EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 11.03.2015 Bulletin 2015/11

Application number: 06793361.4

Date of filing: 08.09.2006

Int Cl.: E05D 7/04 (2006.01) E05D 7/084 (2006.01)
E05D 7/085 (2006.01) E05D 15/58 (2006.01)
E05D 7/081 (2006.01) E05D 7/083 (2006.01)
E05D 15/30 (2006.01)

International application number: PCT/EP2006/066177

MECHANISM FOR THE INSTALMENT OF A DOOR OR OTHER SIMILAR CLOSURE HAVING A ROTATIONAL-SLIDING MOVEMENT

MECHANISMUS ZUR INSTALLATION EINER TÜR ODER ANDEREN ÄHNLICHEN VERSCHLUSSVORRICHTUNG MIT DREH-SCHIEBE-BEWEGUNG

MÉCANISME POUR L INSTALLATION D' UNE PORTE OU AUTRE FERMETURE SIMILAIRE POSSÉDANT UN MOUVEMENT COULISSANT ROTATIF

Designated Contracting States: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

Designated Extension States: HR

Priority: 23.09.2005 IT PD20050275

Date of publication of application: 04.06.2008 Bulletin 2008/23

Proprietor: RIGO, Sandra
30036 Santa Maria Di Sala (IT)

Inventor: SACCON, Sandro
I-30036 Santa Maria Di Sala (IT)

Representative: Modiano, Micaela Nadia
Modiano & Partners (IT)
Via Meravigli, 16
20123 Milano (IT)

References cited:

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

Technical Field

[0001] The present invention relates to a mechanism for the instalment of a door or other similar closure having a rotational-sliding movement.

Background Art

[0002] Currently doors that are openable/closable by means of a rotational-sliding movement are known.

[0003] Such doors are generally arranged by associating to a shutter the following elements:

- first pivot means defining a first vertical axis for the pivoting of the shutter, in a substantially central region thereof, to translation means arranged so as to slide in a corresponding guide associated to the upper strut of the frame of the door;
- second pivot means with an axis parallel to the axis of the first pivot means, for the pivoting of two arms, a first upper one and a second lower one, each of which is pivoted with one end to the frame of the closure in proximity to a jamb to define a second rotation axis, said arms having the opposite ends reciprocally rigidly connected by means of a rod defining a third rotation axis, interposed between the first and second axes, passing through said shutter in the direction of the height thereof.

[0004] By means of such mechanism the push imposed by a user to the shutter for opening the door, for example towards the outside, makes the shutter rotate about the first axis, such rotation bringing about the contemporary rotation of the arms about the third axis in the opposite direction with respect to the shutter.

[0005] The second axis, about which both the shutter and the arms rotate, is made by said arms to travel along a circular-arc trajectory with respect to the third axis, in the opposite direction with respect to that of the opening of the shutter.

[0006] Contemporarily, the first axis slides parallel to itself, thanks to the sliding means, towards the jamb to which the arms are connected.

[0007] Such movement provided to the shutter by the mechanism, as shown schematically in Figure 10, allows to reduce the volume spanned with a usual movement of opening or closing with respect to a normal hinging of the shutter to a jamb of a door.

[0008] The movement just described brings about considerable advantages when several doors must be installed one near the other, for example on converging walls, in which case such doors, if both open, could inconveniently block the correct and complete opening of one with respect to the other, and vice-versa.

[0009] Moreover, the shutters of the rotating-sliding doors are generally openable on both sides, further facilitating the passage through such doors and allowing the user to choose the most convenient opening of the shutter with a pushing movement or with a pulling movement.

[0010] The doors provided with such mechanism, moreover, are particularly employed in hospital and meeting-place environments, but also in domestic environments, that must be used by handicapped persons; in fact the progressive reduction of the distance between the user and the handle of the shutter renders the opening of the door much more simple, allowing the user, for example seated in a wheel chair or supported by crutches, to avoid leaning dangerously from a balanced position.

[0011] A mechanism as described above is the subject of Italian patent application for utility model No. VE92U000026, filed on 10 August 1992 in the name of this same applicant.

[0012] Such mechanisms for the arrangement of doors with rotational-sliding movement are sometimes difficult to provide for a technician who must mount them on doors or other closures that have different dimensions.

Disclosure of the Invention

[0013] The aim of the present invention is to provide a mechanism for the instalment of a door or other similar closure with rotational-sliding movement that may be adapted, with few and simple mechanical elaborations, to doors or other closures of different dimensions.

[0014] Within this aim, an object of the present invention is to provide a mechanism that allows an easy registration of the position of the shutter with respect to the jamb.

[0015] Another object of the present invention is to provide a mechanism that is applicable to shutters having different heights.

[0016] Another object of the present invention is to provide a mechanism that is easily arranged also by personnel that is not provided with particular skills.

[0017] Another object of the present invention is to provide a mechanism that can be manufactured economically with known systems and technologies.

[0018] In accordance with the invention, there is provided a mechanism for the instalment of a door or other similar closure having a rotational-sliding movement, as defined in the appended claims.

Brief Description of the Drawings

[0019] Further characteristics and advantages of the invention will become better apparent from the following detailed description of two preferred but not exclusive embodiments thereof, illustrated by way of non-limiting example in the accompanying drawings, wherein:

Figure 1 is an exploded perspective view of a mechanism according to the invention in a first embodiment thereof, applied to a door;
With reference to the figures, a door installed second rotation axis 20 from the nearby jamb 18. the frame 15 with means for adjusting the distance of the jambs 18 and 19 and by the strut 14.

element with a circular section.

second pivot means with an axis parallel to the axis - first pivot means defining a first vertical axis 11 for surrounding the shutter:

Figure 2 is an exploded partially sectional perspective view of a first detail of the mechanism according to the invention;

second pivot means with an axis parallel to the axis - second pivot means defining a second vertical axis 12 for the pivoting of the shutter 12, in a substantially central region thereof, to translation means arranged so as to slide in a corresponding guide 13 associated to an upper strut 14 of the frame 15 of the door 10;

The mechanism, applied to the door 10 in a non-limiting example of the invention, comprises the following elements to associate to a shutter 12 and to a frame 15 surrounding the shutter:

- first pivot means defining a first vertical axis 11 for the pivoting of the shutter 12, in a substantially central region thereof, to translation means arranged so as to slide in a corresponding guide 13 associated to an upper strut 14 of the frame 15 of the door 10;

- second pivot means with an axis parallel to the axis of said first pivot means, for the pivoting of two arms, a first upper one 16 and a second lower one 17, that are both pivoted with one of their first ends, respectively 21 and 22, to the frame 15 in proximity to a first jamb 18; such second pivot means define a second rotation axis 20, and have the opposite second ends, respectively 23 and 24, reciprocally rigidly connected by means of a rod 25, that defines a third rotation axis 26, interposed between the first axis 11 and the second axis 20; the rod 25 passes through the shutter 12 in the direction of the height thereof.

The chosen position is fixed by means of a first threaded element 35 passing at corresponding holes 36 open on two facing vertical walls 37 of the profiled element near the region in which the plate 32 is inserted. The plate 32 is movable in the grooves 31 in the longitudinal extension direction of the profiled element, for registering its position.

The means for adjusting the distance between the two jambs 18 and 19 of the invention allows to perform.

Ways of carrying out the Invention

[0020] With reference to the figures, a door installed with a mechanism according to the invention is designated by the reference numeral 10 in a first embodiment thereof, illustrated in Figures 1 to 7.

[0021] The mechanism, applied to the door 10 in a non-limiting example of the invention, comprises the following elements to associate to a shutter 12 and to a frame 15 surrounding the shutter:

- first pivot means defining a first vertical axis 11 for the pivoting of the shutter 12, in a substantially central region thereof, to translation means arranged so as to slide in a corresponding guide 13 associated to an upper strut 14 of the frame 15 of the door 10;

- second pivot means with an axis parallel to the axis of said first pivot means, for the pivoting of two arms, a first upper one 16 and a second lower one 17, that are both pivoted with one of their first ends, respectively 21 and 22, to the frame 15 in proximity to a first jamb 18; such second pivot means define a second rotation axis 20, and have the opposite second ends, respectively 23 and 24, reciprocally rigidly connected by means of a rod 25, that defines a third rotation axis 26, interposed between the first axis 11 and the second axis 20; the rod 25 passes through the shutter 12 in the direction of the height thereof.

The first plate-shaped element 38 is slideable with a hollow head, is adapted to tightly hold the profiled element locking the plate 32 between the two facing wings 30.

[0034] The means for adjusting the distance of the second rotation axis 20 from the nearby jamb 18 are constituted, for the first upper arm 16, by a plate 32, of which two opposite perimetral portions 32a are adapted to be inserted in the facing longitudinal grooves 31.

[0035] The second cylindrical body 41 is adapted to be inserted in a counter-shaped first rotation ring 34 rigidly coupled to the facing end 21 of the first arm 16.

[0036] The first plate-shaped element 38 is slideable inside the opening 39 towards the inside or towards the outside of the plinth 40 for positioning the cylindrical body 41, so that said cylindrical body is coaxial with the first cylindrical body 33 to define the second rotation axis 20.

[0037] The position of the second cylindrical body 41 is fixed by means of a second threaded element 43, for example a dowel bolt, screwed in a counter-threaded hole provided on the plinth 40 and open on the opening 39 with an axis traverse to the longitudinal direction of the opening 39.

[0038] The threaded element 43 is screwed until it presses against a side of the first part 38a of the plate-shaped element 38.
In the embodiment of the invention here described, the plinth 40 is fixed to the jamb 18 by means of four screws 65 arranged to block a plate-shaped portion 40a rigidly to the plinth 40 and at right angles thereto.

The rigid connection device 27 adapted to provide a non-welded joint between the rod 25 and the second arm 17, as shown in Figure 7, is constituted by an expanding cylindrical tubular insert 45 with longitudinal grooves 46 open on the ends.

The rod 25 is a tubular element with a circular cross-section.

In order to expand the insert 45 and hold it on the inside of the end of the rod 25, there are coaxially connected thereto:

- a first frustum-shaped wedge block 47, inserted in the end 25a of the rod 25 with the conical part facing the cylindrical insert 45, and provided with an anti-rotation tongue 47a protruding from the end 25a of the rod 25 and adapted to be inserted in a counter-shaped seat 48 open on the corresponding end of the arm 17;
- a second frustum-shaped wedge block 49, opposite to the first wedge block 47 with respect to the cylindrical insert 45 and axially provided with a threaded hole 50;
- a second threaded element 51, passing through an axial hole 52 open on the first wedge block 47 and on the first tongue 47a and adapted to be screwed to the threaded hole 50 on the second wedge block 49 for blocking the first wedge block 47 to the arm 17, and for pulling the second wedge block 49 to compress the cylindrical tubular insert 45 between the two wedge blocks 47 and 49.

The rigid connection device 27 allows an installer to adapt the rod 25 to the height of the shutter 12 to which it is fitted.

The rod 25 provided to the installer, of a standard length, is brought to size by sawing, and thereafter is fixed to the second arm 17 by means of the device 27.

The device 27 insures a stable connection between the two components and avoids that the installer must carry out welding operations, that are expensive, difficult and risky due to the deformations and strains that the welding may provoke on such components.

The means for adjusting the distance between the two jambs 18 and 19 of the frame 15 are constituted by a second plate-shaped element 53, rigidly coupled to the second jamb 19 and adapted to be inserted, at the end of the profiled element defining the guide 13, in the longitudinal grooves 31.

The second plate-shaped element 53 is fixed by means of a further third threaded element 54 passing through corresponding holes 55 on the two facing vertical walls 37 of the profiled element, in proximity to the region in which the second plate-shaped element 53 is inserted.

The third threaded element 54, in the same manner as the first threaded element 35, is adapted to tightly hold the profiled element locking the plate-shaped element 53 between the two facing wings 30.

The profiled element has, at the area of insertion of the second plate-shaped element 53, a plurality of pairs of facing holes, indicated with the reference numerals 55, 55a and 55b in figures 3 and 4, to one of which the third threaded element 54 can be connected, such pair of holes being selected according to the chosen length of the profiled element and according to the position determined for the plate-shaped element 53 with respect to said profiled element.

The installer, once the distance between the jambs is determined, proceeds to size the profiled element, provided with a standard length.

The second plate-shaped element 53 is fixed inside the profiled element by inserting the third threaded element 54 in the pair of holes 55 or 55a or 55b closest to its position.

The second plate-shaped element 53 is part of an L-shaped bracket 64, whose remaining portion 56, perpendicular to the plate-shaped element 53, is designed for fixing, for example by means of screws 67, to the jamb 19.

At the opposite part with respect to the L-shaped bracket 64, the profiled element defining the guide 13 is blocked in a stable manner to the first jamb 18 by means of a plate 66 and by a plurality of screws 66a.

In a variation of this first embodiment of the invention, not illustrated for the sake of simplicity, at the opposite part with respect to the L-shaped bracket 64, the profiled element defining the guide 13 is connected to the first jamb 18 by means of further means for adjusting the distance between the two jambs 18 and 19 as those just described, i.e. by means of a second identical L-shaped bracket 64, comprising a second plate-shaped element 53 to be inserted in the opposite end of the guide 13, and a portion 56 for fixing to the first jamb 18, in a manner completely similar to that described for the connection between the second jamb 19 and the guide 13.

The sliding means for the first pivot means are constituted by a carriage 57 provided with six wheels 58, arranged to slide inside the guide 13.

Four longitudinal ribs 59 are provided inside the profiled element forming the guide 13, two of which protrude symmetrically towards the inside of the internal upper surface 60 and two protrude from the wings 30, each defining a rail for the anti-derailment and anti-blocking sliding of the carriage 57.

Of the six wheels 58 of the carriage 57, four are bearing and two are driving on the upper ribs 59 in order to avoid the rotation and the blocking of the carriage 57.

The first pivot means are formed by a further pivot 61 exiting from the body 57a of the carriage 57, and adapted to be inserted on the facing upper edge 63 of the shutter 12.

The pivot 61 is provided as a threaded element.
The present invention also provides a mechanism that can be easily installed even by users not provided with particular skills. [0075] In practice, the materials employed, as well as the dimensions, as long as compatible with the specific use, may be any according to requirements and to the state of the art. [0076] The disclosures in Italian Patent Application No. PD2005A000275 from which this application claims priority are incorporated herein by reference.

Claims

1. A mechanism for the installation of a door (10) or other similar closure having a rotational-sliding movement, of the type comprising the following elements to associate to a shutter (12) or the like of the door (10):

 - first pivot means defining a first vertical axis (11) for the pivoting connection of the shutter (12), in a substantially central region thereof, to translation means arranged so as to slide in a corresponding guide (13) connected to at least one upper or lower strut (14) of the frame (15) of the door (10);
 - second pivot means with an axis parallel to the axis of said first pivot means, for the pivoting of two arms (16, 17), a first upper one (16) and a second lower one (17), that are both pivoted with one of their first ends (21, 22) to the frame (15) of the door (10) in proximity to a jamb (18) to define a second rotation axis (20), and have the second opposite ends (23, 24) pivotally coupled to the shutter (12) so as to define a third rotation axis (26), interposed between the first axis (11) and the second axis (20) when the shutter (12) is closed, passing through the shutter (12) in the direction of the height thereof,

 said mechanism being characterized in that said second pivot means are pivotally coupled to the frame (15) with means for adjusting the distance of said second rotation axis (20) from the nearby jamb (18) of the door (10), said second opposite ends (23, 24) being reciprocally rigidly coupled by means of a rod (25) passing through the entire height of the shutter (12) and defining the third rotation axis (26), said rod (25) being fixed to at least one of the two arms (16, 17) with a rigid connection device (27) adapted to provide a non-welded joint between the rod (25) and the arms (16, 17).

2. The mechanism according to claim 1, characterized in that it comprises means for adjusting the distance between the two jambs (18, 19) of the frame (15).
3. The mechanism according to the preceding claims, characterized in that said guide (13) is constituted by a profiled element rigidly coupled to the upper strut (14) and having a substantially C-shaped cross section, with an opening (28) directed downward, a longitudinal groove (31) being provided on each one of the facing edges (29) of the wings (30) of the profiled element forming said opening (28).

4. The mechanism according to the preceding claims, characterized in that said means for adjusting the distance of said second rotation axis (20) from the nearby jamb (18) are constituted, for the first upper arm (16), by a plate (32) of which two opposite perimetral portions (32a) are adapted to be inserted in said facing longitudinal grooves (31), a cylindrical body (33) protruding from said plate (32) and being adapted to be inserted in a counter-shaped rotation ring (34) rigidly coupled to a first end (21) of said first arm (16), said plate (32) being movable in said grooves (31) in the longitudinal extension direction of said profiled element, for registering its position, such chosen position being fixable by means of a threaded element (35) passing through corresponding holes (36) on the two facing vertical walls (37) of the profiled element at the region in which said plate (32) is inserted, said threaded element (35) being adapted to tightly hold the profiled element by locking said plate (32) between the two facing wings (30).

5. The mechanism according to the preceding claims, characterized in that said means for adjusting the distance of said second rotation axis (20) from the nearby jamb (18) are constituted, for the second lower arm (17), by a plate-shaped element (38) inserted with a first part (38a) thereof inside an opening (39) of a plinth (40) fixed below the jamb (18) of the frame (15) and protruding with its remaining second part (38b) to support a cylindrical body (41) adapted to be inserted in a counter-shaped rotation ring (42) rigidly coupled to an end (22) of said second arm (17), said plate-shaped element (38) being slideable inside said opening (39) towards the inside or towards the outside of said plinth (40) for positioning said cylindrical body (41), said position being fixed by means of a threaded element (43) screwed in a counter-threaded hole provided on said plinth (40) and open on said opening (39) with the axis traverse to the longitudinal direction of said opening (39), said threaded element (43) being adapted to be screwed until it presses against a side of said first part (38a) of said plate-shaped element (38).

6. The mechanism according to the preceding claims, characterized in that said rigid connection device (27) adapted to provide a non-welded joint between the rod (25) and the arm (17) is constituted by an expanding cylindrical tubular insert (45) with longi-

7. The mechanism according to the preceding claims, characterized in that said guide (13) is constituted by a profiled element rigidly coupled to the upper strut (14) and having a substantially C-shaped cross section, with an opening (28) directed downward, a longitudinal groove (31) being provided on each one of the facing edges (29) of the wings (30) of the profiled element forming said opening (28).

8. The mechanism according to claim 7, characterized in that said profiled element has, at the region of insertion of the plate-shaped element (53) for adjustment of the distance between the two jambs (18,19), a plurality of pairs of facing holes (55, 55a, 55b), to one of which said threaded element (54) can be connected, selected according to the chosen length of the profiled element and according to the position determined for the plate-shaped element (53) with respect to said profiled element.

9. The mechanism according to claims 7 and 8, characterized in that said plate-shaped element (53) is characterized in that said rigid connection device (27) adapted to provide a non-welded joint between the rod (25) and the arm (17) is constituted by an expanding cylindrical tubular insert (45) with longi-
part of an L-shaped bracket (64), whose remaining portion (56), perpendicular to the plate-shaped element (53) to be inserted in the end of the profiled element, is for fixing to the jamb (19).

10. The mechanism according to claim 9, characterized in that the at the opposite part with respect to the L-shaped bracket (64), the profiled element defining the guide (13) is stably blocked to the first jamb (18) by means of a plate (66) and by a plurality of screws (66a), or with another equivalent system.

11. The mechanism according to claim 9, characterized in that at the opposite part with respect to the L-shaped bracket (64), the profiled element defining the guide (13) is coupled to the first jamb (18) by means of further means for adjusting the distance between the two jambs (18, 19).

12. The mechanism according to claim 11, characterized in that said further means for adjusting the distance between the two jambs (18, 19) are constituted by a second identical L-shaped bracket (64), comprising a second plate-shaped element (53) to be inserted in the opposite end of the guide (13), and a portion (56) for fixing to the first jamb (18).

13. The mechanism according to the preceding claims, characterized in that said rod (25) defining the third rotation axis (26) is constituted by a tubular profiled element having a circular cross-section.

14. The mechanism according to the preceding claims, characterized in that said sliding means for said first pivot means are constituted by a carriage (57) with at least four wheels (58), arranged to slide inside said guide (13).

15. The mechanism according to the preceding claims, characterized in that inside the profiled element forming the guide (13), four longitudinal ribs (59) are provided which protrude symmetrically towards the inside of the internal upper surface (60) and from the wings (30), each defining a rail for the anti-derailment and anti-blocking sliding of said carriage (57) inside the guide (13).

16. The mechanism according to the preceding claims, characterized in that said first pivot means are formed by a pin (61) exiting from the body (57a) of said carriage (57), and adapted to cross a plate (68) arranged on the facing upper edge (63) of the shutter (12), said pin (61) being threaded at its end, and being fixed to said plate (68) by means of a anti-screwing nut (61a) screwed to said thread at the end of the pin (61).

17. The mechanism according to one or more of claims 1-4, 6-12, 15, and 16, characterized in that the second rotation axis (120) is defined by a tubular rod (125), inserted inside a space (180) inside the jamb (118), and is fixed to the first plate-shaped element (138) arranged below by means of a rigid connection device (127), said first plate-shaped element (118) being slideable inside the opening (139) towards the inside or towards the outside of the plinth (140), said rod (125) being rigidly coupled to the first ends (122) of the two arms (117), while the second ends (124) of the arms (117) are fixed to the shutter (112), each by means of a cylindrical body (141) protruding from the second end (124) and inserted in a corresponding counter-shaped rotation ring (142) rigidly coupled to the respective edge of the shutter (112); said cylindrical bodies (141) defining the third rotation axis (126).

18. A door with a rotational-sliding movement, characterized in that it is installed with a mechanism according to one or more of the preceding claims.

Patentansprüche

1. Ein Mechanismus zur Installation einer Tür (10) oder anderen ähnlichen Verschlussvorrichtungen mit einer Dreh-Schiebe-Bewegung, von der Art, die folgenden Elemente zur Verbindung mit einem Tür-Verschluss (12), oder dergleichen, der Tür (10) umfasst:

- erste Drehzapfenmittel, die eine eine vertikale Achse (11) für die Drehverbindung des Tür-Verschlusses (12), in einem im Wesentlichen zentralen Bereich davon, mit Übertragungsmitteln bestimmen, verschiebbar angebracht in einer entsprechenden Führung (13), die verbunden ist mit mindestens einer oberen oder unteren Verstrebung (14) des Rahmens (15) der Tür (10);
- zweite Drehzapfenmittel mit einer Achse parallel zur Achse der ersten Drehzapfenmittel, zum Schwenken von zwei Armen (16, 17), einem ersten oberen (16) und einem zweiten unteren (17), die beide in der Nähe eines Türfostens (18) drehgelenkig mit einem ihrer ersten Enden (21, 22) mit dem Rahmen (15) der Tür (10) verbunden sind, um eine zweite Drehachse (20) zu bestimmen, und deren zweite, gegenüberliegende Enden (23, 24) drehgelenkig mit dem Tür-Verschluss (12) verbunden sind, um eine dritte Drehachse (26) zu bestimmen, die sich zwischen der ersten Achse (11) und der zweiten Achse (20) befindet, wenn der Tür-Verschluss (12) geschlossen ist, durch den Tür-Verschluss (12) in Richtung der Höhe derselben verlaufend,
wobei der Mechanismus **dadurch gekennzeichnet ist, dass** die zweiten Drehzapfenmittel durch Mittel zur Anpassung des Abstands der zweiten Drehachse (20) vom benachbarten Pfosten (18) der Tür (10) drehgelenkig mit dem Rahmen (15) gekoppelt sind, wobei die zweiten gegenüberliegenden Enden (23, 24) mit Hilfe einer Stange (25) starr miteinander gekoppelt sind, welche durch die gesamte Höhe des Türverschlusses (12) verläuft und die dritte Drehachse (26) bestimmt, wobei die Stange (25) an mindestens einem der beiden Arme (16, 17) über eine starre Verbindungsvorrichtung (27) befestigt ist, die ausgebildet ist, um eine nicht geschweißte Verbindung zwischen der Stange (25) und den Armen (16, 17) bereitzustellen.

2. Der Mechanismus gemäß Anspruch 1, **dadurch gekennzeichnet, dass** er Mittel zur Einstellung des Abstands zwischen den zwei Pfosten (18, 19) des Rahmens (15) umfasst.

3. Der Mechanismus gemäß den obigen Ansprüchen, **dadurch gekennzeichnet, dass** die Führung (13) aus einem profilierten Element besteht, das starr mit der oberen Verstrebung (14) gekoppelt ist und einen im Wesentlichen C-förmigen Querschnitt hat, mit einer nach unten gerichteten Öffnung (28), wobei eine Längsnut (31) an jeder der gegenüberliegenden Kanten (29) der Flügel (30) des profilierten Elements angebracht ist, die die Öffnung (28) bilden.

4. Der Mechanismus gemäß den obigen Ansprüchen, **dadurch gekennzeichnet, dass** die Mittel zur Einstellung des Abstands der zweiten Drehachse (20) vom benachbarten Türpfosten (18) beim ersten oberen Arm (16) in einer Platte (32) bestehen, von denen zwei gegenüberliegende Umfangsabschnitte (32a) ausgebildet sind, um in die zugewandten Längsnuten (31) eingeführt zu werden, wobei ein zylindrischer Körper (33) aus der Platte (32) herausragt und ausgebildet ist, um in einen entsprechend geformten Drehring (34) eingeführt zu werden, der starr mit einem ersten Ende (21) des ersten Arms (16) gekoppelt ist, wobei die Platte (32) in der Längsausdehnungssrichtung des profilierten Elements zur Erfassung ihrer Position in den Nuten (31) beweglich ist, wobei diese gewählte Position mit Hilfe eines Gewindeelements (35) fixiert werden kann, das durch entsprechende Löcher (36) in den zwei gegenüberliegenden vertikalen Wänden (37) des profilierten Elements in dem Bereich verläuft, in den die Platte (32) eingesetzt ist, wobei das Gewindeelement (35) ausgebildet ist, um das profilierte Element durch Blockierung der Platte (32) zwischen den zwei gegenüberliegenden Flügeln (30) fest an Ort und Stelle zu halten.

5. Der Mechanismus gemäß den obigen Ansprüchen, **dadurch gekennzeichnet, dass** die Mittel zur Einstellung des Abstands der zweiten Drehachse (20) vom benachbarten Türpfosten (18) beim zweiten unteren Arm (17) in einem plattenförmigen Element (38) bestehen, das mit einem ersten Teil (38a) desselben in eine Öffnung (39) einer Zarge (40) eingesetzt wird, die unterhalb des Pfostens (18) des Rahmens (15) befestigt ist, und mit seinem restlichen zweiten Teil (38b) herausragt, um einen zylindrischen Körper (41) zu tragen, ausgebildet, um in einen entsprechend geformten Drehring (42) eingeschoben zu werden, der starr mit einem Ende (22) des zweiten Arms (17) gekoppelt ist, wobei das plattenförmige Element (38) zur Positionierung des zylindrischen Körpers (41) innerhalb der Öffnung (39) zur Innenseite oder Außenseite der Zarge (40) hin verschiebbar ist, wobei die Position mit Hilfe eines Gewindeelements (43) fixiert wird, das in ein mit einem Gegengewinde versehenes Loch eingeschraubt wird, welches in der Zarge (40) angebracht und zu der Öffnung (39) hin offen ist, mit der Achse quer zur Längsrichtung der Öffnung (39), wobei das Gewindeelement (43) ausgebildet ist, um geschraubt zu werden, bis es gegen eine Seite des ersten Teils (38a) des plattenförmigen Elements (38) drückt.

6. Der Mechanismus gemäß den obigen Ansprüchen, **dadurch gekennzeichnet, dass** die starre Verbindungsvorrichtung (27), ausgebildet, um eine nicht verschweißte Verbindung zwischen der Stange (25) und dem Arm (17) zu bilden, aus einem expandierenden zylindrischen rohrförmigen Einsatz (45) mit Längsnuten (46), die an den Enden offen sind, bestehend, mit dem Folgenden koaxial verbunden ist:

- ein erster kegelstumpfförmiger Keilblock (47), eingesetzt in das Ende (25a) der Stange (25), wobei der konische Teil dem zylindrischen Einsatz (45) zugewandt ist, und ausgestattet mit einer Anti-Rotationszunge (47a), die aus der Stange (25) herausragt und ausgebildet ist, um in einen entsprechend geformten Sitz (48) eingeführt zu werden, der am entsprechenden Ende des Arms (17) offen ist;
- ein zweiter kegelstumpfförmiger Keilblock (49) gegenüber dem ersten Keilblock (47) mit Bezug auf den zylindrischen Einsatz (45) und axial versehen mit einer Gewindebohrung (50);
- ein Gewindeelement (51), das durch eine Axialbohrung (52) verläuft, die an dem ersten Keilblock (47) und an seiner Zunge (47a) offen ist, und ausgebildet ist, um in die Gewindebohrung (50) in dem zweiten Keilblock (49) eingeschraubt zu werden, um den ersten Keilblock (47) am Arm (17) zu blockieren und um den zweiten Keilblock (49) zu ziehen, um den zylindrischen rohrförmigen Einsatz (45) zwischen
7. Der Mechanismus gemäß den obigen Ansprüchen, **dadurch gekennzeichnet, dass** die Mittel zur Einstellung des Abstands zwischen den zwei Pfosten (18, 19) des Rahmens (15) aus einem plattenförmigen Element (53) bestehen, starr gekoppelt mit einem der beiden Pfosten (18, 19) und ausgebildet, um am Ende des profilierter Elements, das die Führung (13) bestimmt, in der Längsnuten (31) eingeführt und daran mit Hilfe eines Gewindeelements (54) befestigt zu werden, das durch entsprechende Löcher (55) in den zwei gegenüberliegenden vertikalen Wänden (37) des profilierter Elements in dem Bereich verläuft, in den das plattenförmige Element (53) eingesetzt wird, wobei das Gewindeelement (54) ausgebildet ist, um das profilierte Element festzuhalten, das plattenförmige Element (53) zwischen den zwei gegenüberliegenden Flügeln (30) blockierend.

8. Der Mechanismus gemäß Anspruch 7, **dadurch gekennzeichnet, dass** das profilierte Element im Einführungsbereich des plattenförmigen Elements (53) zur Einstellung des Abstands zwischen den zwei Pfosten (18, 19) eine Vielzahl von Paaren gegenüberliegender Löcher (55, 55a, 55b) hat, wobei mit einem davon das Gewindeelement (54) verbunden werden kann, gewählt nach der ausgewählten Länge des profilierter Elements und nach der Position, die für das plattenförmige Element (53) im Verhältnis zu dem profilierter Element bestimmt wird.

9. Der Mechanismus gemäß Anspruch 7 und 8, **dadurch gekennzeichnet, dass** das plattenförmige Element (53) Teil eines L-förmigen Trägers (64) ist, dessen restlicher Abschnitt (56), senkrecht zu dem plattenförmigen Element (53), das in das Ende des profilierter Elements und nach der Position, die für das plattenförmige Element (53) im Verhältnis zu dem profilierter Element bestimmt wird.

10. Der Mechanismus gemäß Anspruch 9, **dadurch gekennzeichnet, dass** an dem dem L-förmigen Träger (64) gegenüberliegenden Teil das profilierte Element, das die Führung (13) bestimmt, mit Hilfe einer Platte (66) und einer Vielzahl von Schrauben (66a) oder mit einem anderen gleichwertigen System stabil am ersten Türpfosten (18) blockiert.

11. Der Mechanismus gemäß Anspruch 9, **dadurch gekennzeichnet, dass** an dem dem L-förmigen Träger (64) gegenüberliegenden Teil das profilierte Element, das die Führung (13) bestimmt, mit Hilfe weiterer Mittel zur Einstellung des Abstands zwischen den zweiTürpfosten (18, 19) mit dem ersten Türpfosten (18) gekoppelt ist.

12. Der Mechanismus gemäß Anspruch 11, **dadurch gekennzeichnet, dass** die weiteren Mittel zur Einstellung des Abstands zwischen den zwei Türpfosten (18, 19) aus einem zweiten identischen L-förmigen Träger (64) bestehen, der ein zweites plattenförmiges Element (53) umfasst, einzuführen in das gegenüberliegende Ende der Führung (13), und einen Abschnitt (56) zur Befestigung am ersten Türpfosten (18).

13. Der Mechanismus gemäß dem obigen Ansprüchen, **dadurch gekennzeichnet, dass** die Stange (25), die die dritte Drehachse (26) bestimmt, aus einem rohrförmigen profilierter Element mit einem kreisförmigen Querschnitt besteht.

14. Der Mechanismus gemäß den obigen Ansprüchen, **dadurch gekennzeichnet, dass** die Gleitmitte für die ersten Drehzapfenmittel aus einem Fahrgestell (57) mit mindestens vier Rädern (58) bestehen, an-geordnet, um in die Führung (13) zu gleiten.

15. Der Mechanismus gemäß den obigen Ansprüchen, **dadurch gekennzeichnet, dass** innerhalb des profilierter Elements, das die Führung (13) bildet, vier Längsrippen (59) bereitgestellt sind, die symmetrisch zur Innenseite der inneren oberen Fläche (60) und aus den Flügeln (30) herausragen, wobei jede eine Schiene für das Anti-Entgleisungs- und Anti-Blockierungs-Gleiten des Fahrgestells (57) innerhalb der Führung (13) bestimmt.

16. Der Mechanismus gemäß den obigen Ansprüchen, **dadurch gekennzeichnet, dass** die ersten Drehzapfenmittel aus einem Stift (61) bestehen, der aus dem Körper (57a) des Fahrgestells (57) austritt und ausgebildet ist, um eine Platte (68) zu durchqueren, die an der gegenüberliegenden Oberkante (63) des Tür-Verschlusses (12) angeordnet ist, wobei der Stift (61) an seinem Ende ein Gewinde hat und nach einer Mutter zur Lösungssicherung (61a), die mit dem Gewinde am Ende des Stifts (61) verschraubt ist, an der Platte (68) befestigt ist.

17. Der Mechanismus gemäß einem oder mehreren der Ansprüche 1-4, 6-12, 15 und 16, **dadurch gekennzeichnet, dass** die zweite Drehachse (120) von einer rohrförmigen Stange (125) bestimmt wird, eingeführt in einen Raum (180) innerhalb des Türpfosten (118), und an dem unten angeordneten ersten plattenförmigen Element (138) mit Hilfe einer starren Verbindungsvorrichtung (127) befestigt ist, wobei das erste plattenförmige Element (118) innerhalb
Mécanisme pour l'installation d'une porte (10) ou d'une autre fermeture similaire ayant un mouvement de rotation-coulissement, du type comprenant les éléments suivants pour l'association à un élément de fermeture (12), ou analogue, de la porte (10) :

- des premiers moyens formant pivot définissant un premier axe vertical (11) pour la liaison de pivotement de l'élément de fermeture (12), dans une région sensiblement centrale de celui-ci, avec des moyens de translation agencés de façon à coulisser dans un guide correspondant (13) relié au niveau d'au moins une entretoise supérieure ou inférieure (14) du cadre (15) de la porte (10) ;

- des deuxième moyens formant pivot avec un axe parallèle à l'axe desdits premiers moyens formant pivot, pour le pivotement de deux bras (16, 17), un premier bras supérieur (16) et un deuxième bras inférieur (17), qui pivotent tous deux avec l'une de leurs premières extrémités (21, 22) sur le cadre (15) de la porte (10) à proximité d'un montant (18) de façon à définir un deuxième axe de rotation (20), et qui ont les deuxième extrémités opposées (23, 24) couplées de façon à pouvoir pivoter à l'élément de fermeture (12) de façon à définir un troisième axe de rotation (26), interposé entre le premier axe (11) et le deuxième axe (20) lorsque l'élément de fermeture (12) est fermé, traversant l'élément de fermeture (12) dans la direction de la hauteur de celui-ci, ledit mécanisme étant caractérisé en ce que lesdits deuxième moyens formant pivot sont couplés de façon à pouvoir pivoter au cadre (15) avec des moyens pour régler la distance dudit deuxième axe de rotation (20) par rapport au montant à proximité immédiate (18) de la porte (10), lesdites deuxième extrémités opposées (23, 24) étant rigidement couplées en va-et-vient à l'aide d'une tige (25) traversant la totalité de la hauteur de l'élément de fermeture (12) et définissant le troisième axe de rotation (26), ladite tige (25) étant fixée à au moins l'un des deux bras (16, 17) par un dispositif de liaison rigide (27) adapté de façon à réaliser un joint non soudé entre la tige (25) et les bras (16, 17).

2. Mécanisme selon la revendication 1, caractérisé en ce qu'il comprend des moyens pour régler la distance entre les deux montants (18, 19) du cadre (15).

3. Mécanisme selon les revendications précédentes, caractérisé en ce que ledit guide (13) est constitué par un élément profilé rigide couplé à l'entretoise supérieure (14), et ayant une section transversale sensiblement en forme de C, avec une ouverture (28) dirigée vers le bas, une rainure longitudinale (31) étant réalisée sur chacun des bords en vis-à-vis (29) des ailes (30) de l'élément profilé formant ladite ouverture (28).

4. Mécanisme selon les revendications précédentes, caractérisé en ce que lesdits moyens pour régler la distance dudit deuxième axe de rotation (20) par rapport au montant à proximité immédiate (18) sont constitués, pour le premier bras supérieur (16), par une plaque (32) dont deux parties périphériques opposées (32a) sont adaptées de façon à être insérées dans lesdites rainures longitudinales en vis-à-vis (31), un corps cylindrique (33) faisant saillie à partir de ladite plaque (32) et étant adapté de façon à être inséré dans une bague de rotation de forme associée (34) rigidement couplée à une première extrémité (21) dudit premier bras (16), ladite plaque (32) étant mobile dans lesdites rainures (31) dans la direction d'extension longitudinale dudit élément profilé, pour aligner sa position, cette position choisie pouvant être fixée à l'aide d'un élément fileté (35) traversant des trous correspondants (36) sur les deux parois verticales en vis-à-vis (37) de l'élément profilé dans la région dans laquelle ladite plaque (32) est insérée, ledit élément fileté (35) étant adapté de façon à maintenir étroitement l'élément profilé par verrouillage de ladite plaque (32) entre les deux ailes en vis-à-vis (30).

5. Mécanisme selon les revendications précédentes, caractérisé en ce que lesdits moyens pour régler la distance dudit deuxième axe de rotation (20) par rapport au montant à proximité immédiate (18) sont constitués, pour le deuxième bras inférieur (17), par un élément en forme de plaque (38) inséré avec une première partie (38a) de celui-ci à l'intérieur d'une ouverture (39) d'une plinthe (40) fixée en dessous...
6. Mécanisme selon les revendications précédentes, **caractérisé en ce que** ledit dispositif de liaison rigide (27) adapté de façon à réaliser un joint non soudé entre la tige (25) et le bras (17) est constitué par un insert tubulaire cylindrique d’expansion (45) avec des rainures longitudinales (46) ouvertes sur les extrémités, auquel sont associés de façon coaxiale :

- un premier bloc de coin de forme tronconique (47), inséré dans l’extrémité (25a) de la tige (25) avec la partie conique faisant face à l’insert cylindrique (45), et muni d’une languette anti-rotation (47a) faisant saillie à partir de ladite tige (25), et adapté de façon à être inséré dans un siège de forme associée (48) ouvert sur l’extrémité correspondante du dudit bras (17) ;
- un deuxième bloc de coin de forme tronconique (49), opposé audit premier bloc de coin (47) par rapport à l’insert cylindrique (45), et muni axialement d’un trou fileté (50) ;
- un élément fileté (51) traversant un trou axial (52) ouvert sur ledit premier bloc de coin (47) et sur sa languette (47a), et adapté de façon à être vissé sur ledit trou fileté (50) sur ledit deuxième bloc de coin (49) pour bloquer le premier bloc de coin (47) sur le bras (17), et pour tirer le deuxième bloc de coin (49) de façon à comprimer l’insert tubulaire cylindrique (45) entre lesdits deux blocs de coin (47, 49), la partie de l’extrémité de ladite tige (25) dans laquelle sont insérés ledit insert cylindrique (45), ledit premier bloc de coin (47) et ledit deuxième bloc de coin (49) étant tubulaire avec une section transversale circulaire.

7. Mécanisme selon les revendications précédentes, **caractérisé en ce que** lesdits moyens pour régler la distance entre les deux montants (18, 19) du cadre (15) et faisant saillie avec sa deuxième partie restante (38b) de façon à supporter un corps cylindrique (41) adapté de façon à être inséré dans une bague de rotation de forme associée (42) rigidement couplée à une extrémité (22) dudit deuxième bras (17), ledit élément en forme de plaque (38) pouvant coulisser à l’intérieur de ladite ouverture (39) vers l’intérieur ou vers l’extérieur de ladite plinthe (40) pour positionner ledit corps cylindrique (41), ladite position étant fixée à l’aide d’un élément fileté (43) vissé dans un trou contre-fileté réalisé sur ladite plinthe (40) et ouvert sur ladite ouverture (39) avec l’axe transversal à la direction longitudinale de ladite ouverture (39), ledit élément fileté (43) étant adapté de façon à être vissé jusqu’à ce qu’il appuie contre un côté de ladite première partie (38a) dudit élément en forme de plaque (38).

8. Mécanisme selon la revendication 7, **caractérisé en ce que** ledit élémentprofilé comporte, dans la région d’insertion de l’élément en forme de plaque (53) pour le réglage de la distance entre les deux montants (18, 19), une pluralité de paires de trous en vis-à-vis (55, 55a, 55b), à l’une desquelles ledit élément fileté (54) peut être relié, sélectionnée en fonction de la longueur choisie de l’élément profilé et en fonction de la position déterminée pour l’élément en forme de plaque (53) par rapport audit élément profilé.

9. Mécanisme selon les revendications 7 et 8, **caractérisé en ce que** ledit élément en forme de plaque (53) fait partie d’un étier en forme de L (64), dont la partie restante (56), perpendiculaire à l’élément en forme de plaque (53) destiné à être inséré dans l’extrémité de l’élément profilé, sert à la fixation au montant (19).

10. Mécanisme selon la revendication 9, **caractérisé en ce que**, au niveau de la partie opposée par rapport à l’étier en forme de L (64), l’élément profilé définissant le guide (13) est bloqué de façon stable sur le premier montant (18) à l’aide d’une plaque (66) et par une pluralité de vis (66a), ou avec un autre système équivalent.

11. Mécanisme selon la revendication 9, **caractérisé en ce que**, au niveau de la partie opposée par rapport à l’étier en forme de L (64), l’élément profilé définissant le guide (13) est coupé au premier montant (18) à l’aide d’autres moyens pour régler la distance entre les deux montants (18, 19).

12. Mécanisme selon la revendication 11, **caractérisé en ce que** lesdits autres moyens pour régler la distance entre les deux montants (18, 19) sont constitués par un deuxième étier en forme de L identique (64), comprenant un deuxième élément en forme de plaque (53) destiné à être inséré dans l’extrémité opposée du guide (13), et une partie (56) pour la fixation au premier montant (18).

13. Mécanisme selon les revendications précédentes, **caractérisé en ce que** ladite tige (25) définissant le troisième axe de rotation (26) est constituée par un
élément profilé tubulaire ayant une section transversale circulaire.

14. Mécanisme selon les revendications précédentes, **caractérisé en ce que** lesdits moyens de coulissement pour lesdits premiers moyens formant pivot sont constitués par un chariot (57) avec au moins quatre roues (58), agencé de façon à coulisser à l'intérieur dudit guide (13).

15. Mécanisme selon les revendications précédentes, **caractérisé en ce qu'à l'intérieur de l'élément profilé constituant le guide (13), quatre nervures longitudinales (59) sont disposés, celles-ci faisant saillie de façon symétrique vers l'intérieur de la surface supérieure intérieure (60) et à partir des ailes (30), définissant chacune un rail pour le coulissement antidérailement et anti-blocage dudit chariot (57) à l'intérieur du guide (13).

16. Mécanisme selon les revendications précédentes, **caractérisé en ce que** lesdits premiers moyens formant pivot sont constitués par une broche (61) sortant à partir du corps (57a) dudit chariot (57), et adaptée de façon à croiser une plaque (68) disposée sur le bord supérieur en vis-à-vis (63) de l'élément de fermeture (12), ladite broche (61) étant filetée à son extrémité, et étant fixée à ladite plaque (68) à l'aide d'un écrou de contre-visage (61a) vissé sur ledit filetage à l'extrémité de la broche (61).

17. Mécanisme selon l'une ou plusieurs des revendications 1 à 4, 6 à 12, 15, et 16, **caractérisé en ce que** le deuxième axe de rotation (120) est défini par une tige tubulaire (125), insérée à l'intérieur d’un espace (180) à l’intérieur du montant (118), et fixée au premier élément en forme de plaque (138) disposé en dessous à l’aide d’un dispositif de liaison rigide (127), ledit premier élément en forme de plaque (118) pouvant coulisser à l’intérieur de l’ouverture (139) vers l’intérieur ou vers l’extérieur de la plinthe (140), ladite tige (125) étant rigidement couplée aux premières extrémités (122) des deux bras (117), tandis que les deuxièmes extrémités (124) des bras (117) sont fixées à l’élément de fermeture (112), chacune à l’aide d’un corps cylindrique (141) faisant saillie à partir de la deuxième extrémité (124) et inséré dans une bague de rotation de forme associée correspondante (142) rigidement couplée au bord respectif de l’élément de fermeture (112), lesdits corps cylindriques (141) définissant le troisième axe de rotation (126).

18. Porte avec un mouvement de rotation-coulissement, **caractérisée en ce qu'elle est installée avec un mécanisme selon l'une ou plusieurs des revendications précédentes.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• IT VE920026 U [0011]