EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent:
11.03.2009 Bulletin 2009/11

Application number: 08000750.3

Date of filing: 30.11.2000

Vehicle front pillar
Vordere Fahrzeugsäule
Pilier antérieur de véhicule

Designated Contracting States:
DE FR GB

Priority:
30.11.1999 JP 34023799
30.11.1999 JP 34026299

Date of publication of application:

Document number(s) of the earlier application(s) in accordance with Art. 76 EPC:
00126226.0 / 1 106 484

Proprietor: HONDA GIKEN KOGYO KABUSHIKI KAISHA
Minato-ku,
Tokyo (JP)

Inventor: Yoshida, Suguru
c/o Honda R&D Co., Ltd.
Wako-shi,
Saitama-ken (JP)

Representative: Prechtel, Jörg et al
Weickmann & Weickmann
Patentanwälte
Postfach 86 08 20
81635 München (DE)

References cited:
WO-A-99/62755
DE-A- 3 441 602

• PATENT ABSTRACTS OF JAPAN vol. 1997, no. 06, 30 June 1997 (1997-06-30) & JP 09 039833 A
(HONDA MOTOR CO LTD), 10 February 1997 (1997-02-10)

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The present invention relates to an improved vehicle front pillar according to the preamble part of claim 1. Vehicle front pillars constitute a very important part of a vehicle body which requires high rigidity. When some obstacle or other external object collides with one or both of the front pillars, the external object is often subjected to a great impact. If the rigidity of the front pillars is reduced to give preference to protection of a possible colliding external object, however, durability of the entire vehicle would be more or less sacrificed. Thus, there has been a demand for more sophisticated vehicle front pillars which can sufficiently alleviate an impact on a possible colliding external object while still retaining their necessary rigidity. Example of a vehicle front pillar with the features of the preamble part of claim 1 giving special attention to alleviation of an impact on a possible obstacle or external object is known, for example, from Japanese Patent Laid-open Publication No. HEI-9-39833.

In the present invention, the fore half portion of the front pillar of a substantial tubular shape which comprises: a fore half portion oriented toward the front of the vehicle; and a rear half portion oriented toward the back (i.e., in a rearward direction) of the vehicle and having a reinforcing member of a closed sectional structure attached thereto so as to serve as a high-rigidity section of the vehicle front pillar. In the present invention, the fore half portion of the front pillar has at least one bent portion to serve as a shock absorbing section of the vehicle front pillar. Thus, in case an obstacle or external object collides with the front pillar, the fore half portion of the front pillar can be deformed, with a substantial cushion effect, with the bent portion further bent by the colliding impact force. Such cushioning deformation of the fore half portion can effectively absorb the colliding impact and thereby alleviate the impact on the external object. Further, with the reinforcing member of the closed sectional structure additionally attached to the rear portion of the front pillar, the rear half portion can serve as a high-rigidity section for retaining the necessary rigidity of the front pillar. Thus, in case an obstacle or external object collides against with the front pillar, the rear half portion can be prevented from being deformed by the colliding impact and thereby can retain the shape of the passenger compartment. The reinforcing member may have a circular or rectangular cross-sectional shape.

The present invention also provides a vehicle front pillar of a substantial tubular shape which comprises: a fore half portion oriented toward the front of the vehicle and formed into a thick-wall structure so as to serve as a shock absorbing section of the vehicle front pillar for absorbing an impact force applied from ahead of the vehicle; and a rear half portion oriented toward the back of the vehicle and formed into a thin-wall closed sectional structure so as to serve as a high-rigidity section of the vehicle front pillar. Namely, in the present invention, the fore half portion of the front pillar is formed into a thin wall structure so as to serve as a shock absorbing section of the vehicle front pillar. Thus, when an obstacle or external object collides against with the front pillar, the fore half portion of the front pillar can be deformed, with a substantial cushion effect, with the thin wall structure bent by the colliding impact force. Such cushioning deformation of the fore half portion can effectively absorb the colliding impact and thereby alleviate the impact on the external object. Further, by forming the rear portion of the front pillar formed into a thick-wall closed sectional structure, the rear portion can serve as a high-rigidity section of the vehicle front pillar. Thus, in case an obstacle or external object collides against with the front pillar, the rear half portion can be prevented from being deformed by the colliding impact and thereby can retain the shape of the passenger compartment.

The present invention also provides a vehicle front pillar of a substantial tubular shape which comprises: inner and outer frame members, the inner frame member including: a fore half portion oriented toward the front of the vehicle and formed into a thin wall structure so as to serve as a shock absorbing section of the vehicle and
front pillar for absorbing an impact force applied from ahead of the vehicle; and a rear half portion oriented toward the back of the vehicle and formed into a thick-wall closed sectional structure so as to serve as a high-rigidity section of the vehicle front pillar; and an interior reinforcing stiffener fixed between the inner and outer frame members and extending between fore and rear ends of the inner and outer frame members, the stiffener having at least one bent portion to provide an additional shock absorbing section.

For better understanding of the object and other features of the present invention, its preferred embodiments will be described in greater detail hereinafter with reference to the accompanying drawings, in which:

Fig. 1 is a schematic perspective view showing an automotive vehicle including front pillars in accordance with a first embodiment of the present invention;

Fig. 2 is a cross-sectional view of one of the front pillars (left front pillar) taken along the lines 2 - 2 of Fig. 1;

Fig. 3 is an exploded perspective view of the front pillar in accordance with the first embodiment of the present invention;

Figs. 4 and 5 are views explanatory of how the front pillar of the invention operates;

Fig. 6 is a sectional view of a front pillar in accordance with a second embodiment of the present invention;

Fig. 7 is a view taken in a direction of arrow 7 of Fig. 6;

Fig. 8 is a sectional view of a conventional vehicle front pillar;

Fig. 9 is a sectional view of a front pillar in accordance with a third embodiment of the present invention;

Figs. 10A and 10B are views explanatory of how the vehicle front pillar in accordance with the third embodiment operates;

Fig. 11 is a cross-sectional view similar to Fig. 2, which shows a front pillar in accordance with a fourth embodiment of the present invention;

Fig. 12 is an exploded perspective view of the front pillar shown in Fig. 11;

Fig. 13 is a cross-sectional view similar to Fig. 11, which shows a front pillar in accordance with a fifth embodiment of the present invention; and

Fig. 14 is a cross-sectional view generally similar to Fig. 11, which shows a front pillar in accordance with a sixth embodiment of the present invention.

Note that the terms "fore" or "front", "rear" or "back", "left", "right", "upper" and "lower" are used herein to refer to various directions as viewed from a driver or human operator of the vehicle sitting behind a steering wheel.

Fig. 1 is a schematic perspective view showing an automotive vehicle including a front pillar structure in accordance with a first embodiment of the present invention, which particularly shows left and right front pillars 20 constituting an important part of a body of the vehicle 10. In the drawings, reference numerals "Fr", "Rr", "L" and "R" represents a fore direction, rear direction, leftward direction and rightward direction, respectively, and "CL" represents an inward direction, i.e. a direction toward a longitudinal center line of the vehicle body. Further, in Fig. 1, reference numeral "11" represents a front fender, "12" a vehicle roof, "13" a front bumper, "14" a bonnet, "15" a front windshield glass, "16" a door, "17" a door glass, "18" a front road wheel and "19" a headlight. Although detailed construction of the left front pillar will be primarily described hereinbelow in relation to several preferred embodiments, it should be appreciated that the right front pillar is constructed identically to the left front pillar.

Fig. 2 is a cross-sectional view of the left front pillar 20 taken along the lines 2 - 2 of Fig. 1. The front pillar 20 includes inner and outer frame members 21 and 30 joined together into a substantial tubular shape. Fore half portion of the front pillar 20 is oriented in a forward direction (i.e., toward the front) of the vehicle 10, while a rear half portion of the front pillar 20 is oriented in a rearward direction (i.e., toward the back) of the vehicle 10. As shown, a fore portion 22 of the inner frame member 21 has first and second bent portions 23 and 24 that constitute a shock absorbing section 20a of the front pillar 20, and a rear portion 25 of the inner frame member 21 is reinforced with a reinforcing member 26 of a closed cross-sectional shape, so as to serve as a high-rigidity section 20b that affords the necessary rigidity or mechanical strength of the front pillar 20.

The inner frame member 21 of the front pillar 20 projects toward a passenger compartment 29 of the vehicle 10 and has a fore flange portion 21a lying substantially parallel to the front windshield glass 15. The above-mentioned first and second bent portions 23 and 24 of the inner frame member 21 are formed by curving or bulging the fore portion 22, extending rearward from the fore flange portion 21a, outwardly away from the passenger compartment 29. The rear portion 25 of the inner frame member 21, extending rearward from the rear end of the fore portion 22 and reinforced with the reinforcing member 26, has a rear flange portion 21b lying from the rear end of the rear portion 25 substantially parallel to the door glass 17. It is preferred that the inner frame member 21 be formed by bending or extruding a metal material such as steel or aluminum alloy.

The above-mentioned reinforcing member 26 includes a first reinforcing plate 27 secured to the surface of the rear portion 25 of the inner frame member 21, and a second reinforcing plate 28 having its fore and rear ends 28a and 28b secured to the fore end 27a and middle portion 27b, respectively, of the first reinforcing plate 27. The first and second reinforcing plates 27 and 28, joined together in this manner, together form the closed cross-sectional shape as mentioned above. The reinforcing member 26 also has a rear flange portion 26a that is secured between the rear flange portion 21b of the inner
frame member 21 and a rear flange portion 33 (to be described later) of the outer frame member 30. It is preferable that each of the first and second reinforcing plates 27 and 28 have a greater thickness than the inner and outer frame members 21 and 30.

[0017] Namely, with the first and second bent portions 23 and 24, the fore half portion of the front pillar 20 can serve as the shock absorbing section 20a. Thus, in case an obstacle or external object collides with the front pillar 20 from ahead of the vehicle 10 as arrowed in Fig. 2, the inner-frame fore portion 22 can be deformed, with a substantial cushion effect, with the first and second bent portions 23 and 24, constituting the shock absorbing section 20a on the fore portion 22 of the front pillar 20, further bent by the colliding impact. Such cushioning deformation of the inner-frame fore portion 22 can effectively absorb the colliding impact force and thereby alleviate the impact on the external object.

[0018] Further, because the cushioning deformation of the fore portion 22 can be promoted by just forming the first and second bent portions 23 and 24 on the inner-frame fore portion 22 of the front pillar 20, the advantageous shock-absorbing front pillar 20 can be produced relatively easily.

[0019] Furthermore, with the reinforcing member 26 having the closed cross-sectional shape, the rear portion 25 of the inner frame member 21 can be reinforced to a sufficient degree and can serve as the high-rigidity section 20b. Thus, in case an obstacle or external object collides against with the front pillar 20, the rear portion 25 of the inner frame member 21 can be reliably prevented from being deformed by the colliding impact force and thereby retain the shape of the passenger compartment 29.

[0020] The outer frame member 30 has an outward bulge 31 remote from the passenger compartment 29. The outer frame member 30 also has a fore flange portion 32 extending from the fore end of the outward bulge 31 substantially parallel to the front windshield glass 15, and the above-mentioned rear flange portion 33 extending from the rear end of the outward bulge 31 substantially parallel to the door glass 17. The outer frame member 30 opens in the inward direction CL (i.e., toward the longitudinal center line of the vehicle body). The outward bulge 31 is curved relatively deeply to provide a bottom 34 facing the outside. The outward bulge 31 of the outer frame member 30 also has a fore portion 35 curved rearward for attachment thereto of a garnish 40.

[0021] The outer frame member 30 is fixed to the inner frame member 21 by joining its fore flange portion 32 to the fore flange portion 21a of the inner frame member 21 and joining its rear flange portion 33, via the flange portion 26a of the reinforcing member 26, to the rear flange portion 21b of the inner frame member 21. It is preferred that the outer frame member 30 as well be formed by bending or extruding a metal material such as steel or aluminum alloy.

[0022] The garnish 40 has an inner lip portion 41 abutting against the outer surface of the front windshield glass 15, an outer lip portion 42 abutted against the outer surface of the outward bulge 31, and a central fitting portion 43 having a plurality of clip portions (only one of which is shown in the figure) 44 that are snap-fitted through the fore portion 35 so as to mount the garnish 40 on the outward bulge 31. The garnish 40 thus mounted covers the fore portion 35 to enhance the appearance of the front pillar 20. The garnish 40 is preferably formed of resin, such as polyvinyl chloride, so that it can be easily deformed by a colliding impact applied from ahead of the vehicle 10.

[0023] In the illustrated example of Fig. 2, the inner surface of the inner frame member 21 facing the passenger compartment 29 is covered with an interior cover 46. The interior cover 46 can enhance the appearance of the passenger compartment 29 and also function as a protector for the front pillar 20. Thus, when an obstacle or external object collides against with the front pillar 20, the interior cover 46 can protect the rear portion 25 of the inner frame member 21 from being deformed by the colliding impact force and thereby retain the shape of the passenger compartment 29. Note that in Fig. 2, reference numeral 50 represents a sealant, 51 a door sash and 52 a weatherstrip.

[0024] Fig. 3 is an exploded perspective view of the front pillar 20 in accordance with the first embodiment of the present invention. From the figure, it should be clear that the inner frame member 21 is an elongate member having the first and second bent portions 23 and 24 formed on the fore portion 22 and the reinforcing member 26 (i.e., a combination of the first and second reinforcing plates 27 and 28) is also an elongate member secured to the rear portion 25 of the inner frame member 21. Fig. 3 also shows a plurality of mounting holes 36 formed in the fore portion 35 of the outer frame member 30 at positions thereof corresponding to the clip portions 44 of the garnish 40.

[0025] Operation of the vehicle front pillar 20 will now be described with reference to Figs. 4 and 5.

[0026] More specifically, Fig. 4A shows an obstacle or external object 250 colliding with the garnish 40 from ahead of the vehicle as denoted by arrow ①. Fig. 4B shows a next state of the collision, in which the garnish 40 having collided with the external object 250 is strongly pressed rearward and crushed by the external object 250, as denoted by arrow ②, so that the garnish 40 is forced into a recess defined by the fore portion 35. Fig. 5A shows a further next state of the collision, in which the first and second bent portions 23 and 24 of the inner-frame fore portion 22 are further bent by the colliding impact force so that the shock-absorbing section 20a of the front pillar 20 is deformed plastically toward the interior of the passenger compartment 29 as denoted by arrow ③. In a final state of the collision illustrated in Fig. 5B, the first and second bent portions 23 and 24 of the inner-frame fore portion 22 are even further bent and thus the shock-absorbing section 20a of the front pillar 20 is...
further deformed plastically toward the interior of the pas-
senger compartment 29 as denoted by arrow ③.

By the above-described construction and oper-
ation, the front pillar 20 of the invention can sufficiently absorb the colliding impact force and thereby sufficiently alleviate the impact on the external object 250. In addi-
tion, the high-rigidity section 20b of the front pillar 20, which is reinforced with the reinforcing member 26 of the closed sectional structure, can still retain the necessary rigid-
ity of the rear portion 25 of the inner frame member 21 despite the colliding impact force, and thus prevent unwanted deformation of the passenger compartment 29.

The following paragraphs describe second and third embodiments of the present invention, using the same reference numerals to represent the same elements as in the above-described first embodiment.

Fig. 6 is a sectional view of a front pillar 60 (left front pillar) in accordance with the second embodiment of the present invention. The front pillar 60 includes inner and outer frame members 21 and 30 joined together into a substantial tubular shape. Fore portion of the inner frame member 21 has first and second bent portions 23 and 24 that together constitute a shock absorbing section 60a, and a rear portion 25 of the inner frame member 60 is reinforced with a reinforcing member or pipe 62 of a closed cross-sectional shape, so as to serve as a high-
rigidity section 60b that affords the necessary rigidity or mechanical strength of the front pillar 60. The reinforcing pipe 62 generally has a circular cross-sectional shape.

Fig. 7 is a view taken in a direction of arrow 7 of Fig. 6. The reinforcing pipe 62 is formed by pressing a flat plate in such a manner that it has a middle pipe-
shaped middle portion 63 and upper and lower flat por-
tions 64 and 65. The upper and lower flat portions 64 and 65 are welded at their outer edges to the rear portion 25 of the inner frame member 21, so as to reinforce the inner-frame rear portion 25. Importantly, the thus-welded upper and lower flat portions 64 and 65 of the reinforcing pipe 62 are kept in so-called "face-to-face contact" with the surface of the rear portion 25, so that any external stress applied to the rear portion 25 can be effectively dispersed widely. Even in the case where the reinforcing pipe 62 is welded directly to the rear portion 25 of a rel-
atively small wall thickness, the face-to-face contact can reli-
ably prevent the welded portion of the rear portion 25 from being cracked, as compared to a conventional ve-
hicle front pillar shown in Fig. 8.

Fig. 8 is a sectional view of the conventional vehicle front pillar, where a reinforcing plate 101 of a rel-
atively great thickness is welded to a rear portion 100 of an inner frame member and a reinforcing pipe 102 is welded to the outer surface of the reinforcing plate 101. In this case, the welded reinforcing pipe 102 is kept in so-called "line contact" with the rear portion 100 of the inner frame member, and thus an external stress would concentrate at the line contact. The stress concentration at the line contact tends to create an unwanted crack in

In this case, the welded reinforcing pipe 102 is kept in

In the rear portion 100. In order to avoid the crack, it is nec-
essary to weld the reinforcing plate 101 of a greater thick-
ness to the rear portion 100 of the inner frame member and then weld the reinforcing pipe 102 to the thicker re-
fining plate 101. Because the provision of the thicker re-
fining plate 101 is essential, the conventional front pillar would increase the number of necessary compo-
ent parts and also require an extra time and labor for welding the plate 101 to the rear portion 100.

In contrast to the conventional front pillar of Fig. 8, the reinforcing pipe 62 of the front pillar of the present invention can be welded directly to the rear portion 25 in the face-to-face contact therebetwen, using the upper and lower flat portions 64 and 65. This arrangement can effectively reduce the number of necessary component parts as compared to the conventional front pillar and also eliminate the extra time and labor for welding a sepa-
rate reinforcing plate.

The front pillar 60 in accordance with the sec-
ond embodiment of the invention operates as follows. When an obstacle or external object collides with the garnish 40 of the front pillar 60 from ahead of the vehicle 10 as arrowed in Fig. 6, the shock absorbing section 60a can be greatly deformed plastically, with a substantial cushion effect, toward the interior of the passenger com-
artment 29, as in the above-described first embodiment (front pillar 20).

Thus, the front pillar 60 can sufficiently absorb the colliding impact force and thereby sufficiently allevi-
ate the impact on the external object. In addition, the high-rigidity section 20b of the front pillar 60, which is reinforced with the reinforcing pipe 62 of the closed sec-
ctional structure, can still retain the necessary rigidity of the rear portion 25 of the inner frame member despite the collision, and thus prevent unwanted deformation of the passenger compartment 29.

Fig. 9 is a sectional view of a front pillar 70 (left front pillar) in accordance with the third embodiment of the present invention. The front pillar 70 has a substantial tubular shape, and a fore half portion of the front pillar 70 is oriented in the forward direction of the vehicle 10 while a rear half portion of the front pillar 70 is oriented in the rearward direction of the vehicle 10. The fore half portion of the front pillar 70 is formed to have a small wall thickness so as to serve as a shock absorbing section 70a that absorbs an impact force applied from ahead of the vehicle. The rear half portion, on the other hand, is formed into a closed sectional structure of a great wall thickness so as to serve as a high-rigidity section 70b that retains the necessary rigidity of the front pillar 70. It is pre-
ferred that the front pillar 70 be integrally formed by extruding a metal material such as steel or aluminum alloy.

The shock absorbing section 70a has an inner thin wall portion 71 extending forward from the fore end of the high-rigidity section 70b, and a fore flange portion 72 extending forward from the fore end of the inner thin wall portion 71 substantially in parallel to a front wind-
shield glass 15. The shock absorbing section 70a also
has a fore thin wall portion 73 running outward (i.e., away
from the interior of the vehicle) from the fore flange portion
72, and an outer thin wall portion 74 running between the
fore thin wall portion 73 and the high-rigidity section 70b
provided rearwardly of the shock absorbing section 70a.
The inner thin wall portion 71 has first and second bent
portions 71b and 71c formed by forming an outward bulge
71a.

[0037] Namely, the fore half portion of the front pillar
70 can be made to serve as the shock absorbing section
70a, by forming the fore half portion into a thin wall struc-
ture and forming the first and second bent portions 71b
and 71c. Thus, in case an obstacle or external object
collides with the front pillar 70 from ahead of the vehicle
10, the first and second bent portions 71b and 71c can
be deformed relatively easily, with a substantial cushion
effect, by the colliding impact force. As a consequence,
the colliding impact force can be absorbed effectively,
and the impact on the external object can be alleviated
to a sufficient degree.

[0038] The high-rigidity section 70b has an inner thick
wall portion 76 running rearwardly from the rear end of
the inner thin wall portion 71, a rear flange portion 77
extending forward from the rear end of the inner thick
wall portion 76 substantially in parallel to the door glass
17. The high-rigidity section 70b also has an outer thick
wall portion 78 running outward (i.e., away from the in-
terior of the vehicle) from the rear flange portion 77, and
a thick partition portion 79. With these wall portions, the
high-rigidity section 70b is formed into the closed sec-
tional structure.

[0039] The high-rigidity section 70b, thus formed into
the closed sectional structure of a great wall thickness,
can enhance the rigidity of the front pillar 70 without re-
quiring a separate reinforcing member welded to the in-
er frame member as in the first and second embodi-
ments. Thus, it is possible to reduce the total number of
necessary component parts constituting the front pillar
70. Further, because the operations for welding the re-
inforcing member are not necessary, the front pillar 70
can be manufactured without requiring a long time. Fur-
thermore, the high-rigidity section 70b, thus formed into
the closed sectional structure of a great wall thickness,
can be prevented from being deformed by an external
object colliding with the front pillar 70; thus, the passenger
compartment 29 can retain its original shape despite the
collision of the external object with the front pillar 70.

[0040] Figs. 10A and 10B are views explanatory of op-
eration of the vehicle front pillar 70 in accordance with
the third embodiment. More specifically, Fig. 10A shows
an obstacle or external object 250 colliding with the gar-
nish 40 from ahead of the vehicle as denoted by arrow
①. Fig. 4B shows a next state of the collision, in which
the garnish 40 having collided with the external object
250 is strongly pressed rearward and crushed by the ex-
ternal object 250 so that the garnish 40 is forced into a
recess defined by the fore thin wall portion 73. Then, the
first and second bent portions 71b and 71c of the inner
thin wall portion 71 are further bent by the colliding impact
force so that the shock-absorbing section 70a of the front
pillar 70 is greatly deformed plastically, with a cushion
effect, toward the interior of the passenger compartment
29. By the above-described construction and operation,
the front pillar 70 can sufficiently absorb the colliding im-
 pact force and thereby sufficiently alleviate the impact on
the external object 250. In addition, the high-rigidity sec-
tion 70b can still retain the necessary rigidity despite the
colliding impact, and thus prevent unwanted deformation
of the passenger compartment 29.

[0041] Whereas the first and second embodiments of
the present invention have been described above as
forming the first and second bent portions 23 and 24 by
curving or bulging the fore portion 22 of the inner frame
member outwardly away from the interior of the vehicle
10, the first and second bent portions 23 and 24 may be
formed by curving the fore portion 22 inwardly toward the
interior of the vehicle 10. Further, although the garnish
40 has been described as being formed of resin, such
as polyvinyl chloride, the garnish 40 may be formed of
any other suitable material, as long as it can be deformed
by an obstacle or external object colliding with the front
pillar to effectively absorb the colliding impact force.

[0042] Furthermore, the third embodiment has been
described as integrally forming the front pillar 70 by ex-
trusion; however, the shock-absorbing section 70a and
high-rigidity section 70b may be formed separately by
extrusion and then welded together. Moreover, where-
as the first and second bent portions 71b and 71c in the
third embodiment have been described as being formed
on the inner thin wall portion 71, such bent portions may
not be formed on any other suitable position than the
inner thin wall portion 71. Further, the number of the bent
portions may be smaller or greater than two, as long as
the bent portion or portions can function as an effective
shock absorbing function.

[0043] Fig. 11 is a cross-sectional view similar to Fig.
2, which shows a front pillar 120 in accordance with a
fourth embodiment of the present invention. In Fig. 11,
elements having the same functions as those in Fig. 2
are represented by the same reference numerals and
will not be described in detail to avoid unnecessary du-
plication. Fore half portion of the front pillar 120 is orient-
ed in the forward direction of the vehicle 10, while a rear half
portion of the front pillar 120 is oriented in the rearward
direction of the vehicle 120. As shown, a fore portion 122
of the inner frame member 121 has first and second bent
portions 123 and 124 that together constitute a shock
absorbing section 120a, and a rear portion 125 of the
inner frame member 121 is reinforced with a reinforcing
pipe 127 of a closed, i.e., circular, cross-sectional shape,
so as to serve as a high-rigidity section 120b that affords
the necessary rigidity or mechanical strength of the front
pillar 120. The reinforcing pipe 127 is secured to the sur-
face of the rear portion 125 of the inner frame member
121. It is preferred that the inner frame member 121 be
formed by bending or extruding a metal material such as steel or aluminum alloy.

In case an obstacle or external object collides with the front pillar 120 from ahead of the vehicle 10, the inner-frame fore portion 122 can be deformed, with a substantial cushion effect, with the first and second bent portions 123 and 124, constituting the shock absorbing section 120a on the fore portion 122 of the front pillar 120, further bent by the colliding impact force. Such cushioning deformation of the inner-frame fore portion 122 can effectively absorb the colliding impact force and thereby alleviate the impact on the external object.

Further, because the deformation of the fore portion 122 can be promoted by just forming the first and second bent portions 123 and 124 on the fore portion 122 of the front pillar 120, the shock-absorbing front pillar 120 can be produced relatively easily.

Furthermore, with the rear portion 125 of the inner frame member 121 reinforced with the reinforcing pipe 127 having the closed cross-sectional shape, the rear portion 125 of the inner frame member 121 can serve as the high-rigidity section 120b. Thus, when an obstacle or external object collides against with the front pillar 120, the front pillar 120 can effectively prevent the rear portion 125 of the inner frame member 121 from being deformed by the colliding impact and thereby retain the shape of the passenger compartment 29.

Fig. 12 is an exploded perspective view of the front pillar 120 shown in Fig. 11. From the figure, it should be clearly seen that the inner frame member 121 is an elongate member that is curved outwardly to have the first and second bent portions 123 and 124 formed on the fore portion 122 and the reinforcing pipe 127 is also an elongate member secured to the rear portion 125 of the inner frame member 121.

It should also be obvious that the front pillar 120 of Fig. 11 operates substantially in the same manner as the first embodiment of Fig. 2 (i.e., as illustrated in Figs. 4A and 4B), and thus description and illustration of the operation of the front pillar 120 are omitted here to avoid unnecessary duplication. By such construction and operation, the front pillar 120 can sufficiently absorb the colliding impact force and thereby sufficiently alleviate the impact on the external object 250. In addition, the high-rigidity section 120b of the front pillar 120 can still retain the necessary rigidity of the rear portion 125 of the inner frame member 121 despite the colliding impact, and thus prevent unwanted deformation of the passenger compartment 29.

Further, Figs. 13 and 14 are cross-sectional views similar to Fig. 2 or 11, which show front pillars 160 and 170 in accordance with fifth and sixth embodiments of the present invention, respectively. In Figs. 13 and 14, elements having the same functions as those in Fig. 11 are represented by the same reference numerals and will not be described in detail to avoid unnecessary duplication.

The front pillar 160 of Fig. 13 includes inner and outer frame members 121 and 30 joined together into a substantial tubular shape. Fore half portion of the front pillar 160 is oriented in the forward direction of the vehicle 10, while a rear half portion of the front pillar 160 is oriented in the rearward direction of the vehicle 10. As shown, a fore portion 122 of the inner frame member 121 has first and second bent portions 123 and 124 that together constitute a shock absorbing section 160a, and a rear portion 125 of the inner frame member 121 is reinforced with a reinforcing pipe 162 of a closed cross-sectional shape, so as to serve as a high-rigidity section 160b that affords the necessary rigidity or mechanical strength of the front pillar 160. More specifically, the reinforcing pipe 162 in this embodiment has a rectangular cross-sectional shape.

Namely, the front pillar 160 according to the fifth embodiment is different from the front pillar 120 according to the fourth embodiment in that the reinforcing pipe 162 has the rectangular cross-sectional shape rather than the circular cross-sectional shape. Because of the rectangular cross-sectional shape, the reinforcing pipe 162 of Fig. 13 can be fixed in “face-to-face contact” with the surface of the rear portion 125, so that a greater contact area is provided between the reinforcing pipe 162 and the rear portion 125 and an external stress applied to the rear portion 125 can be effectively dispersed widely. As a consequence, it is possible to reliably prevent damage or breakage of the inner-frame rear portion 125 due to stress concentration thereon and thereby enhance the reliability of the front pillar 160.

The front pillar 160 in accordance with the fifth embodiment of the invention operates as follows. When an obstacle or external object collides with the garnish 40 of the front pillar 160 from ahead of the vehicle 10 as arrowed in Fig. 13, the shock absorbing section 160a of the inner-frame fore portion can be greatly deformed plastically, with a substantial cushion effect, toward the interior of the passenger compartment 29, as in the above-described fourth embodiment (front pillar 120). Thus, the front pillar 160 of Fig. 13 can sufficiently absorb the colliding impact force and thereby sufficiently alleviate the impact on the external object. In addition, the high-rigidity section 160b of the front pillar 160, which is reinforced with the reinforcing pipe 162, can still retain the necessary rigidity of the rear portion 125 of the inner frame member despite the collision, and thus prevent unwanted deformation of the passenger compartment 29.

Further, in Fig. 14, the front pillar 170 according to the sixth embodiment of the present invention includes inner and outer frame members 171 and 30 joined together into a substantial tubular shape, and a fore half portion of the front pillar 170 is oriented in the forward direction of the vehicle 10 while a rear half portion of the front pillar 170 is oriented in the rearward direction of the vehicle 10. The inner-frame fore portion 172 has first and second bent portions 173 and 174 to serve as a shock absorbing section 170a for absorbing an impact force
applied from ahead of the vehicle. The inner-frame rear portion 175, on the other hand, is formed into a great wall thickness so as to serve as a high-rigidity section 170b that retains the necessary rigidity of the front pillar 170.

[0054] The front pillar 170 of Fig. 14 also includes an interior reinforcing stiffener 177 fixed between the inner and outer frame members 171 and 30, i.e. within the front pillar 170, and extending between the fore and rear ends of the inner and outer frame member 171 and 30. The interior reinforcing stiffener 177 is curved to have first, second and third bent portions 177a, 177b and 177c. Namely, the front pillar 170 is different from the fourth embodiment (front pillar 120) in that the inner-frame rear portion 175 is formed into a greater wall thickness so as to provide the high-rigidity section 170b and the front pillar 170 includes the interior reinforcing stiffener 177. According to the sixth embodiment of Fig. 14, there is no need to attach a separate reinforcing pipe to the high-rigidity section 170b, so that it is possible to reduce the total number of necessary component parts and also eliminate the extra time and labor for welding the separate reinforcing pipe.

[0055] When an obstacle or external object collides with the garnish 40 of the front pillar 170 from ahead of the vehicle as arrowed in Fig. 14, the front pillar 170 collapses with further bending of the first and second bent portions 173 and 174 of the inner-frame fore portion 172 and the additional first to third bent portions 177a, 177b and 177c of the stiffener 177. Thus, the shock absorbing section 160a can be greatly deformed plastically, with a greater cushion effect, toward the interior of the passenger compartment 29, as in the above-described fourth embodiment (front pillar 120). As a consequence, the front pillar 170 can sufficiently absorb the colliding impact force and thereby sufficiently alleviate the impact on the external object. In addition, the high-rigidity section 170b of the front pillar 170, which is provided by forming the inner-frame rear portion 175 into a greater wall thickness, can still retain the necessary rigidity of the rear portion 175 of the inner frame member despite the collision, and thus prevent unwanted deformation of the passenger compartment 29.

[0056] Whereas the fourth to sixth embodiments of the present invention have been described as forming the first and second bent portions of the inner-frame fore portion by curving the fore portion outwardly away from the interior of the vehicle, these first and second bent portions may be formed by curving the inner-frame fore portion inwardly toward the interior of the vehicle. Further, whereas the inner-frame rear portion has been described above as reinforced with a reinforcing pipe or reinforced by being formed into a great wall thickness, it may be reinforced in any other suitable manner.

[0057] In summary, according to one aspect of the present invention, the fore half portion of the front pillar has at least one bent portion to serve as a shock absorbing section of the vehicle front pillar. Thus, in case an obstacle or external object collides with the front pillar, the fore half portion of the front pillar can be deformed, with a substantial cushion effect, with the bent portion further bent by the colliding impact force. Such cushioning deformation of the fore half portion can effectively absorb the colliding impact force and thereby alleviate the impact on the external object. Further, with the reinforcing member of the closed sectional structure attached to the rear portion of the front pillar, the rear half portion can serve as a high-rigidity section for retaining the rigidity of the front pillar. Thus, when an obstacle or external object collides against with the front pillar, the rear half portion can be prevented from being deformed by the colliding impact and thereby can retain the shape of the passenger compartment despite the collision. As a consequence, the present invention can sufficiently alleviate the impact on the external object while still retaining the necessary rigidity of the front pillar.

[0058] According to another aspect of the present invention, the fore half portion of the front pillar is formed into a thin wall structure so as serve as a shock absorbing section of the vehicle front pillar. When an obstacle or external object collides against with the front pillar, the fore half portion of the front pillar can be deformed with the thin wall structure bent by the colliding impact force. Such cushioning deformation of the fore portion can effectively absorb the colliding impact to thereby alleviate the impact on the external object. Further, by forming the rear portion of the front pillar formed into a thick-wall closed sectional structure, the rear portion can serve as a high-rigidity section of the vehicle front pillar. Thus, when an obstacle or external object collides against with the front pillar, the rear portion can be prevented from being deformed by the colliding impact and thereby can retain the shape of the passenger compartment despite the collision. As a consequence, the present invention can sufficiently alleviate the impact on the external object while still retaining the necessary rigidity of the front pillar.

[0059] In a vehicle front pillar including inner and outer frame members joined into a substantial tubular shape, a fore portion of the inner frame member (21; 121; 171) is oriented toward the front of the vehicle (10) and has at least one bent portion (23, 24; 71b, 71c; 123, 124; 173, 174) formed thereon so as to serve as a shock absorbing section (20a; 60a; 70a; 120a; 160a; 170a). Rear portion of the inner frame member (21; 121; 171) is oriented toward the back of the vehicle (10) and has a reinforcing member (26; 62; 127; 162; 177) of a closed sectional structure attached thereto so as to serve as a high-rigidity section (20b; 60b; 70b; 120b; 160b; 170b). The reinforcing member may have a circular or rectangular cross-sectional shape.

Claims

1. A vehicle front pillar comprising inner and outer frame members (71, 76 and 74, 78; 171, 30) commonly defining a substantial tubular shape, wherein
the inner frame member (71 and 76; 171) includes:

a fore half portion (71; 172) oriented toward a front of the vehicle (10) and having at least one bent portion (71 b, 71 c; 173, 174) formed thereon so as to serve as a shock absorbing section (70a; 170a) of said vehicle front pillar for absorbing an impact force applied from ahead of the vehicle (10); and

a rear half portion (76; 175) oriented toward a back of the vehicle (10) and integrally formed with the fore half portion,

characterized in that said at least one bend portion (71 b, 71 c; 173, 174) of the fore half portion (71; 172) is located adjacent to a thick wall portion (76; 176) of the rear half portion (76; 175), and the rear half portion (76; 175) has a thickness greater than a thickness of the fore half portion (71; 172) and defines a high-rigidity section (70b; 170b) of said vehicle front pillar that retains a necessary rigidity of the vehicle front pillar when the shock absorbing section (70a; 170a) undergoes deformation to absorb the impact force.

2. The vehicle front pillar according to claim 1, wherein the inner and outer frame members (71, 76 and 74, 78) are formed integrally with each other, the outer frame member has a rear half portion (78) having a greater thickness than a fore half portion (74) thereof, and a partition portion (79) is integral with and extends between fore ends of respective rear half portions (76, 78) of the inner and outer frame members (71, 76 and 74, 78), the partition portion (79) having a greater thickness than the respective fore half portions (71, 74) of the inner and outer frame members (71, 76 and 74, 78).

3. The vehicle front pillar according to claim 1 or 2, wherein said front pillar comprises an extruded section of steel.

4. The vehicle front pillar according to claim 1 or 2, wherein said front pillar comprises an extruded section of aluminum alloy.

5. The vehicle front pillar according to claim 1, further including an interior reinforcing stiffener (177) fixed between said inner and outer frame members (171, 30) and extending between fore and rear ends of said inner and outer frame members (171, 30), wherein said stiffener (177) has at least one bent portion (177a, 177b, 177c) to provide an additional shock absorbing section.

Patentansprüche

1. Fahrzeugfrontsäule, die innere und äußere Rahmenelemente (71, 76 und 74, 78; 171, 30) umfasst, die gemeinsam eine im Wesentlichen röhrenartige Form definieren, wobei das innere Rahmenelement (71 und 76; 171) umfasst:

 einen vorderen Halbabschnitt (71; 172), der zur Vorderseite des Fahrzeugs (10) hin orientiert ist und an dem zumindest ein gebogener Abschnitt (71 b, 71 c; 173, 174) ausgebildet ist, um als Stoßabsorptionsabschnitt (70a; 170a) der Fahrzeugfrontsäule zu dienen zum Absorbieren einer Stoßkraft, die von vorne auf das Fahrzeug (10) wirkt; und

 einen hinteren Halbabschnitt (76; 175), der zur Rückseite des Fahrzeugs (10) hin orientiert ist und integral mit dem vorderen Halbabschnitt gebildet ist,

 dadurch gekennzeichnet, dass wenigstens ein gebogener Abschnitt (71 b, 71 c; 173, 174) des vorderen Halbabschnitts (71; 172) benachbart zu einem dicken Wandabschnitt (76; 176) des hinteren Halbabschnitts (76; 175) angeordnet ist, und der hintere Halbabschnitt (76; 175) eine Dicke aufweist, die größer als eine Dicke des vorderen Halbabschnitts (71; 172) ist und einen Bereich hoher Steifigkeit (70b; 170b) der Fahrzeugfrontsäule definiert, der eine erforderliche Steifigkeit der Fahrzeugfrontsäule beibehält, wenn der Stoßabsorptionsabschnitt (70a; 170a) eine Deformation erfährt, um die Aufprallkraft zu absorbieren.

2. Fahrzeugfrontsäule nach Anspruch 1, wobei die inneren und äußeren Rahmenelemente (71, 76 und 74, 78) integral miteinander gebildet sind, und wobei das äußere Rahmenelement einen hinteren Halbabschnitt (78) mit einer Dicke größer als dessen vorderen Halbabschnitt (74) aufweist, und wobei ein Teilabschnitt (79) integral mit vorderen Enden der jeweiligen hinteren Halbabschnitte (76, 78) der inneren und äußeren Rahmenelemente (71, 76 und 74, 78) verbunden ist und sich zwischen diesen erstreckt, wobei der Teilabschnitt (79) eine größere Dicke als die jeweiligen vorderen Halbabschnitte (71, 74) der inneren und äußeren Rahmenelemente (71, 76 und 74, 78) aufweist.

3. Fahrzeugfrontsäule nach Anspruch 1 oder 2, wobei die Frontsäule einen extrudierten Abschnitt aus Stahl umfasst.

4. Fahrzeugfrontsäule nach Anspruch 1 oder 2, wobei die Frontsäule einen extrudierten Abschnitt einer Aluminiumlegierung umfasst.
Revendications

1. Montant avant de véhicule comprenant un élément de châssis interne et un élément de châssis externe (71, 76 et 74 ; 121, 30 ; 171, 30) qui définissent en commun une forme essentiellement tubulaire, dans laquelle l’élément de châssis interne (71 et 76 ; 171) comprend :

 une partie de moitié avant (71 ; 172) orientée vers l’avant d’un véhicule (10) et comprenant au moins une partie courbée (71b, 71c ; 173, 174) formée sur elle de manière à servir de section d’amortissement de chocs (70a ; 170a) dudit montant avant de véhicule afin d’amortir une force d’impact qui s’appliquerait à partir de l’avant du véhicule (10) ; et

 une partie de moitié arrière (76 ; 175) orientée vers l’arrière d’un véhicule (10) et intégralement formée avec la partie de moitié avant,

 caractérisée en ce que ladite au moins une partie courbée (71b, 71c ; 173, 174) de la partie de moitié avant (71 ; 172) est située à proximité d’une partie de paroi épaisse (76 ; 176) de la partie de moitié arrière (76 ; 175), et la partie de moitié arrière (76 ; 175) a une épaisseur plus importante que l’épaisseur de la partie de moitié avant (71 ; 172) et définit une section à rigidité élevée (70b ; 170b) dudit montant avant de véhicule qui garde une rigidité nécessaire au montant avant de véhicule lorsque la section d’amortissement de chocs (70a ; 170a) est soumise à une déformation destinée à amortir la force d’impact.

2. Montant avant de véhicule selon la revendication 1, dans lequel l’élément de châssis interne et l’élément de châssis externe (71, 76 et 74, 78) sont intégralement formés l’un avec l’autre, l’élément de châssis externe comprend une partie de moitié arrière (78) qui a une épaisseur plus importante qu’une partie de moitié avant (74) de celui-ci, et une partie de séparation (79) qui y est intégrée et qui s’étend entre des extrémités avant de parties de moitiés arrière respectives (76, 78) de l’élément de châssis interne et de l’élément de châssis externe (71, 76 et 74, 78),

3. Montant avant de véhicule selon la revendication 1 ou la revendication 2, dans lequel ledit montant avant comprend une section extrudée en acier.

4. Montant avant de véhicule selon la revendication 1 ou la revendication 2, dans lequel ledit montant avant comprend une section extrudée en alliage d’aluminium.

5. Montant avant de véhicule selon la revendication 1, comprenant en outre un élément de renfort intérieur (177) fixé entre ledit élément de châssis interne et ledit élément de châssis externe (171, 30) et s’étendant entre des extrémités avant et arrière dudit élément de châssis interne et dudit élément de châssis externe (171, 30), dans lequel ledit élément de renfort (177) comprend au moins une partie courbée (177a, 177b, 177c) destinée à procurer une section d’amortissement de chocs supplémentaire.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description