European Patent Specification

Date of publication and mention of the grant of the patent: 08.06.2016 Bulletin 2016/23

Application number: 08250156.0

Date of filing: 12.01.2008

Aerofoil assembly in a gas turbine
Schaufelanordnung in einer Gasturbine
Aubage dans une turbine à gaz

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

Priority: 21.02.2007 GB 0703426

Date of publication of application: 03.09.2008 Bulletin 2008/36

Proprietor: Rolls-Royce plc
London SW1E 6AT (GB)

Inventor: Holmes, Martin David
Bedfordshire LU5 5EF (GB)

Representative: Rolls-Royce plc
Intellectual Property Dept SinA-48
PO Box 31
Derby DE24 8BJ (GB)

References cited:
EP-A1- 1 617 044
EP-A2- 0 851 096
EP-A2- 1 041 248
FR-A1- 2 619 158
GB-A- 894 704
JP-A- 58 176 402
US-A- 3 930 751
US-A- 4 566 857
US-A- 5 256 035
US-A- 5 313 786

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The invention relates to an aerofoil assembly and a method of assembly of an aerofoil assembly.

Aerofoil assemblies such as stages of a gas turbine compressor or turbine typically comprise an array of blades 10 which are located in a supporting disc or drum 12 and have a damping member 14 disposed between the blades 10 in order to achieve a desirable vibration characteristic. Such an arrangement is shown in Figures 1 to 3 (PRIOR ART) in which the damping member 14 is located in a compartment 16 formed between adjacent blades 10.

The damping member 14, as viewed in Figure 1, has a "cottage roof" type cross section in that it is part triangular (or "peaked"). As shown in Figures 2 and 3 (PRIOR ART), which are sectional views on arrow "A" in Figure 1 (PRIOR ART) the damping member 14 is largely rectangular in cross section. As also shown in Figure 2 (PRIOR ART) the compartment 16 is formed by the provision of a recess 18 in each blade 14, and a shelf 20 at either end of the recess 18 forms a support structure 22 for the damping member 14. The member 14 is trapped in the compartment 16 by the shelves 20 since the overall span or longitudinal length "x" of the damping member 14 is greater than the distance between edges 24 of the shelves 20. As shown in Figure 3 (PRIOR ART) part of the method of assembly requires at least one of the blades 10 to be slid out of the array to allow for a locking member 26 to be inserted in a groove 28, on the rear or forward edge of the blade, in direction B. Thus the damping member 14 must be small enough to allow the blades to move relative to one another to allow access to the groove 28, and yet the damping member 14 must be long enough to stay trapped between the blades when the blades are realigned. Manufacturing tolerances may result in the damping member 14 or support structure 22 between the blades during assembly, is highly desirable.

According to a first aspect of the present invention there is provided an aerofoil assembly comprises: a plurality of rotatable blades; and a damping member disposed between two of the blades, each of the at least two blades having an aerofoil portion, a stem portion and a root portion; a recess being provided on two cooperating stem portions; a first shelf extending from a leading edge of each recess; and a second shelf extending from a trailing edge of each recess to define a compartment, characterised in that the damping member is provided with a first projection at one corner and a second projection on a diagonally opposite corner, the longitudinal distance between ends of the first and second projections being greater than the distance between edges of the first and second shelf, such that when the blades are aligned the damping member is held within the compartment by the engagement of the first and second projections with the shelves.

This is advantageous as the projections of the damping member allow relative axial movement of the blades during assembly, but prevent the damping member from becoming dislodged from the compartment during assembly and/or operation of the assembly. Also the provision of projections on the damping members means that no modification to any feature of the known rotor blades is required in order to achieve the advantage. This is of benefit as the damping members are much simpler structures than the rotor blades and carry less load. Hence alterations to the design of the damping members impinge less on the integrity of the aerofoil assembly than would alterations to the rotor blades.

Preferably at least one groove is provided along a leading and/or trailing edge of the stem portion of at least two of the blades and a locking member is located in said groove(s), thereby tying said at least two blades together.

According to a second aspect of the present invention there is provided a method of assembly of an aerofoil assembly comprising the steps of:

a) assembling the plurality of rotor blades adjacent to one another into a circular array such that the blades are in alignment with one another, with a damping member disposed within the compartment of one pair of blades;

b) axially displacing one rotor blade which part houses the damping member relative to the other aligned blades to allow access to the groove, thereby disengaging the damping member projections from the shelves and engaging the other corners of the damping member with the shelves;
c) inserting a locking member in a first direction into the groove(s) of at least one of the aligned blades thereby lying at least two of the blades together;

d) bringing the misaligned rotor blade back into alignment with the other rotor blades thereby engaging the projections with the shelves and disengaging the other corners of the damping member from the shelves,

thereby trapping the damping member on one side of the shelves within the compartment.

[0010] Preferably the method comprises the further step of translating the locking member in a second direction such that it is inserted into the groove of the previously misaligned rotor blade.

[0011] The method of assembly using the damping member of the present invention is advantageous as there is a risk with the method of assembly of the prior art that, because of the need to allow relative axial movement of the blades during assembly, the damping member and/or shelves may be undersized. Such under sizing may result in the damping member of the prior art becoming dislodged from the compartment during assembly and/or operation, resulting in damage to engine components.

[0012] However, the projections of the damping member of the present invention ensure that the damping member has a longitudinal dimension which is longer than the largest expected distance between the edges of the shelves. Thus a method of assembly according to the present invention will prevent the damping member from becoming dislodged from the compartment.

[0013] The invention will now be described, by way of example only, with reference to the accompanying drawings, in which:

Figure 1 (PRIOR ART) shows a sectional end on view of part of a known aerofoil assembly;

Figure 2 (PRIOR ART) shows a sectional view of part of the assembly as viewed from direction of Arrow A in Figure 1; and

Figure 3 (PRIOR ART) shows the same view as in Figure 2 but with platforms of the assembly misaligned;

Figure 4 shows a sectional end on view of part of an aerofoil assembly according to the present invention;

Figure 5 shows a sectional view of part of the assembly as viewed from direction of Arrow A in Figure 4; and

Figure 6 shows the same view as in Figure 5 but with platforms of the assembly misaligned.

[0014] Figure 4 shows a sectional end on view of part of an aerofoil assembly according to the present invention. A disc 30 is provided with retaining slots (mounting features) 32 into which blades 34 are slid and located. Each blade 34 has a root portion 38, a stem portion 40 an aerofoil portion 42, which is defined by a leading edge 44, a trailing edge 46, a pressure surface 48 and a suction surface 50. For the sake of convenience, the terms "leading edge", "trailing edge", "pressure surface" and "suction surface" will relate to all features of the root 38 and stem 40 portions which share the same edge or side with the aerofoil surface. A damping member 52, is disposed between each of the blades 34 in a compartment or well 60 which is defined by cavities or recesses 62,64 provided on adjacent pressure/suction surfaces 48,50 of stems 40 of the blades 34. As is more clearly shown in Figures 5 and 6, the cavities 62,64 provide a support structure 66 for the damping member 52, the support structure taking the form of a shelf 68 which extends from the trailing and leading edge of the recesses 64.

[0015] As with the prior art of Figure 1, 2 and 3, the damping member 52, as viewed in Figure 4, has a "cottage roof" type cross section in that it is part triangular (or "peaked"). Viewed in direction A (and as more clearly shown in Figures 5 and 6) the damping member 52 is largely rectangular in cross section. A first projection or lug 70 is provided on one of the corners of the member 52 and second projection or lug 72 is provided on a diagonally opposite corner, giving the damping member 52 a "stepped" profile. Each projection 70,72 is less than half as wide as the main body of the damping member 52. Additionally the "lugs", "steps" or "projections" extend away from the plane edge of the damping member such that the span or overall longitudinal length "y" of the damping member 52 is greater than the distance between the leading and trailing edges 73 of the shelf 68. That is to say, the lugs 70,72 extend beyond the length of the main body of the damping member 52 such that the damping member 52 is longer than the largest distance between edges 73 of the shelves 68 of the support structure 66 when the platforms 40 are assembled and aligned as shown in Figures 4 and 5.

[0016] Each of the blades 34 and each of the damping members 52 are substantially of the same design. In alternative embodiments (which do not form part of the invention, but represent background art that is useful for understanding the invention) the stepped damping member 52 is present between less than all of the compartments 60 formed between the blades 34.

[0017] A groove 74 is provided in the trailing edge 46 of each of the stem portions 40. The groove extends circumferentially such that, when the array of blades 34 is assembled and aligned, a continuous groove 74 is formed around the array, which is defined by radially extending parallel walls and an opening which is radially inwards of a closed end. Once assembled a locking member 76 is inserted in the groove 74 of adjacent stems 40, thereby lying at least two blades 34 together. The locking
member 76 is a flat strip which has dimensions which correspond with those of the groove 74 such that the member 76 can be slid easily along the groove 74 during assembly but will interfere sufficiently with the groove 74 such that the member 76 maintains its desired circumferential and radial location relative to the groove 74. In one embodiment (which does not form part of the invention, but represents background art that is useful for understanding the invention) the strip has sufficient length to tie only two blades 34 together. In an alternative embodiment (which do not form part of the invention, but represent background art that is useful for understanding the invention) the strip has sufficient length to tie all of the blades 34 together. In a further alternative embodiment the strip has sufficient length to tie more than two but less than all of blades 34 together. In a further alternative embodiment the strip has sufficient length to tie all of the blades 34 together. The strip may be arcuate and radially outwardly resilient such that it maintains its position in the groove 74.

Such an assembly is assembled by the following method. A set of rotor blades 34 are assembled adjacent one another to form a complete array prior to assembly on the disc 30, with a damping member 52 present between at least two adjacent blades 34, the projections 70,72 resting on the support structure 66. The blades 34 are slid as a complete array onto the disc 30 such that the trailing and leading edges of the blades 34 are in alignment with one another. The blades 34 cannot be slid onto the disc 30 one at a time since the shroud (not shown) of the blade 34 has a different stagger angle to that of the retaining slots 32. One of the blades 34 which part-houses the damping member 52, is axially displaced relative to the others to allow access to the groove 74 as shown in Figure 6. Sliding the blade 34 in this way disengages the projections 70,72 of the damping member 52 from the shelves 68 and engages the other corners of the damping member 52 (those without lugs/projections) with the support structure 66. A locking member 76 is then inserted in the groove 74 in a first direction B along the length of the groove 74 (as shown in Figure 6), thereby tying at least two adjacent blades together.

If required, further locking members 76 are inserted into groove 74 to tie the remaining blades 34 together. If more than one locking strip is inserted into groove 74, each locking member 76 is pushed along the groove 74 by the insertion of a further locking member 76. When the locking strip(s) 76 are fully inserted, the misaligned rotor blade 34 is brought back into alignment (as shown in Figure 5). Thus the projections 70,72 are engaged with the shelves 68 and the other corners of the damping member 52 (those without lugs/projections) are disengaged with the shelves 68. In one embodiment a locking member 76, which is already inserted into the groove 74 of the adjacent blade 34 is then slid into the groove 74 of the platform 40 of the previously misaligned blade 34, thereby tying these two blades 34 together. In an alternative embodiment (which does not form part of the invention, but represents background art that is useful for understanding the invention) several blades 34 of the array are misaligned in order to insert locking members 76 at different positions around the array. In a further alternative embodiment a specially shaped separate locking member (not shown) is inserted in the groove 74 of the previously misaligned blade 34 and the adjacent blade 34 in order to tie them together.

Once assembled the stepped damper 52 cannot fall out of its retaining compartment 50 because the longitudinal length “y” of the damper 52 is greater than the distance largest between the edges 73 of the shelves 68.

Claims

1. An aerofoil assembly for a gas turbine comprises:
 - a plurality of rotatable blades (34); and
 - a damping member (52) disposed between two of the blades (34), each of the at least two blades (34) having an aerofoil portion (42), a stem portion (40) and a root portion (38); a recess (62,64) being provided on two cooperating stem portions (40); a first shelf (68) extending from a leading edge of each recess (62,64); and a second shelf (68) extending from a trailing edge of each recess (62,64) to define a compartment (60), characterised in that the damper member (52) is provided with a first projection (70) at one corner and a second projection (72) on a diagonally opposite corner, the longitudinal distance between ends of the first and second projections (70,72) being greater than the distance between edges of the first and second shelf (68), such that when the blades (34) are aligned the damping member (52) is held within the compartment (60) by the engagement of the first and second projections (70,72) with the shelves (68).

2. An aerofoil assembly as claimed in claim 1 wherein at least one groove (74) is provided along a leading and/or trailing edge of the stem portion (40) of at least two of the blades (34) and a locking member (76) is located in said groove(s) (74), thereby tying said at least two blades (34) together.

3. An aerofoil assembly as claimed in claim 1 or claim 2 wherein each projection (70,72) is less than half as wide as the damping member (52).

4. An aerofoil assembly as claimed in any one of the preceding claims wherein the aerofoil assembly comprises a plurality of damping members, and wherein each of the blades (34) and each of the damping members (52) are substantially of the same
Method of assembly of an aerofoil assembly for a gas turbine according to any one of claims 2 to 4, comprising the steps of:

a) assembling the plurality of rotor blades (34) adjacent to one another into a circular array such that the blades (34) are in alignment with one another, with a damping member (52) disposed within the compartment (60) of one pair of blades (34);
b) axially displacing one rotor blade (34) which part houses the damping member (52) relative to the other aligned blades (34) to allow access to the groove (74), thereby disengaging the damping member (52) projections (70,72) from the shelves (68) and engaging the other corners of the damping member (52) with the shelves (68);
c) inserting a locking member (76) in a first direction into the groove(s) (74) of at least two of the aligned blades (34) thereby tying at least two of the blades (34) together;
d) bringing the misaligned rotor blade (34) back into alignment with the other rotor blades (34) thereby engaging the projections (70,72) with the shelves (68) and disengaging the other corners of the damping member (52) from the shelves (68), thereby trapping the damping member (52) on one side of the shelves (68) within the compartment (60).

A method as claimed in claim 5 comprising the further step of translating the locking member (76) in a second direction such that it is inserted into the groove (74) of the previously misaligned rotor blade (34).

Verfahren zum Zusammenbau einer Tragflügelanordnung für eine Gasturbine gemäß einem der Ansprüche 2 bis 4, folgende Schritte umfassend:

a) Zusammenbauen der Vielzahl von Rotorflügeln (34) angrenzend aneinander in eine kreisförmige Anordnung derart, dass die Flügel (34) miteinander ausgerichtet sind, wobei ein Dämpfungselement (52) innerhalb des Fachs (60) des einen Flügelpaares (34) angeordnet ist;
b) Axiales Verschieben eines Rotorflügels (34), der teilweise das Dämpfungselement (52) aufnimmt, relativ zu den anderen ausgerichteten Flügeln (34), um Zugang zur Nut (74) zu erlauben, um dadurch die Vorsprünge (70,72) des Dämpfungselementes (52) von den Sockeln (68) zu lösen und die anderen Ecken des Dämpfungselementes (52) mit den Sockeln (68) in Eingriff zu bringen;
c) Einschieben eines Verriegelungselementes (76) in einer ersten Richtung in die Nut(en) (74) von wenigstens zwei der ausgerichteten Flügel (34), um dadurch wenigstens zwei der Flügel (34) miteinander zu verbinden;
d) Zurückbringen des falsch ausgerichteten Rotorflügels (34) in Ausrichtung mit den anderen Rotorflügeln (34), um dadurch die Vorsprünge (70, 72) mit den Sockeln (68) in Eingriff zu bringen und die anderen Ecken des Dämpfungselementes (52) von den Sockeln (68) zu lösen, um dadurch das Dämpfungselement (52) auf einer Seite der Sockel (68) innerhalb des Fachs (60) zu fangen.

Revendications

1. Ensemble de surface portante pour une turbine à gaz, comprenant :

 une pluralité de pales rotatives (34) ; et
 un élément d’amortissement (52) disposé entre deux des pales (34), chacune des au moins deux pales (34) comportant une partie de surface portante (42), une partie de tige (40) et une partie d’emplanture (38) ;
 un évidement (62,64) étant prévu sur deux parties de tige en coopération (40) ;
 un premier rayon (68) s’étendant depuis un bord d’attaque de chaque évidement (62,64) ; et un second rayon (68) s’étendant depuis un bord de fuite de chaque évidement (62,64) pour définir un compartiment (60), caractérisé en ce que l’élément d’amortissement (52) est muni d’une première saillie (70) au niveau d’un coin et d’une seconde saillie (72) sur un coin diagonalement opposé, la distance longitudinale entre les extrémités des première et seconde saillies (70,72) étant supérieure à la distance entre les bords des premier et second rayons (68), de sorte que lorsque les pales (34) sont alignées l’élément d’amortissement (52) est maintenu à l’intérieur du compartiment (60) par l’engagement des première et seconde saillies (70,72) avec les rayons (68).

2. Ensemble de surface portante selon la revendication 1, dans lequel au moins une rainure (74) est prévue le long d’un bord d’attaque et/ou de fuite de la partie de tige (40) d’au moins deux des pales (34) et un élément de verrouillage (76) est situé dans la ou les dites rainure(s) (74), liant de la sorte lesdites au moins deux pales (34) l’une avec l’autre.

3. Ensemble de surface portante selon la revendication 1 ou 2, dans lequel chaque saillie (70,72) a une largeur de moins de la moitié de la largeur de l’élément d’amortissement (52).

4. Ensemble de surface portante selon l’une quelconque des revendications précédentes, dans lequel l’ensemble de surface portante comprend une pluralité d’éléments d’amortissement, et dans lequel chacune des pales (34) et chacun des éléments d’amortissement (52) ont sensiblement la même conception.

5. Procédé d’assemblage d’un ensemble de surface portante pour une turbine à gaz selon l’une quelconque des revendications 2 à 4, comprenant les étapes consistant à :

 a) assembler la pluralité de pales de rotor (34) adjacentes les unes aux autres dans une configuration circulaire de manière à ce que les pales (34) soient en alignement les unes avec les autres, avec un élément d’amortissement (52) disposé à l’intérieur du compartiment (60) d’une paire de pales (34) ;
 b) déplacer axialement une pale de rotor (34) qui isole l’élément d’amortissement (52) par rapport aux autres pales alignées (34) pour permettre l’accès à la rainure (74), désengageant de la sorte les saillies (70,72) de l’élément d’amortissement (52) des rayons (68) et engageant les autres coins de l’élément d’amortissement (52) avec les rayons (68) ;
 c) insérer un élément de verrouillage (76) dans une première direction dans la ou les rainure(s) (74) d’au moins deux pales alignées (34) liant de la sorte au moins deux des pales (34) l’une à l’autre ;
 d) ramener la pale de rotor désalignée (34) en alignement avec les autres pales de rotor (34) engageant de la sorte les saillies (70,72) avec les rayons (68) et désengageant les autres coins de l’élément d’amortissement (52) des rayons (68), emprisonnant de la sorte l’élément d’amortissement (52) sur un côté des rayons (68) à l’intérieur du compartiment (60).

6. Procédé selon la revendication 5, comprenant en outre l’étape consistant à coulisser l’élément de verrouillage (76) dans une seconde direction de manière à ce qu’il soit inséré dans la rainure (74) de la pale de rotor précédemment désalignée (34).
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• EP 1617044 A [0004]