atggtgctgcg 180
cagcgcggcc gtcagggcct ggaaggtcatt gcggaaatt tctgcttagc gcggcatgca 240
tatattacccg cccatattcgc gacaataag gcggattacc cccagacacc 300
gcgattatgg aacgtgacgag acctgcgtagcatg cagaattaccc gcggatattt cttgcgcgtcg 360
tgggattttccc tggattttacc gggccagcccc accaggctta gttgctgccg cgggtgggagc 420
gttcagcccg gaggtggccct tggcggttagat gcacaagata ttggaggtgc cccagccggc 480
cgtctctccgc cgctgagcgc cgggtaaacc gcggagcatt gccgtcgtcgct cagccagacgc 540
ctgctgtccata cacaagccgg caacccctgt cattgggtact gtcgagaacc cggccagacgc 600
cgcagcggc gcagtttctac gttgacgccg cgggttagc ggctgctgccg cggctgtcagc 660
ggccggtctta gcggccagcct ttttcccttg aaatattgc gttggtgaagc ggaagatgtg 720
gccgctgtatt attggagcc gcaccccaac gtggccccgtatat ctctggtgct gtcgacccaa 780
gtggataatta aacgtgtcgggc gcggaaaccc aatactcattc cagaagagga tctgatgagg 840
ggcgcacatc acaccccatc ccattaa 867

223 scFv IZI-06.1 HSA fusion protein
<400> 17
atggagacag acacacctct gctatgggta ctgctgctct gggttccacc ggttgacgcg 60
gccccagccgg ccatggcaca ggttcagctg ttgctagacg gttggagaagt gaaaaaccgg 120
ggcagcagcgc tggaagtgag ctgcaaaagc agcggctatata ccccttacca ttttacatt 180
aactggggtgc tgtcagcacc gggtcagggc ctggaatgga ttgccaagat ttatctcgtg 240
agcggccatg catattacaa cgaaaaattt caaagcgcgtg tgaccattac cgcggataaa 300
agcacacagc cccggtatat ggaactagacg acgctggtgta gcgagaagatc gcgcgctggtt 360
tatttcggtc gttgagattt tctggattat tggggccagg gcacacctat gcacagtctgcg 420
agttggttggag gcgtttcagg cggaggttgc tccggcgttttg ctgcaaaaga tagtttggtg 480
acccagagcc cgctctcgctcg cgggtgacgc gcgggtggaac cgcggacagt ttgccggtgt 540
agcagcagaca gcctgtccag cagcagcacc cgggtgacgg atgtgcggctg aacgggattg 600
cgggggagct cgtcgatttt accgtgaaag ccggttttgc cgggtgacgg 660
gatcgctttta gcggcagcgg tagcggcacc gattttacc gcggggattg cgggggattg 720
gcggaagatg tgccgctgtat ttattgcagc cagagcaccct gctgtggtctg taccttgctc 780
gtgccacca aatggtgaaa taacgtgccg gccgcaggttg gattggtggtg gatggcagc 840
aagagttgag gcgttcatcg gtttaaagat tgggggaaag aaaaatttca aacgcttggtg 900
tttgcttcttg cttcagactg ttcctcgctg ttccttcgtg aacatctgat cgggtgacgg 960
aatggaatag ctaaattttgc aaaaaactgt tgttcttgag tgtggctgag ctgctggcag 1020
aatccgcttc atacccctttt tggagaaaaa ttaattcgag ttttgctgctg 1080
tatgggtgaa tcggctagct ctggcgaaaa caaagacctg aagaggtgtg atgttctttg 1140
caacacaaag atgcaacacc aacccccccc gcgttgcatt gcgcgttttg gaccagagct 1200
tgcagcttct tcatgacaa tgaagagaaca tttttggaaa aatactttata tgggtgccag 1260
agaagacactc ttaccccttt tggagccggaa cttctttttt ttgttaaaggt gttttccttg 1320
gccttttcag aatgtgccaa agcttgctgat aagagctgctc gtctgtgtcc aacgctcgat 1380
gaaccttgcc ataaggaggc gcgttggcttc gcggacaaga gacttccagtt gtttcgcttc 1440
caaaatttgg gagaaagagct ttacccgaaag cggggacttg ttcggctgag ccagagattt 1500
cccaaagctg agttttcaga aagttttCCAa ttagtggcag atctttccaca aatgcagcag 1560
gaatgtgcc atggagatat gcgttaaatg gcgttgacga gcggggacct tgcccaagtct 1620
atctgtgaa atcagagtcc gacccctcgat ttgctgagaa gattgccttgaaa gaccccttg 1680
ttgaaaaat ccacctgcat tcgccaaggtg gaaataagtg gattgtgccg tgaactctgtc 1740
tcattagctg ctgattttttg tggaaatag tgggttggca aaaaactatg tgaggcaagag 1800
gatgtttctcg cggcattgaa ttcggctgag cgcgttctttt ctattttgctg 1860
gtctgtctag cggagtcttg cagaacttat gaaacacccc tggagagcttg gttgcgttcctg 1920
gcagatccct atgaatgctg tagccttctat gttgcgttaa ttaacccctctt gttgcgttggag 1980

23
A huTNFR1-ligand comprising a proteinaceous construct having

(i) one or more amino acid sequences of human origin capable of reducing the immunogenic response of said huTNFR1-ligand in humans, and

(ii) one or more amino acid sequences of non-human origin capable of selectively binding to huTNFR1.

2. The huTNFR1-ligand according to claim 1, wherein the proteinaceous construct comprises a humanized antibody or at least one fragment thereof.

3. The huTNFR1-ligand according to claim 2, wherein the at least one fragment is selected from the group consisting of a Fab-region, a scFv, a genetically engineered or post-translationally processed recombinant derivative of said fragments, and a chemically modified derivative of said fragments.

4. The huTNFR1-ligand according to claim 3, wherein the at least one fragment is a scFv comprising the amino acid sequence according to SEQ ID NO.: 9.

5. The huTNFR1-ligand according to any of claims 1 to 4, wherein the proteinaceous construct comprises one or more of the complementary determining regions (CDRs) selected from the group consisting of SEQ ID NOs: 1 to 6, or parts thereof, conferring binding to huTNFR1.

6. The huTNFR1-ligand according to any of claims 1 to 5, wherein the proteinaceous construct comprises the amino acid sequence according to SEQ ID NO.: 7 as variable domain of the heavy chain (VH) and the amino acid sequence according to SEQ ID NO.: 8 as variable domain of the light chain (VL).

7. The huTNFR1-ligand according to any of claims 1 to 6, comprising an additional tag allowing specific interaction with a biologically acceptable compound.

8. The huTNFR1-ligand according to any of claims 1 to 7, the proteinaceous construct further comprises a biologically acceptable compound non-covalently bound thereto or covalently bound thereto by posttranslational chemical conjugation or by recombinant gene technology.

9. The huTNFR1-ligand according to claim 8, wherein the biologically acceptable compound is selected from the group consisting of serum proteins.
10. The huTNFR1-ligand according to claim 8 or 9, wherein the biologically acceptable compound is albumin.

11. The huTNFR1-ligand according to any of claims 8 to 10, wherein the proteinaceous construct comprises a fusion protein with human serum albumin according to SEQ ID NO.: 10.

12. A nucleic acid encoding the huTNFR1-ligand according to any of claims 1 to 11.

13. A vector comprising the nucleic acid sequence according to claim 12.

14. A host cell containing the nucleic acid according to claim 12 or the vector according to claim 13.

15. A pharmaceutical composition comprising a therapeutically effective amount of the huTNFR1-ligand according to any of claims 1 to 11 and optionally one or more additional components selected from the group consisting of a pharmaceutically acceptable carrier, pharmaceutically acceptable salts, an auxiliary agent, a stabilizer, a diluent and a solvent, or any combination thereof.

16. The pharmaceutical composition according to claim 15 for the treatment of rheumatoid arthritis, psoriasis, Morbus Crohn, colitis ulcerosa and other chronic inflammatory and/or autoimmune diseases, acute fulminant viral or bacterial infections, metabolic diseases, acute neurodegenerative diseases, chronic neurodegenerative diseases, preferably selected from multiple sclerosis, Parkinson and Alzheimer’s disease, genetically inherited diseases with TNF/TNF receptor 1 as the causative pathologic mediator, preferably selected from periodic fever syndrome and Cherubism, and cancer.

17. A method for treating a patient suffering from a disease selected from rheumatoid arthritis, psoriasis, Morbus Crohn, colitis ulcerosa and other chronic inflammatory and/or autoimmune diseases, acute fulminant viral or bacterial infections, metabolic diseases, acute neurodegenerative diseases, chronic neurodegenerative diseases, preferably selected from multiple sclerosis, Parkinson and Alzheimer’s disease, genetically inherited diseases with TNF/TNF receptor 1 as the causative pathologic mediator, preferably selected from periodic fever syndrome and Cherubism, and cancer, comprising the step of administering a therapeutically effective amount of the huTNFR1-ligand according to any of claims 1 to 11 to a patient in need thereof.

18. A huTNFR1-ligand comprising a proteinaceous construct having
 (i) one or more amino acid sequences of human origin capable of reducing the immunogenic response of said huTNFR1-ligand in humans, and
 (ii) one or more amino acid sequences capable of selectively binding to huTNFR1,

 obtainable by guided selection using a proteinaceous construct as defined in any one of claims 1 to 11 as a template.

19. A process for the production of a huTNFR1-ligand having a reduced immunogenic response when administered to a human being, comprising the steps of

 (a) providing a proteinaceous construct as defined in any one of claims 1 to 11,
 (b) identifying one or more amino acid sequences of human origin capable of binding selectively to huTNFR1 by guided selection using one or more of the amino acid sequences of the proteinaceous construct as a matrix, and
 (c) constructing the ligand comprising at least one or more of the amino acid sequences identified under step (b).

20. Use of a huTNFR1-ligand comprising a proteinaceous construct having

 (i) one or more amino acid sequences of human origin capable of reducing the immunogenic response of said huTNFR1-ligand in humans, and
 (ii) one or more amino acid sequences of non-human origin capable of selectively binding to huTNFR1,

 as matrix for guided selection in the identification and construction of another low-immunogenic huTNFR1-ligand comprising essentially only amino acid sequences of human origin.
Amended claims in accordance with Rule 137(2) EPC.

1. A huTNFR1-ligand comprising a proteinaceous construct having
 (i) one or more amino acid sequences of human origin capable of reducing the immunogenic response of said
 huTNFR1-ligand in humans, and
 (ii) one or more amino acid sequences of non-human origin capable of selectively binding to huTNFR1,

 wherein the proteinaceous construct comprises a humanized antibody or at least one fragment thereof and one or
 more of the complementary determining regions (CDRs) selected from the group consisting of SEQ ID NOs: 1 to
 6, or parts thereof, conferring binding to huTNFR1.

2. The huTNFR1-ligand according to claim 1, wherein the at least one fragment is selected from the group consisting
 of a Fab-region, a scFv, a genetically engineered or post-translationally processed recombinant derivative of said
 fragments, and a chemically modified derivative of said fragments.

3. The huTNFR1-ligand according to claim 2, wherein the at least one fragment is a scFv comprising the amino acid
 sequence according to SEQ ID NO.: 9.

4. The huTNFR1-ligand according to any of claims 1 to 3, wherein the proteinaceous construct comprises the amino
 acid sequence according to SEQ ID NO.: 7 as variable domain of the heavy chain (VH) and the amino acid sequence
 according to SEQ ID NO.: 8 as variable domain of the light chain (VL).

5. The huTNFR1-ligand according to any of claims 1 to 4, comprising an additional tag allowing specific interaction
 with a biologically acceptable compound.

6. The huTNFR1-ligand according to any of claims 1 to 5, the proteinaceous construct further comprises a biologically
 acceptable compound non-covalently bound thereto or covalently bound thereto by posttranslational chemical con-
 jugation or by recombinant gene technology.

7. The huTNFR1-ligand according to claim 6, wherein the biologically acceptable compound is selected from the
 group consisting of serum proteins.

8. The huTNFR1-ligand according to claim 6 or 7, wherein the biologically acceptable compound is albumin.

9. The huTNFR1-ligand according to any of claims 6 to 8, wherein the proteinaceous construct comprises a fusion
 protein with human serum albumin according to SEQ ID NO.: 10.

10. A nucleic acid encoding the huTNFR1-ligand according to any of claims 1 to 9.

11. A vector comprising the nucleic acid sequence according to claim 10.

12. A host cell containing the nucleic acid according to claim 9 or the vector according to claim 11.

13. A pharmaceutical composition comprising a therapeutically effective amount of the huTNFR1-ligand according
 to any of claims 1 to 9 and optionally one or more additional components selected from the group consisting of a
 pharmaceutically acceptable carrier, pharmaceutically acceptable salts, an auxiliary agent, a stabilizer, a diluent
 and a solvent, or any combination thereof.

14. The pharmaceutical composition according to claim 13 for the treatment of rheumatoid arthritis, psoriasis, Morbus
 Crohn, colitis ulcerosa and other chronic inflammatory and/or autoimmune diseases, acute fulminant viral or bacterial
 infections, metabolic diseases, acute neurodegenerative diseases, chronic neurodegenerative diseases, preferably
 selected from multiple sclerosis, Parkinson and Alzheimer’s disease, genetically inherited diseases with TNF/TNF1
 as the causative pathologic mediator, preferably selected from periodic fever syndrome and Cherubism, and cancer.

15. A huTNFR1-ligand comprising a proteinaceous construct having
 (i) one or more amino acid sequences of human origin capable of reducing the immunogenic response of said
huTNFR1-ligand in humans, and
(ii) one or more amino acid sequences capable of selectively binding to huTNFR1,
obtainable by guided selection using a proteinaceous construct as defined in any one of claims 1 to 9 as a template.

16. A process for the production of a huTNFR1-ligand having a reduced immunogenic response when administered to a human being, comprising the steps of

(a) providing a proteinaceous construct as defined in any one of claims 1 to 8,
(b) identifying one or more amino acid sequences of human origin capable of binding selectively to huTNFR1 by guided selection using one or more of the amino acid sequences of the proteinaceous construct as a matrix, and
(c) constructing the ligand comprising at least one or more of the amino acid sequences identified under step (b).

17. Use of a huTNFR1-ligand comprising a proteinaceous construct having

(i) one or more amino acid sequences of human origin capable of reducing the immunogenic response of said huTNFR1-ligand in humans, and
(ii) one or more amino acid sequences of non-human origin capable of selectively binding to huTNFR1,
as matrix for guided selection in the identification and construction of another low-immunogenic huTNFR1-ligand comprising essentially or only amino acid sequences of human origin.
V_H

<table>
<thead>
<tr>
<th></th>
<th>PR1</th>
<th>CDRH1</th>
<th>FR2</th>
<th>CDRH2</th>
</tr>
</thead>
<tbody>
<tr>
<td>H398-VH</td>
<td>QVQLQESGARLPAGASVLSCAS GTFTDFYN WVKQRSTQGLK WIGRIYPSGHAYTNEKFK</td>
<td>**</td>
<td>***</td>
<td>*</td>
</tr>
<tr>
<td>IZI-06.1 VH</td>
<td>QVQLQESGARLPAGASVLSCAS GTFTDFYN WVRQAPQGQGLK WIGRIYPSGHAYTNEKFK</td>
<td>**</td>
<td>***</td>
<td>*</td>
</tr>
<tr>
<td>VH1-69</td>
<td>QVQLQESGARLPAGASVLSCAS GTFTDFYN WVRQAPQGQGLK WIGRIYPSGHAYTNEKFK</td>
<td>**</td>
<td>***</td>
<td>*</td>
</tr>
</tbody>
</table>

V_L

<table>
<thead>
<tr>
<th></th>
<th>PR1</th>
<th>CDRL1</th>
<th>FR2</th>
<th>CDRL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>H398-VL</td>
<td>DIVMTQPSLPLLSLPLQASISC RSSQSSLHSNGMYLHYLW YQKPGPSK LLIYTVSNRF</td>
<td>**</td>
<td>***</td>
<td>*</td>
</tr>
<tr>
<td>IZI-06.1 VL</td>
<td>DIVMTQPSLPLLSLPLQASISC RSSQSSLHSNGMYLHYLW YQKPGPSK LLIYTVSNRF</td>
<td>**</td>
<td>***</td>
<td>*</td>
</tr>
<tr>
<td>A3</td>
<td>DIVMTQPSLPLLSLPLQASISC RSSQSSLHSNGMYLHYLW YQKPGPSK LLIYTVSNRF</td>
<td>**</td>
<td>***</td>
<td>*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>PR3</th>
<th>CDRL3</th>
<th>FR4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H398-VL</td>
<td>GVPDRPSGSQGSGTDFLTISIKVREAVDGVYFC SQSTHPVT PQGKTKEIRK</td>
<td>*</td>
<td>*</td>
<td>****</td>
</tr>
<tr>
<td>IZI-06.1 VL</td>
<td>GVPDRPSGSQGSGTDFLTISIKVREAVDGVYFC SQSTHPVT PQGKTKEIRK</td>
<td>*</td>
<td>*</td>
<td>****</td>
</tr>
<tr>
<td>A3</td>
<td>GVPDRPSGSQGSGTDFLTISIKVREAVDGVYFC SQSTHPVT PQGKTKEIRK</td>
<td>*</td>
<td>*</td>
<td>****</td>
</tr>
</tbody>
</table>

Fig. 1
IZI-06.1 VH

KpnI SfiI

<table>
<thead>
<tr>
<th>1</th>
<th>GGT ACC GCG GCC CAG CCG GCC ATG GCC CAG GTT CAG GAT CAG ACC GGT GCG GAA GTG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GTA AQ PAM AQ VQ LV QL VS SG AG EV</td>
</tr>
<tr>
<td>61</td>
<td>AAA AAA CC G GAC AGC GTG AAA GTG AGC AGC TGC AAA GCG AGC ACC ACC GAT</td>
</tr>
<tr>
<td></td>
<td>PK P S S V S V S K S A G Y T F T D</td>
</tr>
<tr>
<td>121</td>
<td>TTC TAC ATT AAC TGG GTG CTG CAG GCA CCG GTG CAG GCG CTC GAA TGG ATT GGC GAA ATT</td>
</tr>
<tr>
<td></td>
<td>FY IN W VR Q A P G Q G L E W I G E I</td>
</tr>
<tr>
<td>181</td>
<td>TAT CCG TAT AGC GCC CAT GCA TAT TAC AAC GAA AAA TCC AAA GCC GTG ACC ATT ACC</td>
</tr>
<tr>
<td></td>
<td>YP V SG H A Y N K F K A R V T I T</td>
</tr>
<tr>
<td>241</td>
<td>GGC GAT AAA AGC ACC AGC ACC GCG TAT AGT GAA CTG AGC AGC CTG AGT ACC GAA GAT ACC</td>
</tr>
<tr>
<td></td>
<td>AD K S T S T A Y M E L S S L R S E D T</td>
</tr>
<tr>
<td>301</td>
<td>GGC GTG TAT TAT TAT GCC GCT TGG GAT TTT CTG GAT TAT TGG GGC CAG GCC ACC ACC GTT</td>
</tr>
<tr>
<td></td>
<td>A V Y Y C A R W D F L D Y W G Q G T T V</td>
</tr>
<tr>
<td></td>
<td>XhoI SacI</td>
</tr>
<tr>
<td>361</td>
<td>ACG GTG TCG ACT GAT GAC CTC</td>
</tr>
<tr>
<td></td>
<td>TV S S E L</td>
</tr>
</tbody>
</table>

IZI-06.1 VL

KpnI SfiI

<table>
<thead>
<tr>
<th>1</th>
<th>GGT ACC GCG GCC CAG CCG GCC ATG GCC GAT ATT GTG ATG ACC CAG AGC CCG CTG TCT CTG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GTA AQ PAM AQ VQ LV QL VS SG AG EV</td>
</tr>
<tr>
<td>61</td>
<td>CCG GTG ACC CCG GGT GAA CCG CCG AGC ATT AGC TGC GAT AGC AGC CAG CTG CAT</td>
</tr>
<tr>
<td></td>
<td>PV T P G E P A S I S C R S S Q S L H</td>
</tr>
<tr>
<td>121</td>
<td>AGC AAC GCC AAC ACC TAT CTG CAT TGG TAT CTG CAG AAA CCG GCC CAG AGC CCG AGC CTG</td>
</tr>
<tr>
<td></td>
<td>SN G N T Y L H W Y L Q K P G Q S P Q L</td>
</tr>
<tr>
<td>181</td>
<td>CTG ATT TAT ACC GTG AGC AAC GAT TTT AGC GCC GTG CCG GAT GGC GAT GGC GCC ACC GGT</td>
</tr>
<tr>
<td></td>
<td>LI Y T V S N R F S G V P D R F S G C G S G</td>
</tr>
<tr>
<td>241</td>
<td>AGC GCC ACC GAT TTT ACC CTG AAA ATT AGC CTG GTG GAA GCC GGA GAT GTG GCC GTG GAT</td>
</tr>
<tr>
<td></td>
<td>SG T D F T L K I S R V E A B D V G V Y</td>
</tr>
<tr>
<td>301</td>
<td>TAT TGC AGC ACC ACC CAT GTG CCG TAT ACC TTT GGC GGT GCC ACC AAA GTG GAA ATT</td>
</tr>
<tr>
<td></td>
<td>Y C S Q S T H V P Y T F G G G T K V E I</td>
</tr>
<tr>
<td></td>
<td>AscI SacI</td>
</tr>
<tr>
<td>361</td>
<td>AAA GCT GCC GCC CCA GAG CTC</td>
</tr>
<tr>
<td></td>
<td>KR G A P E L</td>
</tr>
</tbody>
</table>

Fig. 2
Figs. 7 a to f

A

\(\Delta CRD1-TNFR1-Fas \)

Con = 5.03

IZI-06.1-Fab = 13.51

B

TNFR2-Fas

IZI-06.1-Fab = 4.27

Con = 4.60

80M2 = 15.10

C

\(\Delta CRD1-TNFR2-TNFR1-Fas \)

IZI-06.1-Fab = 5.12

Con = 5.04

D

\(\Delta CRD1-TNFR1-Fas \)

Con = 5.15

mAb225 = 14.52

E

CRD1-TNFR2-TNFR1-Fas

Con = 5.76

IZI-06.1-Fab = 5.66

F

\(\Delta CRD1-TNFR1-Fas \)

Con = 5.72

mAb225 = 12.33
Kym I 16h treatment

- **huTNF-α**
- **PBS**

Viability [% of control]

- 50% rel. Toxicity
- Max. Toxicity

TNF [ng/ml]

Kym I 16h treatment

[1.25 ng/ml hTNF-α]

- **PBS control**
- **TNF+mu H398**
- **TNF+mu H398-Fab**
- **TNF+IZI-06.1-Fab**

% protection

- Max. Tox

H398 or Fab [µg/ml]

Fig. 8
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 0 444 560 A (MAX PLANCK GESELLSCHAFT [DE]) 4 September 1991 (1991-09-04)</td>
<td>1-3,5, 7-10, 12-17</td>
<td>INV. C07K16/28</td>
</tr>
<tr>
<td></td>
<td>* page 3, line 56 - page 4, line 3 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>-----</td>
<td>4,6,11, 18-20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* page 34, right-hand column, paragraph 3 - page 35, left-hand column, paragraph 1 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-----</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INCOMPLETE SEARCH

The Search Division considers that the present application, or one or more of its claims, does/do not comply with the EPC to such an extent that a meaningful search into the state of the art cannot be carried out, or can only be carried out partially, for these claims.

Claims searched completely:

Claims searched incompletely:

Claims not searched:

Reason for the limitation of the search:

see sheet C

CATEGORY OF CITED DOCUMENTS

- **X**: particularly relevant if taken alone
- **Y**: particularly relevant if combined with another document of the same category
- **A**: technological background
- **D**: non-written disclosure
- **P**: intermediate document
- **T**: theory or principle underlying the invention
- **E**: earlier patent document, but published on, or after the filing date
- **D**: document cited in the application
- **L**: document cited for other reasons
- **M**: member of the same patent family, corresponding document
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JESPERS L S ET AL: "GUIDING THE SELECTION OF HUMAN ANTIBODIES FROM PHAGE DISPLAY REPERTOIRES TO A SINGLE EPITOPE OF AN ANTIGEN" BIO/TECHNOLOGY, NATURE PUBLISHING CO. NEW YORK, US, vol. 12, no. 9, 1 September 1994 (1994-09-01), pages 899-903, XP000572619 ISSN: 0733-222X * figure 1 *</td>
<td>18-20</td>
</tr>
</tbody>
</table>

CLASSIFICATION OF THE APPLICATION (IPC)

<table>
<thead>
<tr>
<th>TECHNICAL FIELDS SEARCHED</th>
<th>(IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Although claim 17 is directed to a method of treatment of the human/animal body (Article 52(4) EPC), the search has been carried out and based on the alleged effects of the compound/composition.
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

23-08-2007

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FI 910973 A</td>
<td>29-08-1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4211392 A</td>
<td>03-08-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 96910 A</td>
<td>31-10-1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5736138 A</td>
<td>07-04-1998</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Non-patent literature cited in the description

• HOTAMISLIGIL G. S. Nature, 2006, 860-867 [0002]
• MARCETTI et al. J. Biol. Chem., 2004, 32869-32881 [0008]
• THOMA et al. J. Exp. Med., 1990, 1019-1023 [0012]
• GRELL et al. Cell, 1995, 793-802 [0012]
• MOOSMAYER et al. Ther. Immunol., 1995, 31-40 [0012] [0065]
• JESPERS et al. Biotechnology, 1994 [0058]
• Prot. Eng., vol. 13, 819-824 [0062]
• GRELL. EMBO J., 1999, 3034-3043 [0081]