AN ELECTRODE AND A METHOD FOR FORMING AN ELECTRODE

ELEKTRODE UND VERFAHREN ZUR HERSTELLUNG EINER ELEKTRODE

ELECTRODE ET SON PROCEDE DE FORMATION

| Designated Contracting States: | Turner, John Thomas
| AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR | Krugersdorp
| 1740 (ZA) |
| Priority: | Representaive: Charlton, Peter John
| 01.08.2005 ZA 200506108 | Elkington and Fife LLP
| 19.08.2005 ZA 200506663 | Prospect House
| Date of publication of application: | 8 Pembroke Road
| 28.05.2008 Bulletin 2008/22 | Sevenoaks
| Proprietors: | Kent TN13 1XR (GB)
| • Meyer, Thomas John
| Krugersdorp
| 1739 (ZA) | Inventors:
| • Turner, John Thomas
| Krugersdorp
| 1740 (ZA) | • Meyer, Thomas John
| Krugersdorp
| 1739 (ZA) |
Description

BACKGROUND OF THE INVENTION

[0001] THIS invention relates to an electrode and to a method for forming an electrode, typically a lead alloy anode.

[0002] Previously, electrodes were cast from a metal and had to be formed with a thicker blade for rigidity and corrosion resistance as cast metal, such as cast lead, typically corrodes faster than rolled metal.

[0003] Later developments have seen the manufacture of the electrode by casting the header of the electrode and rolling the blade with the blade then being welded to the head.

[0004] However, this is relatively more difficult to manufacture.

[0005] The invention seeks to address this.

SUMMARY

[0006] According to one example embodiment a method of forming an electrode includes:

- casting a molten metal in a mould to form an electrode with a header portion and a blade portion; and
- rolling the blade portion of the electrode after it has been cast.

[0007] The method may include the rolling of the blade portion into at least two different thicknesses.

[0008] The method may also include inserting a second metal into the mould before the molten metal is cast into the mould.

[0009] The second metal may be copper.

[0010] In one aspect the metal is lead or lead alloy and the method relates to the forming of a lead or lead alloy anode:

[0011] The invention also extends to an electrode including:

- a cast header portion; and
- a rolled blade portion integrally formed with the header portion.

[0012] The blade portion has at least two different thicknesses.

[0013] The electrode may include a second metal moulded with the electrode.

[0014] The second metal may be copper.

[0015] In one example, the electrode is formed from lead or lead alloy and is a lead or lead alloy anode.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] Figure 1 shows an example plant for manufacturing electrodes according to one aspect;

[0017] Figure 2 shows a schematic representation of an electrode formed using the plant of Figure 1; and

[0018] Figure 3 shows a schematic representation of an electrode after it has been cast but before it has been rolled.

DESCRIPTION OF PREFERRED EMBODIMENTS

[0019] An embodiment will be described with reference to the forming of lead alloy anodes but it will be appreciated that the methodology could be used with other metal or metal alloy electrodes such as the forming of aluminium cathodes to name but one example.

[0020] Referring to the accompanying Figures, a metal or metal alloy is passed into a melting pot 10.

[0021] The melting pot is heated to a temperature range for example between 300°C and 600°C, depending on the alloy, and the alloy is melted.

[0022] A second metal such as a copper bar, for example, is placed into a mould 12. Copper is used worldwide and is the preferred metal. The length shape and thickness of the copper hanger bar is determined by the weight and size of the anode to be formed.

[0023] Under the force of gravity melted lead alloy passes from the melting pot through connecting pipe 14 into the bottom of the mould 12, rising up and covering the copper bar.

[0024] Because the melted lead alloy is gravity fed from the bottom of the mould, this helps eliminate air pockets and impurities floating on the matter metal.

[0025] Once the metal has cooled sufficiently, it is placed in a cooling tank 16, if necessary.

[0026] Certain alloys do not require cooling in which case the cooling tank 16 will not be used.

[0027] The metal is moved from the mould 12 to the cooling tank 16 using an overhead crawl beam and hook contraption 18.

[0028] Thus the first step of casting the metal or the metal alloy in the mould is complete and the metal is now moved to a mould 20 in the form of a horizontal mould.

[0029] After the anode has been cast but before it is rolled its shape is as depicted in Figure 3 with the thickness of the blade 32 being a thickness "A".

[0030] The mould typically includes guide rollers 22 and compression rollers 24 which have a flywheel compression drive 26. As the cast metal passes through the horizontal rollers the cast metal is rolled and the shape of the cast metal changes.

[0031] If required, the electrode can be rolled and cross-rolled to spread in the molecules evenly.

[0032] After rolling the width of the blade 32 is as shown in Figure 2 with thickness "B" and "C" being less than the thickness "A" in Figure 3.
The thickness of the casting before rolling will be ascertained by the required finished thickness and will typically need to be compressed by between about 30% and 70% depending on the alloy in use. In the illustrated embodiment this amounted to about 3mm.

In any event, the compression rollers 24 typically start in a more open position to allow the part of the electrode with the copper insert to pass through towards the pit 28.

Once the copper portion has passed through to a predetermined position, the compression rollers begin closing to compress the portion of the metal or metal alloy behind the copper portion.

In this manner, the copper header bar 30 and blade 32 are integrally formed without requiring the welding of the header to the blade.

The header is typically not rolled at all since it is not immersed in the solution and is not subject to corrosion.

The electrode is then trimmed and fettled ready for dispatch.

It will be appreciated that where the electrode corrodes quicker at solution level, the electrode can be rolled thicker from the header to approximately 30mm below the solution level while the remainder of the blade can be rolled as required. An example of this can be seen in Figure 2.

Thus the electrode will have three different thicknesses. One example of these different thicknesses is illustrated in the accompanying drawing.

In any event, the method is suitable for any metal or metal alloy electrode and will give required electrical conductivity and mechanical strength of rolled metal or metal alloy but with a simpler and less costly manufacturing process than previous designs.

In addition, the methodology allows existing lead anodes to be recast and rolled to provide the improved structure.

Claims

1. A method of forming an electrode, the method including:
 - casting a molten metal in a mould to form an electrode with a header portion and a blade portion; and
 - rolling the blade portion of the electrode after it has been cast.

2. A method according to claim 1 including rolling of the blade portion into at least two different thicknesses.

3. A method according to claim 1 or claim 2 including inserting a second metal into the mould before the molten metal is cast into the mould.

4. A method according to claim 3 wherein the second metal is copper.

5. A method according to any preceding claim wherein the metal is lead or lead alloy.

6. A method according to claim 5 wherein the method relates to the forming of a lead or lead alloy anode.

7. An electrode including:
 - a cast header portion; and
 - a rolled blade portion integrally formed with the header portion.

8. An electrode according to claim 7 wherein the blade portion has at least two different thicknesses.

9. An electrode according to claim 7 or claim 8 including a second metal moulded with the electrode.

10. An electrode according to claim 9 wherein the second metal is copper.

11. An electrode according to any of claims 7 to 10 wherein the electrode is formed from lead or lead alloy.

12. An electrode according to claim 11 wherein the electrode is a lead or lead alloy anode.

Patentansprüche

1. Verfahren zum Formen einer Elektrode, wobei das Verfahren aufweist: Gießen eines geschmolzenen Metalls in eine Form, um eine Elektrode mit einem Kopfteil und einem Blattteil zu formen; und Rollen des Blattteils der Elektrode, nachdem sie gegossen wurde.

2. Verfahren nach Anspruch 1, welches Rollen des Blattteils zu zumindest zwei unterschiedliche Dicken umfasst.

3. Verfahren nach Anspruch 1 oder 2, welches das Einfügen eines zweiten Metalls in die Form umfasst, bevor das geschmolzene Metall in die Form gegossen wird.

5. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Metall Blei oder eine Bleiverbindung ist.

6. Verfahren nach Anspruch 5, wobei das Verfahren
sich auf das Formen einer Blei- oder Bleiverbindungsanode bezieht.

7. Elektrode, welche aufweist; ein Gießkopfteil; und eine gerolltes Blattteil, welches einstückig mit dem Kopfteil geformt ist,

8. Elektrode nach Anspruch 7, wobei das Blattteil zumindest zwei verschiedene Dicken hat.

9. Elektrode nach Anspruch 7 oder 8, welche ein zweites Metall, welches mit der Elektrode geformt ist, umfasst.

10. Elektrode nach Anspruch 9, wobei das zweite Metall Kupfer ist.

11. Elektrode nach einem der Ansprüche 7 bis 10, wobei die Elektrode aus Blei oder einer Bleiverbindung geformt ist.

12. Elektrode nach Anspruch 11, wobei die Elektrode eine Blei- oder Bleiverbindungsanode ist.

Revendications

1. Procédé de formation d’une électrode, le procédé comprenant les étapes consistant à :
 couler un métal fondu dans un moule pour former une électrode avec une partie d’embase et une partie de lame ; et
e laminer la partie de lame de l’électrode après qu’elle ait été coulée.

2. Procédé selon la revendication 1, comprenant le laminage de la partie de lame en au moins deux épaisseurs différentes.

3. Procédé selon la revendication 1 ou la revendication 2, comprenant l’insertion d’un deuxième métal dans le moule avant que le métal fondu ne soit coulé dans le moule.

4. Procédé selon la revendication 3, dans lequel le deuxième métal est du cuivre.

5. Procédé selon l’une quelconque des revendications précédentes, dans lequel le métal est du plomb ou un alliage de plomb.

6. Procédé selon la revendication 5, dans lequel le procédé concernant la formation d’une anode en plomb ou en alliage de plomb.

7. Electrode comprenant :