Collaboration application and method

The invention relates to an application adapted for collaboration by a plurality of users, the application comprising a processing logic, a user interface comprising at least one control element adapted to receive collaborative input, wherein the at least one control element is linked to a collaboration utility, the collaboration utility being adapted to generate the collaborative input for the control element based on the individual inputs of at least some of the plurality of users.
Description

1. Technical field

[0001] The invention relates to an application adapted for collaboration by a plurality of users, a collaboration system and a method for enabling collaboration of a plurality of users in the operation of an application.

2. The prior art

[0002] Collaboration in the operation of a software application is more and more important. There are many situations, wherein multiple users, which may be in different locations, need to collaborate and work together on a software application. For example, a plurality of engineers from different development teams may collaborate to design a new machine part using collaboratively a common CAD/CAM application. Another example is a plurality of accountants processing collaboratively business data of a company using a corresponding application.

[0003] In the prior art, there are many collaboration systems known, such as a video conferencing systems or internet tools like online chats, the online sharing of documents etc.. The prior art solutions for an online collaboration are typically operating more or less independently from or parallel to the operation of the user interface of the application. Another approach is known from a word processing and spreadsheet application offered by Google for collaborative operation. Here the contribution of each participant is correspondingly marked up and the screen displays are fully synchronized. This approach may be sufficient for word processing or similarly simple tasks. However, technically more advanced application, may require a real collaboration of a plurality of users.

[0004] It is therefore the technical problem underlying the present invention to provide an application adapted for collaboration by a plurality of users, a collaboration system and a corresponding method which overcome the above indicated limitations of the prior art and provide a tighter integration of an application and the collaboration of a plurality of users.

3. Summary of the invention

[0005] In one embodiment, this problem is solved by an application adapted for collaboration by a plurality of users, the application comprising a processing logic and a user interface. The user interface comprises at least one control element adapted to receive collaborative input, wherein the at least one control element is linked to a collaboration utility, the collaboration utility being adapted to generate the collaborative input for the control element based on the individual inputs of at least some of the plurality of users.

[0006] Rather than operating the application and one or more collaboration utilities more or less independently from each other, the present invention connects a suitable utility directly to the respective control element of the user interface of the application. Preferably, the at least one control element comprises a collaborative icon adapted to initiate the linked collaboration utility. The control element is for example a date control element and the collaboration utility is a scheduler adapted to generate a collaborative input date based on calendar entries of at least some of the users. If the control element serves to select one option among several options, the collaboration utility is preferably a survey utility inviting at least some of the users to vote for one option and generating the collaboratively selected option.

[0007] According to a further aspect, the present invention relates to a collaboration system comprising an application as described above. The collaboration system further comprises a collaboration screen for the display of the user interface, with a collaborative utilities area displaying one or more collaborative utilities and a meeting area displaying graphical identifiers for each of the plurality of users.

[0008] According to a further aspect, the present invention relates to a collaboration system comprising an application as described above. The collaboration system further comprises a collaboration screen for the display of the user interface, with a collaborative utilities area displaying one or more collaborative utilities and a meeting area displaying graphical identifiers for each of the plurality of users.

[0009] Accordingly, the application and the collaboration of the plurality of users are not only linked via the at least one control element and its collaboration utility, but also by the simultaneous display on the collaboration screen. The meeting area, which displays the participating users, intuitively reflects the situation in a real meeting and therefore further supports the collaboration of the users. The graphical identifiers are preferably images or video streams showing the respective user, which are adapted to be presented with varying styles to reflect different roles of the related user during a meeting. In one embodiment, the content of the user interface in the collaboration screen depends on an authorization profile of the respective user. Since the collaboration of the users is technically realized by the one or more collaboration utilities generating collaborative input, it is no longer needed that all users see the same user interface of the application. As a result, there is a by far greater amount of security provided than in the prior art, wherein the whole desktop is indiscriminately shared by all participants of a virtual meeting.

[0010] In one embodiment, the collaboration system is adapted to be presented by browsers of the plurality of users and the processing logic is adapted to be implemented in one or more processing servers. Preferably, the collaborative system further comprises a collaborative bus, which is adapted to be implemented in one or more servers and which serves to maintain application data shared by the plurality of users. The collaboration
The collaboration bus comprises preferably an interface for performing collaborative functions, when executing the application. The interface highly abstracts the complexity of exchanging data in a distributed environment with the plurality of users, e.g. it hides any specific distribution topology running the collaboration bus on one or more servers together or separated from the application and the user sessions.

According to a still further aspect, the present invention relates to a method for enabling collaboration of a plurality of users in the operation of an application, the application comprising a user interface and processing logic, the method comprising the steps of providing at least one control element of the user interface which is linked to a collaboration utility, the collaboration utility being adapted to generate a collaborative input for the control element based on the individual inputs of at least some of the plurality of users, and processing the collaborative input with the processing logic of the application.

In one embodiment step a. comprises modifying the control element adapted for receiving individual input so that it is bound to the collaboration utility. To this end step a. comprises in one embodiment adding a collaborative icon to the control element, the icon being adapted to initiate the linked collaboration utility.

As a result, the method is non-invasive, i.e. the processing logic of an application revised for collaboration does not need to be changed. Only the user interface is modified by extending one or more user controls with the collaborative icon for the respective collaboration utility.

Further improvements of the above described application, the collaboration system and the method are the subject matter of further dependent claims.

4. Short description of the drawings.

In the following detailed description, presently preferred embodiments of the present invention are further explained, wherein reference is made to the following figures:

Fig.1: The collaboration screen in an embodiment of the collaboration system of the present invention;

Fig.2: The collaboration screen displayed in a different style according to the role of the respective user;

Fig. 3: A schematic drawing illustrating the linking of the scheduler collaboration utility to a control element of the user interface of the application in one embodiment of the invention;

Fig. 4: A schematic drawing illustrating the linking of the survey collaboration utility to a control element of the user interface of the application in one embodiment of the invention;

Fig. 5a - c: Exemplary topologies for implementing the collaboration system according to the present invention;

Fig. 6a, b: Exemplary source code for the interface to access the collaboration bus and to generate an instance of the interface in one embodiment of the present invention;

Fig. 7: Exemplary code for implementing a meeting object in one embodiment of the present invention;

Fig. 8: Exemplary code for implementing a survey collaboration utility;

Fig. 9: Exemplary code for implementing a scheduling utility;

Fig. 10: A schematic overview of the relations between the collaboration bus, the meeting object, the utility instances and the user;

Fig. 11: A schematic representation of the direct linking of the control elements of the user interface to the respective collaboration utility;

Fig. 12: An example of a control element being amended to include a collaborative icon;

Fig. 13a, b: Exemplary code for implementing sharing capabilities for a document; and

Fig. 14: A schematic representation of the data flow in a system according to the invention.

5. Detailed description of preferred embodiments

In the following, presently preferred embodiments of the invention are described. As will become apparent from the explanations below, this embodiment enables end users to jointly work on an application. It supports collaboration scenarios such as enabling web cam services or chatting. The underlying collaboration bus, which is described in more detail below, is built as an open software infrastructure which can easily be plugged around existing application user interfaces and allows integrating applications into various collaboration scenarios.

The collaboration system described in the following is based on certain architectural aspects: A user interface, collaboration utilities, a communication infrastructure and interfaces allow extending existing applications by adding collaborative functions. The collabo-
When operating the collaboration system of the described embodiment, the user is initially requested to log on. During logon the underlying collaboration bus is internally initialized and the logon user information is passed to the bus.

In a first step, the collaboration screen 1 is presented to the user, an exemplary embodiment of which is shown in Fig. 1. The screen 1 is separated into a plurality of areas each of which is individually sizeable. Each area is only visible if required.

The meeting area 10 is only displayed if the user is involved in a meeting. In the meeting area 10 he sees all participants 11 or potential participants which are likely to take part in the meeting. The participants 11 of a meeting are either shown as an image or - if available - as an embedded webcam display.

The right to operate the user interface can be passed between the participants of the meeting. By default the leader of the meeting is the editor. However, the current editor can pass the editor role to another participant by clicking below the participant’s face or webcam in the meeting area 10. As a consequence, the editing right is passed to the respective user and the participant now being the new editor is marked with a color bar in the meeting area.

In any event, the result is a number of potential participants of the meeting being seated in the meeting area 10. The leader of the meeting is preferably somehow marked, for example with a color bar below the face or webcam stream. The quality or style of the graphical identifier of such an image or webcam stream reflects the current participation status of the respective user. For example, light black and white image may indicate that the participant is a potential participant which was not yet invited to take part in the online meeting. An image highlighted in red may reflect that the participant is requested to take part but has not decided yet to really join. A presentation as a colored image/webcam could show that the participant has joined the meeting and is actively taking part.

The process of inviting a potential participant into the meeting is the following: The leader of the meeting clicks onto the face of the potential participant. In the meeting area 10, the corresponding face turns into highlighted in red. Further, in the screen of the potential user the meeting area is opened and the user is asked to join the meeting. In case the user decides to join the meeting, the image in the meeting area changes to color, or - if available - the life webcam stream of the participant is displayed. Participants can leave the meeting any time simply by clicking on the “Leave” icon 12 on the right top of the meeting area 10.

Applications that enable their user interface processing to operate as shared application allow a synchronization of application content inside the application area 40. The synchronization is preferably supporting the following scenario:

One user is the editor of the application content. He is the one to be able to update the application content at some point in time. All other users are observers of the application content. They see the user interface 41 in a shaded mode, maybe also with different screens according to their authorization profile. Fig. 1 presents the collaboration screen for the editor, whereas Fig. 2 shows the same collaboration screen 1, however with a shaded user interface 41 for an observer.

The synchronization of the content of the user interface 41 is preferably triggered by the application that runs inside the application area 40. For example, synchronization is done whenever the editor saves his data.

The right to operate the user interface can be passed between the participants of the meeting. By default the leader of the meeting is the editor. However, the current editor can pass the editor role to another participant by clicking below the participant’s face or webcam in the meeting area 10. As a consequence, the editing right is passed to the respective user and the participant now being the new editor is marked with a color bar in the meeting area.
of collaboration utilities 21 that allow the sharing of information between participants. For each utility there’s a title bar with the name of the utility. By clicking on the icon on the right of the title bar, the respective utility is opened. In the example of Figs. 1 and 2, the “Chat” and the “Emotion-Meter” utilities are opened. The following utilities are currently part of the collaboration system: Chat - users can communicate by online chatting; Emotion-meter - users can indicate their feelings, the average emotion is shown; Survey - a certain question is asked to all participants, each participant may decide and the result is displayed as a summary; Scheduling - participants can jointly schedule a certain point of time. However, these are only examples of conceivable utilities. Others may be added as required. For example an engineering application may require different collaboration utilities to be made available to the users than an accounting application. Generally, there is an open interface for integrating new utilities into the described collaboration system.

[0032] Certain collaboration utilities are directly linked to control elements of the user interface 41. As schematically shown in Fig. 3, the application user interface 41 may for example comprise a date picker control element 200 which automatically links decisions about a date selection to a corresponding scheduling utility 21. The scheduling utility 21 checks whether a proposed date is suitable for all participants and indicates this information preferably through a specific icon ("thumb up"). When the user re-presses the icon within the date picker then the date that was selected inside the collaboration utility 21 is taken over into the application user interface 41.

[0033] In another scenario a decision about which option to choose is using a survey collaboration utility. This is schematically illustrated in Fig. 4. As can be seen, one participant of the meeting voted for “open”, two voted for “closed”. By repressing the icon right to the combo box, the selected value can be taken over into the user interface 41 of the application.

[0034] The above two examples illustrate the generic approach of the preferred embodiment, wherein the operation of a specific icon of a control element which is part of the user interface 41, automatically initializes a collaboration utility 21 enabling each participant of the meeting to provide his input, which is then processed to provide a collaborative input for the user interface 41.

[0035] In the following, the preferred software architecture for implementing the described collaboration system is explained in more detail, starting with the browser synchronization.

[0036] Web browsers have a very defined and limited protocol to connect to application processing on the backend site: The hypertext-transfer-protocol (http). The http-protocol is a request oriented protocol allowing the web browser to request information from the backend system (web/application server), but not offering a default way of communicating data from the backend to the client.

[0037] In an online collaboration scenario two (or more) users are synchronized and events that occur on in one user’s processing need to be transferred to the other users web browser. If for example one user inputs a new text within the chat utility, this text needs to be transferred into the chat displays of all other meeting participants.

[0038] There are two ways that are offered inside the collaboration bus in order to address this problem:

- Constant polling: Each web browser constantly polls the server in order to gather for updated information. If the data transfer between web browser and server is optimized, the data volume that is exchanged by constant polling is not a significant problem. However, there is nevertheless a natural limitation due to the load that is put onto the infrastructure, i.e. the network and the application server, because of the constant sending of small requests, each of which requires the creation of a connection.

- An alternative approach is the so-called "Never ending response": In this case the response a uses a so-called "Pushlet"-technology. The response to a request is an infinitely long page. Accordingly, updates can be sent to the browser by adding it to the never ending page. The advantage is that the number of connections that needs to be built up is reduced. On the other hand one connection is blocked "forever". Typically, browsers open two connections to one server, so that two "never ending responses" will cause a browser to be blocked. In the preferred embodiment the collaboration bus offers both ways of synchronizing data content from the backend system to the browser - dependent on its configuration.

[0040] In the backend processing, several participants of a meeting share data and events that need to be exchanged. As a consequence, there must be an infrastructure in which the backend processing of each user can connect to the corresponding meeting data. There are diverse topological scenarios which are supported:

In the simplest scenario shown in Fig. 5a, the browsers 50 of the participants of a meeting are logged on to the same application server 60 in which also the meeting data is kept. The collaboration bus 62 on the server side is implemented as "global variable" which can be accessed by both sessions 61 of the participants.

[0041] In higher traffic scenarios the web browsers 50 of different users are logged on to different application server instances 60 in order to balance the processing load. Such a topology is shown in Fig. 5b. The collaboration back end functions are accessible through a network protocol (e.g. web services). A collaboration server 63 serves as central instances keeping the data for an online collaboration.

[0042] Another topology is shown in Fig. 5c: The collaboration bus 62 is not implemented as central instance
that is accessed by remote protocols but itself runs distributed on several nodes 60, where also the individual sessions 61 of the application are running. The above described topologies can be combined, depending on traffic, load scenarios and / or other requirements.

[0043] The interface of the collaboration bus 62 that is offered to an application is very simple. The interface highly abstracts the complexity of exchanging data in a distributed environment, e.g. completely hides the above described alternatives of the distribution topology used for its implementation. The interface offers an object/interface model to the using application. The interface implementation always runs on the server 60 the application itself is running - also in an distributed topology in which the collaboration bus 62 itself may run on a central server 63 (cf. Fig. 5b).

[0044] An application running on the backend can access the collaboration bus 62 through a defined interface, which is schematically defined by the code fragment of Fig. 6a. Using this interface an application can add user information to the collaboration bus, log on a current user to the collaboration bus, start new meetings and check if the user is currently involved in a meeting. The application gets an instance of the interface using an instance factory, which is illustrated in the code fragment shown in Fig. 6b.

[0045] When the user is involved as participant in a meeting or when the user starts a new meeting, the result is a meeting object. There is one meeting object per online meeting. All participants of an online meeting "virtually" share the same meeting object. An example of the code defining such a meeting object is illustrated in Fig. 7. The meeting interface allows to add or remove users to a meeting, to offer functions to accept meeting invitations, to get information about participants and their role in the meeting (e.g. if they are the leader) and to access the communication utilities that are available through the collaboration bus.

[0046] Each collaboration utility has an interface that is representing the functions that can be performed with the utility. Examples of such interfaces are shown in Figs. 8 and 9. The survey manager interface of Fig. 8 allows creating surveys - each survey representing a text that is asked as question and a collection of options that the user can select from. From the surveys an application can obtain the voting results. The scheduling utility, the interface of which is shown in Fig. 9, allows to define a time range and some preferences (e.g. if weekends are selectable). From the utility the result of the scheduling process can be asked for.

[0047] Fig. 10, finally, summarizes the relation between the various components and their interfaces which are preferably used for the implementation of the collaboration system. One collaboration bus instance 62 host one (or more) meetings 65. One meeting 65 has several users as participants, one user can only be in one meeting 65. A meeting 65 has several utility instances 66 - there are several type of instances each one representing a different collaboration utility.

[0048] In the following, the integration of an application into the above described collaboration system will be explained more in detail. As mentioned above, the meeting area 10 and the utilities area 20 are predefined parts of the collaboration screen 1, whereas the collaboration area 40 contains the user interface 41 determined by the application.

[0049] An application that wants to take benefit of the functions offered by the collaboration system has three options to choose from:

- The application starts its user interface inside the frame that is assigned for application purposes, i.e. the application area 40 of the collaboration screen 1. In this case the application runs embedded inside a collaboration environment but is not actively integrated. The user can invoke collaboration functions inside the surrounding meeting area 10 and the utilities area 20 but there are no functions inside the application area 40 to e.g. start a sharing of documents or to directly link control elements to a collaboration utility.

- The application starts its user interface 41 inside the application area 40 and embeds certain collaboration control elements into its user interface 41. For example the control element for picking a date is provided with an extended functionality to outsource the decision on a date to a specific collaboration utility, which is then presented in the collaboration utility area. 20.

- The application starts its user interface 41 inside the application area 40 and is prepared to take part in application sharing scenarios. In this case application data can be shared among different observers and the right to edit the application content can be passed from one participant to the other.

[0050] Aspects of the second and the third alternative can be combined, if desired for a certain application.

[0051] In the presently preferred embodiment, the application is tightly integrated for collaboration. In this case one or more collaboration controls are provided in the user interface. Collaboration controls are control elements of the user interface 41 that can be put into the layout definition of a page of the user interface 41.

[0052] A normal user interface control defines for example a certain data value (e.g. a date) and allows the user to manipulate this data value (e.g. by keyboard input or by selection via a calendar picker). Controls typically have a defined programming interface to an application that uses the control - e.g. a date picker control receives a date from the application and passes back a date accordingly.

[0053] As schematically illustrated in Fig. 11, a collaboration control 200 is a special user interface control that...
combines the normal user interface behavior with one or more collaboration utilities 21. It has the advantage that the integration of certain collaboration aspects can be done on user interface level - i.e. without touching the processing logic 49 of the application 48. This is, since it is from the perspective of the processing logic 49 of the application 48 not relevant, whether a certain datum is input by a user directly operating a control element of the user interface or whether the input is the result of using a collaborative utility 21.

[0054] The general concept explained above with respect to the schematic drawing in Fig. 11, will be explained in more detail with respect to the exemplary control element shown in Fig. 12. Generally, in a user interface definition controls can be arranged as XML layout definitions, which serve for generating HTML pages.

[0055] The date control 200, which is the result of such a definition, is shown in the upper part of Fig. 12. However, according to one aspect of the invention, the date control 200 is extended by an icon 201 (cf. lower part of Fig. 12). When a page of the user interface 41 including the modified date control 200 is running inside the application area 41 of the collaboration screen 1 and the user is pressing the icon 201, then the corresponding scheduling utility 21 is started inside the utilities area 20. In the example of Fig. 12, the utility allows all meeting participants to input some date preferences in order to find a date that is accepted in the whole group of participants. After synchronizing the date within the group, the selected date can be taken over into the application by pressing the icon 201 again (or another “take over” icon or the like).

[0056] The same principle applies to combo boxes which are normally used for allowing a single user to decide among a list of given values. A collaborative combo box (not shown) enables a group of participants to agree which decision to take. Again, the collaboration functions are preferably accessible through an extra icon of the combo box control. After pressing this icon (not shown), the survey utility is started, offering the combo items to the group of participants. Each participant can then do the selection on his own, the result being displayed as bars (cf. the example on the right side of Fig. 4) and “the winner” can be taken over into the combo box by clicking on the extra icon a second time.

[0057] Clearly, there could be further collaboration controls which can enrich the normal control processing by providing collaboration support. For example, a certain control element might allow passing the editing of a text to a collaboration utility that allows joined text input by the participants of the meeting. The same applies to an image processing tool.

[0058] The great advantage of modifying one or more user controls in the described manner is that the processing logic is not affected by the amendments to the user interface of the application. As result, a standard single-user application can be easily and quickly adapted to provide the above described collaboration capabilities.

[0059] In the following, the technology is described, which is preferably used for the sharing of an application among the participants of the meeting. Application sharing generally means that an application’s processing supports scenarios in which participants of a meeting can observe one editor’s activities, wherein the right to edit an application content can be passed among the participants of a meeting.

[0060] Adding sharing capabilities to an application’s processing means that the corresponding user interface components need to be updated. The protocol that is provided by the collaboration bus offers a simple way to do so. The most important methods of the interface of the collaboration bus are shown in Fig. 7. The typical usage of the interface of Fig. 7 is as follows: An application is started inside the application area 41. At a certain point of time (e.g. when a user presses a button “Share Document”, not shown), the application calls the “shareDocument” function, which is exemplary defined in Fig. 13a. As a result, the message that a document is shared, is now passed through the collaboration bus to all participants. Depending on the content of the shared document, a user interface is triggered in the application area 41 of the collaboration screen 41 of each of the participants. Inside the application processing of the participants the info about the shared document can be read. In addition, the application processing can ask for information about the currently logged on participant using for example the code shown in Fig. 13b.

[0061] The participant info tells whether the user is in a role of leading the application (being the editor) or observing the application. Every time the editor of the application does significant updates, the editor’s application processing updates the collaboration bus using the synchronizeDocument(...) method of the IMeeting interface. Fig. 14 schematically summarizes once more the above described processing flow.

[0062] The switching of editing rights is triggered through user operations within the above described meeting area. The application of each participant gets notified and switches from “edit” mode into “display” mode or vice versa.

[0063] Using the described preferred embodiment of the invention, the application sharing is available essentially without any additional installation efforts. Using their normal web browsers, participants of a meeting can look onto common content. Depending on the application implementation, the application can open different user interfaces for different participants. For example an observer of an application may not see all data that is part of the application because of security restrictions.

[0064] The sharing, finally, can be integrated into the application processing so that the application always exactly knows which user is currently manipulating data. This is more than in the prior art scenarios wherein screens are simply shared by the remote desktops of a plurality of users.
Claims

1. Application (48) adapted for collaboration by a plurality of users, the application comprising:
 a. a processing logic (49);
 b. a user interface (41), the user interface comprising at least one control element (200) adapted to receive collaborative input, wherein
 c. the at least one control element (200) is linked to a collaboration utility (21), the collaboration utility (21) being adapted to generate the collaborative input for the control element (200) based on the individual inputs of at least some of the plurality of users.

2. Application (48) according to claim 1, wherein the at least one control element (200) comprises a collaborative icon (201) adapted to initiate the linked collaboration utility (21).

3. Application (48) according to any of the preceding claims, wherein the control element is a date control element and wherein the collaboration utility (21) is a scheduler adapted to generate a collaborative input date based on calendar entries of at least some of the users.

4. Application (48) according to any of the preceding claims, wherein the control element (200) serves to select one option among several options and wherein the collaboration utility (21) is a survey utility inviting at least some of the users to vote for one option and generating the collaboratively selected option.

5. Application (48) according to any of the preceding claims, further adapted to restrict the right to operate the user interface (41) to one user at a time, wherein the right can be passed from one user to another.

6. Application according to the preceding claim, comprising a user interface (41) for each of the users, wherein the user interfaces (41) are adapted to be synchronized in response to a command of the user having presently the right to operate the application (48).

7. Collaboration system comprising an application (48) according to any of the preceding claims, the collaboration system further comprising a collaboration screen (1) for the display of the user interface (41), the collaboration screen (1) further comprising:
 d. a collaborative utilities area (20) displaying one or more collaborative utilities (21); and
 e. a meeting area (10) displaying graphical identifiers (11) for each of the plurality of users.

8. Collaboration system according to the preceding claim, wherein the graphical identifiers (11) are images or video streams showing the respective user, which are adapted to be presented with varying styles to reflect different roles of the related user during a meeting.

9. Collaboration system according to the preceding claim 7 or 8, wherein the collaborative utilities area (20) displays one or more collaborative utilities (21) linked to one or more control elements presently displayed in the user interface (41).

10. Collaboration system according to any of the preceding claims 7 - 9, wherein the content of the user interface (41) in the collaboration screen (1) depends on an authorization profile of the respective user.

11. Collaboration system according to any of the preceding claims 7 - 10, wherein a further user is added or removed from the plurality of users by dragging and dropping the respective graphical identifier (11) into or out of the meeting area (10).

12. Collaboration system according to any of the preceding claims 7 - 11, wherein a further user is added or removed from the plurality of users by dragging and dropping the respective graphical identifier (11) into or out of the meeting area (10).

13. Collaboration system according to any of the preceding claims 7 - 12, wherein the collaboration screen (1) further comprises a contacts area (30) indicating further users which can be added to the plurality of users.

14. Collaborative system according to any of the preceding claims 7-13 further comprising a collaboration bus (62), which is adapted to be implemented in one or more processing servers (60) and which serves to maintain application data shared by the plurality of users.

15. Collaborative system according to the preceding claim, wherein the collaboration bus (62) comprises an interface for performing collaborative functions, when executing the application.

16. A method for enabling collaboration of a plurality of users in the operation of an application (48), the application (48) comprising a user interface (41) and processing logic (49), the method comprising the steps of:
 a. providing at least one control element (200) of the user interface (41) which is linked to a collaboration utility (21), the collaboration utility (21) being adapted to generate a collaborative
input for the control element (200) based on the individual inputs of at least some of the plurality of users; and
b. processing the collaborative input with the processing logic (49) of the application (48).

17. The method of claim 16, wherein step a. comprises modifying the control element (200) adapted for receiving individual input so that it is bound to the collaboration utility (21).

18. The method according to the preceding claim, wherein step a. comprises adding a collaborative icon (201) to the control element (200), the icon (201) being adapted to initiate the linked collaboration utility (21).

19. The method according to any of the preceding claims 16 - 18, wherein the control element (200) is a date control element and wherein the collaboration utility (21) is a scheduler which generates a collaborative input date based on calendar entries of at least some of the users.

20. Method according to any of the preceding claims 16 - 19, wherein the control element (200) allows to select one option among several options and wherein the collaboration utility (21) is a survey utility inviting at least some of the users to vote for one option and generates the collaboratively selected option.

21. Method according to any of the preceding claims 16 - 20 further comprising the step of restricting the right to operate the user interface (41) to one of the users at a time.

22. Method according to the preceding claim further comprising the step of passing the right from one user to another.

23. Method according to any of the preceding claims 21 or 22, wherein step a. comprises providing a user interface (41) for each of the users, wherein the user interfaces (41) are adapted to be synchronized in response to a command of the user having presently the right to operate the application (48).

24. Method according to the preceding claims 16 - 23, wherein the content of the user interface (41) for a user depends on his authorization profile.
Fig. 6a

```java
public interface ICollaborationBus
{
    public IMeeting openMeeting(String leadUserId);
    public IMeeting getMeeting(String userId);
    public void addCollaborationBusListener(String userId, ICollaborationBusListener listener);
    public UserInfo getUserInfo(String userId);
}
```

Fig. 6b

```java
public class CollaborationBusFactory
{
    public static ICollaborationBus getInstance(String busName)
    {
        ...
    }
}
```

Fig. 7

```java
public interface IMeeting
{
    public void addParticipants(String[] userIds);
    public void removeParticipant(String userId);
    public ParticipantInfo getParticipant(String userId);
    public ParticipantInfo getActiveParticipants();
    public void requestParticipant(String userId);
    public void acceptParticipation(String userId);
    public void denyParticipation(String userId);
    public void shareDocument(String document);
    public String getSharedDocument();
    public void defineLeader(String userId);
    public void defineTaskLeader(String userId);
    public void closeMeeting();

    // utilities
    public IChat getChat();
    public IEmotionTracker getEmotionTracker();
    public ISurveyManager getSurveyManager();
    public ISchedulerManager getSchedulerManager();
}
```

Fig. 8

```java
public interface ISurveyManager
{
    public ISurvey createSurvey(String question, String[] answers);
    public ISurvey getCurrentSurvey();
    public ISurvey[] getSurveys();
    public void removeSurvey(String surveyId);
}
```

```java
public interface ISurvey
{
    public String getQuestion();
    public String[] getAnswers();
    public void vote(SurveyVoting voting);
    public int getNumberOfVoters();
    public SurveyVoting[] getVotings();
    public void finish();
    public SurveyResult getResult();
}
Fig. 9

```java
public interface ISchedulerManager {
 public IScheduler createScheduler(String subject, CDate startDate,
 CDate endDate, CDate proposalDate,
 boolean weekendSelectable);
 public IScheduler getCurrentScheduler();
 public IScheduler[] getSchedulers();
 public void removeScheduler(IScheduler scheduler);
}

public interface IScheduler {
 public String getSubject();
 public CDate getStartDate();
 public CDate getEndDate();
 public CDate getProposalDate();
 public void setProposalDate(CDate value);
 public void vote(ISchedulerVoting voting);
 public int getNumberOfVotings();
 public ISchedulerVoting[] getVotings();
 public boolean isFinished();
 public void finish();
 public boolean isWeekendSelectable();
 public IScheduler getResult();
}
```

Fig. 10

Diagram showing the interaction between a user and a scheduler, with options for chat, scheduling, and survey access.
public class applicationxxu
{
    Meeting m_meeting;
    String m_documentNumber;
    public void onShareDocumentO
    {
        ....
        m_meeting.shareDocument("PurchaseOrder/"+m_documentNumber);
        ....
    }
    ....
}
public class ApplicationXYU
{
    IMEETING m_meeting
    String m_documentNumber;
    ...
    public void onSynchronized()
    {
        ...
        ParticipantInfo pi = m_meeting.getParticipantInfo(m_user)
    }
    ...
}

class ParticipantInfo
{
    String user;
    String meetingRole; //leader/observer
    String taskRole; //leader/observer
Fig. 14

User 1

48

41

49

User 2

48

41

49

Events

User 3

48

41

49

Events

62
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
</table>

The present search report has been drawn up for all claims.
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on.
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

05-09-2007

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP 1705913 A</td>
<td>27-09-2006</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 2004158495 A1</td>
<td>12-08-2004</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 2006010197 A1</td>
<td>12-01-2006</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82