SCALABLE FERMENTATION PROCESS
SKALIERBARES FERMENTATIONSVERFAHREN
PROCÉDÉ D'FERMENTATION EXTENSIBLE

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

Priority: 26.05.2005 EP 05011416

Date of publication of application: 13.02.2008 Bulletin 2008/07

Proprietor: Cytos Biotechnology AG
8952 Zürich-Schlieren (CH)

Inventors:
• EMMERLING, Marcel
 CH-8952 Schlieren (CH)
• HENNECKE, Frank
 CH-8305 Dietlikon (CH)
• PFRÜNDER, Holger
 CH-8902 Urdorf (CH)
• RHIEL, Martin
 CH-8906 Bonstetten (CH)
• STEINER, Philipp
 CH-8952 Schlieren (CH)

References cited:
WO-A-92/07077

 [retrieved on 2006-11-28] the whole document

KOVSLOVSKA T.M. ET AL: "RNA phage Qbeta coat protein as a carrier for foreign epitopes" INTERViroLOGY 39:9-15, 1996,
This invention relates to the field of protein expression and fermentation technology. A process for the efficient expression of recombinant RNA bacteriophage capsid protein in a bacterial host is described. The process leads to high yield of recombinant capsid protein which is capable of forming a virus-like particle (VLP) by self-assembly. Furthermore, the process is scalable from laboratory scale to fermenter volumes larger than 50 litres.

BACKGROUND OF THE INVENTION

Recent vaccination strategies make use of viruses or virus-like-particles (VLPs) to enhance the immune response towards antigens. For example, WO02/056905 demonstrates the utility of VLPs as a carrier to present antigens linked thereto in a highly ordered repetitive array. Such antigen arrays can cause a strong immune response, in particular antibody responses, against the linked antigen and are even capable of breaking the immune system’s inherent tolerance towards self antigens. Such antigen arrays are therefore useful in the production of vaccines for the treatment of infectious diseases and allergies as well as for the efficient induction of self-specific immune responses, e.g. for the treatment of cancer, rheumatoid arthritis and various other diseases.

As indicated in WO02/056905 capsid proteins of bacteriophages are particularly suited as antigen carrier. They have been shown to efficiently self-assemble into VLPs upon expression in a bacterial host (Kastelein et al. 1983, Gene 23:245-254; Kozlovskaya et al. 1986, Dokl. Akad. Nauk SSSR 287:452-455). Moreover, capsid proteins of bacteriophages such as derived from fr (Pushko et al. 1993, Protein Engineering 6(8)883-891), Qb (Kozlovskas et al. 1993, Gene 137: 133-137; Ciliens et al. 2000, FEBS Letters 24171:1-4; Vasiljeva et al 1998, FEBS Letters 431: 7-11; Kozlovskas et al., 1996, Intervirology 39=9-15) and MS-2 (WO92/13081 Mastico et al. 1993, Journal of General Virology 74:541-548; Hcal ct al. 2000, Vaccine 18:251-258) have been produced in bacterial hosts using inducible promoters such as the trp promoter or a trp-T7 fusion (in the case of fr and Qb) or the tac promoter using IPTG as inducer substance (in the case of MS-2). The use of inducible promoters is beneficial, to avoid possible toxic effects of the recombinant capsid protein and the metabolic burden of protein expression which both might reduce the growth of the bacterial expression host and, ultimately, the yield of expressed protein.

However, the expression systems used so far for the expression of capsid proteins of bacteriophages have been applied in small scale fermentations, i.e. in laboratory scale and small batch cultures with volumes of typically clearly below 1 litre. An scale up of these systems comprising volumes of 50 litre and more is expected to diminish in a great extent the respective capsid protein yield due to increased promoter leakage and/or lowered plasmid retention.

A further problem associated with commercially desired high-level expression and rapid accumulation of recombinant capsid proteins of bacteriophages is the formation of incorrectly folded protein species and the formation of so called inclusion bodies, i.e. protein aggregates, which are insoluble and which may hamper further downstream processes. Thus, for bacteriophage MS-2 coat protein the formation of protein aggregates and of protein species which lost their ability to self-assemble to VLPs have been reported when the protein was expressed under the control of the strong T7 promoter after IPTG induction using the pET expression system (Peabody & Al-Bitar 2001, Nucleic Acid Research 29(22):e113).

High expression rates of the recombinant capsid protein may therefore have a negative impact on the yield of correctly assembled VLPs. The production of VLP-based vaccines in a commercial scale requires, therefore, the establishment of an efficient, and in particular scalable fermentation process for the expression of recombinant capsid protein of bacteriophages leading to a product of constant quality and purity having the capability of self-assembling into VLPs, whereby the formation of insoluble fractions of the capsid protein is minimised or avoided.

Therefore, it is an object of the present invention to provide a process for expression of a recombinant capsid protein of a RNA bacteriophage which avoids or minimizes the disadvantage or disadvantages of the prior art processes, and in particular, which is scalable to a commercial scale and still leading to a product of constant quality and purity and the capability of self-assembly to VLPs, and wherein the formation of insoluble fraction of the capsid protein is minimised or avoided.

SUMMARY OF THE INVENTION

The invention relates to a process for expression of a recombinant capsid protein of a bacteriophage, or a mutant or fragment thereof being capable of forming a VLP by self assembly, wherein said bacteriophage is a RNA bacteriophage, and wherein said process comprising the steps of a) introducing an expression plasmid into a bacterial host, wherein said expression plasmid comprises an expression construct, wherein said expression construct comprises (i) a first nucleotide sequence encoding said recombinant capsid protein, or mutant or fragment thereof, and (ii) a promoter
being inducible by lactose; b.) cultivating said bacterial host in a medium comprising a major carbon source wherein said major carbon source is glucose or glycerol, and wherein said cultivating is performed in batch culture and under conditions under which said promoter is repressed by lacI, wherein said lacI is overexpressed by said bacterial host; c.) feeding said batch culture with said major carbon source; and d.) inducing said promoter with an inducer, wherein said feeding of said batch culture with said major carbon source is continued.

[0009] This invention provides a robust fermentation process for the expression of a capsid protein of a RNA bacteriophage which is forming a VLP by self-assembly, wherein the process is scalable to a commercial production scale and wherein the expression rate of the capsid protein leads to improved yield of soluble capsid protein. This is, in particular, achieved by improved repression of the promoter during the growth phase and high plasmid retention throughout the process. The expression system further avoids formation of insoluble protein aggregates by limiting the maximum expression rate occurring during the production phase.

[0010] In a preferred embodiment said RNA bacteriophage is selected from the group consisting of: a) bacteriophage Qβ; b) bacteriophage AP205; c) bacteriophage fr; d) bacteriophage GA; e) bacteriophage SP; f) bacteriophage MS2; g) bacteriophage M11; h) bacteriophage M1; i) bacteriophage NL95; j) bacteriophage f2; k) bacteriophage PP7 and l) bacteriophage R17. Preferably, said RNA bacteriophage is Qβ. More preferably said recombinant capsid protein comprises or alternatively consists of an amino acid sequence selected from the group consisting of SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, and SEQ ID NO:11. Still more preferably said recombinant capsid protein comprises SEQ ID NO:5, most preferably said recombinant capsid protein consists of SEQ ID NO:5.

[0011] In a further preferred embodiment said recombinant capsid protein comprises or alternatively consists of an amino acid sequence selected from the group consisting of SEQ ID NO:12, SEQ ID NO:13, and SEQ ID NO:14. More preferably said recombinant capsid protein comprises SEQ ID NO:12, most preferably said recombinant capsid protein consists of SEQ ID NO:12.

[0012] In another embodiment of the present invention, said expression construct comprises a first stop codon, wherein said first stop codon is TAA, and wherein preferably said TAA is located directly 3’ of said first nucleotide sequence.

[0013] In a further embodiment said expression construct comprises a first stop codon and a second stop codon, wherein said first stop codon is located directly 3’ of said first nucleotide sequence and wherein said second stop codon is located directly 3’ of said first stop codon, and wherein at least one of said first or second stop codon is TAA.

[0014] In a further embodiment said expression construct comprises a first nucleotide sequence and a second nucleotide sequence, wherein said first nucleotide sequence is encoding a recombinant capsid protein, preferably Qβ CP, or a mutant or fragment thereof, and wherein said second nucleotide sequence is encoding any other protein, preferably the Qβ A1 protein or a mutant or fragment thereof and wherein said first and said second nucleotide sequence are separated by exactly one sequence stretch comprising at least one TAA stop codon. In a preferred embodiment said expression construct comprises or alternatively consists of the nucleotide sequence of SEQ ID NO:6.

[0015] In a further embodiment said expression plasmid comprises or, more preferably, consists of the nucleotide sequence of SEQ ID NO:1.

[0016] In one embodiment of the invention said promoter is selected from the group consisting of the a.) tac promoter; b.) trc promoter; c.) tic promoter; d.) lac promoter; e.) lacUV5 promoter; f.) Psyn promoter; g.) lppα promoter; h.) lpp-lac romoter; i.) T7-lac promoter; j.) T3-lac promoter; k.) T5-lac promoter; and l.) a promoter having at least 50 % sequence homology to SEQ ID NO:2. In a preferred embodiment said promoter has at least 50 %, 60 %, 70 %, 80 %, 90 %, or 95 %, preferably 98 to 100 %, most preferably 99 % sequence homology to SEQ ID NO:2. In a further preferred embodiment said promoter is selected from the group consisting of tic promoter, trc promoter and tac promoter. Even more preferably said promoter is the tac promoter. Most preferably said promoter comprises or alternatively consists of the nucleotide sequence of SEQ ID NO:2.

[0017] In one embodiment said major carbon source is glucose or glycerol, preferably glycerol.

[0018] In one embodiment said feeding of said batch culture is performed with a flow rate, wherein said flow rate increases with an exponential coefficient μ, and wherein preferably said exponential coefficient μ is below Pmax.

[0019] In a further embodiment said inducing of said promoter is performed by co-feeding said batch culture with said inducer, preferably lactose and said major carbon source, preferably glycerol, at a constant flow rate.

[0020] In a further embodiment said inducing of said promoter is performed by co-feeding said batch culture with said inducer, preferably lactose and said major carbon source, preferably glycerol, at an increasing flow rate.

[0021] In a further embodiment said inducing of said batch culture is induced by a constant flow rate in a ratio of about 2:1 to 1:4 (w/w).

[0022] In a further embodiment said inducer is IPTG wherein preferably the concentration of said IPTG is medium is 0.001 to 5 mM, preferably 0.001 to 1 mM, more preferably 0.005 to 1 mM, still more preferably 0.005 to 0.5 mM. In a very preferred embodiment said concentration of IPTG is about 0.01 mM, most preferably 0.01 mM.

[0023] In one embodiment said lacI is overexpressed by said bacterial host, wherein said overexpression is caused by lacIβ or lacQ1, preferably by lacIβ. In one embodiment said bacterial host comprises said lacIβ gene or said lacQ1 gene, preferably said lacIβ gene on its chromosome. In a further preferred embodiment said bacterial host comprises
said lacIq gene or said lacQ1 gene, preferably saidlacIq gene on a plasmid, preferably on a high copy number plasmid.

In a further preferred embodiment said bacterial host comprises said lacIq gene or said lacQ1 gene, preferably said lacIq gene on said expression plasmid.

[0024] In one embodiment said bacterial host is selected from the group consisting of the strains E. coli RB791, E. coli DH20 and E. coli Y1088. Preferably said bacterial host is E. coli RB791.

[0025] In one embodiment said bacterial host comprises β-galactosidase activity.

[0026] In one embodiment said cultivating and said feeding of said batch culture and said inducing of said promoter is performed at a temperature which is below the optimal growth temperature of said bacterial host. Preferably said temperature is between 23 °C and 35 °C, more preferably between 25 and 33 °C, even more preferably between 27 and 32 °C, still more preferably between 28 and 31 °C. Even more preferably said temperature is about 30 °C, most preferably said temperature is 30 °C.

[0027] In one embodiment said cultivating and said feeding of said batch culture is performed at a temperature which is below the optimal growth temperature of said bacterial host, wherein preferably said temperature is between 23 °C and 35 °C, more preferably between 25 and 33 °C, even more preferably between 27 and 32 °C, still more preferably between 28 and 31 °C, even more preferably said temperature is about 30 °C, most preferably said temperature is 30 °C, and said inducing of said promoter is performed at the optimal growth temperature of the bacterial host, preferably at about 37 °C.

[0028] In one embodiment said cultivating and said feeding of said batch culture and said inducing of said promoter is performed in the absence of an antibiotic.

[0029] In one specific embodiment said expression plasmid comprises or alternatively consists of the nucleotide sequence of SEQ ID NO:1, said major carbon source is glycerol, said feeding of said batch culture is performed with a flow rate, wherein said flow rate increases with an exponential coefficient μ, and wherein said exponential coefficient μ is below μmax, said inducing of said promoter by co-feeding said batch culture is performed with a constant flow rate, wherein lactose and glycerol are co-fed to the batch culture in a ratio of about 2:1 to about 1:4 (w/w), preferably about 1:1 to about 1:4 (w/w), most preferably about 1:3 (w/w), and wherein said cultivating and feeding of said batch culture and said inducing of said promoter is performed at a temperature between 27 and 32 °C, preferably about 30 °C, most preferably 30 °C.

[0030] In a further specific embodiment said expression plasmid comprises or alternatively consists of the nucleotide sequence of SEQ ID NO:30, said major carbon source is glycerol, said feeding of said batch culture is performed with a flow rate, wherein said flow rate increases with an exponential coefficient μ, and wherein said exponential coefficient μ is below μmax, said inducing of said promoter by co-feeding said batch culture is performed with a constant flow rate, wherein lactose and said major carbon source are co-fed to the batch culture in a ratio of about 2:1 to about 1:4 (w/w), preferably about 1:1 to about 1:4 (w/w), most preferably about 1:3 (w/w), and wherein said cultivating and feeding of said batch culture and said inducing of said promoter is performed at a temperature between 27 and 32 °C, preferably about 30 °C, most preferably 30 °C.

DESCRIPTION OF THE FIGURES

[0031] Figure 1: Fermentation profile with pTac-nSD-Qb-mut (SEQ ID NO:1) in RB791 in 21 culture. Co-feeding during production phase was performed with medium containing 20 % glycerol and 20 % lactose. Shown are glycerol concentration [g/l] (circles); lactose concentration [g/l] (triangles); β-Gal activity [U/ml*OD=1 (squares) and OD600 (diamonds) plotted against the process time [h].

DETAILED DESCRIPTION OF THE INVENTION

[0032] Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs.

"about": within the meaning of the present application the expression about shall have the meaning of±/− 10 %. For example about 100 shall mean 90 to 110.

"promoter which is inducible by lactose" as used herein refers to a promoter which comprises regulatory elements of the lac operon. Such promoters are repressed by lacI and can be induced by lactose or the synthetic inducer IPTG. The skilled person is aware that induction of a promoter by lactose requires β-galactosidase activity in the bacterial host.

"located directly 3’": a nucleotide sequence N2 which is located directly 3’ of another nucleotide sequence N1 refers to a continuous sequence having the conformation 5’-N1-N2-3’ wherein N1 and N2 are directly connected and not separated by additional sequence elements.

"sequence stretch": as used herein the term "sequence stretch" refers to a continuous nucleotide sequence which
"bacterial host": as used herein the term "bacterial host" refers to a bacterial organism which is hosting or capable of hosting an expression plasmid of the invention, wherein "hosting" involves the replication of the expression plasmid and maintenance of the expression plasmid during cell division.

"culture": in the context of the instant invention a "culture" comprises a bacterial host in a medium ("bacterial culture"), wherein typically said medium is supporting the growth of said bacterial host.

"batch culture" as used herein relates to a culture, i.e. a bacterial host in a medium, wherein said culture constitutes a closed system, i.e. typically and preferably no addition or removal of medium takes place during the cultivation time. Therefore, in contrast to a continuous culture, typically and preferably the density of the bacterial host in the batch culture continuously increases with progressing cultivation time. Batch culture does not exclude the addition of compounds required for the control of the process, such as, for example, inducer, oxygen, and alkali or acid to control the pH.

"fed batch culture": as used herein is a culture which is supplied with additional medium comprising a substrate, preferably the major carbon source of the bacterial host (feed or co-feed medium). In the context of the application this process is referred to by the terms "feeding said batch culture" (medium comprises the major carbon source) and "co-feeding said batch culture" (medium comprises the major carbon source and the inducer, preferably lactose). Typically and preferably, no removal of medium except for analytical purposes takes place during cultivation time of a fed batch culture.

"Preculture": a culture, preferably a batch culture, which is used to produce the inoculum for a culture of a larger volume, e.g. the culture in which the recombinant capsid protein is produced (production culture). A preculture can be performed in two or more steps, wherein a second preculture is inoculated with a first preculture etc. to produce a sufficiently large inoculum for the production culture. The first and/or subsequent precultures may comprise an antibiotic to improve plasmid stability.

"substrate": as used herein refers to a compound in the culture medium which contributes to the carbon and energy supply of the bacterial host. The terms "substrate" therefore encompasses any compound contained in the medium contributing to the carbon supply of the bacterial host. Typical substrates for bacteria are sugar, starch, glycerol, acetate and any other organic compound which can be metabolized by bacteria. Therefore, the term "substrate" includes the major carbon source but also, for example, lactose.

"Major carbon source" as used herein refers to the compound in the culture medium which contributes most to the carbon and energy supply of the bacterial host during the growth phase. The major carbon source thus is the major substrate of the bacterial host. The major carbon source is typically a sugar such as sucrose or glucose, or glycerol, and preferably glucose or glycerol. Though lactose could in principal act as a major carbon source for a bacterial host, in the context of the instant invention the term "major carbon source" typically and preferably does not include lactose.

[0033] Phases of the process of the invention: The process of the invention is characterised by different phases which refer to different physiological conditions of the bacterial host with respect to its growth and the repression / induction status of the expression construct.

"Growth phase": The growth phase is initiated by said cultivating said bacterial host in a medium. The growth phase is preferably characterized by conditions under which the promoter driving the expression of the recombinant capsid protein is repressed and the growth phase is terminated with said inducing said promoter with an inducer. The growth phase can be further divided in a "batch phase" and a "feed phase". Said batch phase is initiated by said cultivating said bacterial host in a medium. The batch phase comprised a "lag phase" during which the bacterial host is not yet growing or growing with a non-exponential rate, typically and preferably a linear rate. The growth phase further comprises an "exponential growth phase" which directly follows the lag phase. No feeding of said culture takes place during the batch phase, thus the exponential growth phase is terminated by the consumption of the substrate by the bacterial host. The growth phase further comprises a "feed phase" which is directly following the batch phase and which is initiated by said feeding of said batch culture with said major carbon source. The feed phase is characterised by a growth rate of the bacterial host which is directly dependent on the flow rate of the feed medium containing the major carbon source.

"production phase": The growth phase is followed by the production phase which is initiated by said inducing said promoter with an inducer, wherein typically and preferably said feeding of said batch culture with said major carbon source is continued.
"Conditions under which the promoter is repressed": it is to be understood that the repression of a promoter is an equilibrium of formation and dissociation of the repressor-operator complex and that even stringently repressed promoters may show a certain expression rate also in the absence of their inducer. Therefore, as used within the application the term "conditions under which the promoter is repressed" relates to conditions, wherein at the end of the growth phase, i.e. directly before the addition of inducer to the culture, the recombinant capsid protein is expressed to a level which does not exceed a concentration in the medium of 200 mg/l, preferably 150 mg/l, more preferably 100 mg/l, as determined by the HPLC method of Example 17. Most preferably, the concentration of the recombinant protein is below the detection level of said method.

"Inducer": within the meaning of the in invention the term "inducer" relates to any substance which directly or indirectly interacts with an inducible promoter and thereby facilitates expression from said promoter; for example, inducers of a promoter inducible by lactose, such as the lac or tac promoter, are IPTG, lactose and allolactose.

"Coat protein" / "capsid protein": The term "coat protein" and the interchangeably used term "capsid protein" within this application, refers to a viral protein, preferably a subunit of a natural capsid of a virus, preferably of a RNA bacteriophage, which is capable of being incorporated into a virus capsid or a VLP. For example, the specific gene product of the coat protein gene of RNA bacteriophage Qβ is referred to as "Qβ CP", whereas the "coat proteins" or "capsid proteins" of bacteriophage Qβ comprise the "Qβ CP" as well as the A1 protein.

"recombinant capsid protein": A capsid protein which is synthesised by a recombinant host cell.

"Polypeptide": As used herein the term "polypeptide," refers to a polymer composed of amino acid residues, generally natural amino acid residues, linked together through peptide bonds. Although a polypeptide may not necessarily be limited in size, the term polypeptide is often used in conjunction with peptide of a size of about ten to about 50 amino acids.

"Protein": As used herein, the term protein refers to a polypeptide generally of a size of above 20, more particularly of above 50 amino acid residues. Proteins generally have a defined three dimensional structure although they do not necessarily need to, and are often referred to as folded, in opposition to peptides and polypeptides which often do not possess a defined three-dimensional structure, but rather can adopt a large number of different conformations, and are referred to as unfolded.

"Recombinant host cell": As used herein, the term "recombinant host cell" refers to a host cell into which one or more nucleic acid molecules of the invention have been introduced.

"Recombinant VLP": The term "recombinant VLP", as used herein, refers to a VLP that is obtained by a process which comprises at least one step of recombinant DNA technology. The term "VLP recombinantly produced", as used herein, refers to a VLP that is obtained by a process which comprises at least one step of recombinant DNA technology. Thus, the terms "recombinant VLP" and "VLP recombinantly produced" are interchangeably used herein should have the identical meaning.

"RNA-bacteriophage": As used herein, the term "RNA-bacteriophage" refers to RNA viruses infecting bacteria, preferably to single-stranded positive-sense RNA viruses infecting bacteria.

"Virus-like particle (VLP)" as used herein, the term "virus-like particle" refers to a structure resembling a virus particle or it refers to a non-replicative or non-infectious, preferably a non-replicative and non-infectious virus particle, or it refers to a non-replicative or non-infectious, preferably a non-replicative and non-infectious structure resembling a virus particle, preferably a capsid of a virus. The term "non-replicative", as used herein, refers to being incapable of replicating the genome comprised by the VLP. The term "non-infectious", as used herein, refers to being incapable of entering the host cell. Preferably a virus-like particle in accordance with the invention is non-replicative and non-infectious since it lacks all or part of the viral genome or genome function. Typically a virus-like particle lacks all or part of the replicative and infectious components of the viral genome. A virus-like particle in accordance with the invention may contain nucleic acid distinct from their genome. A typical and preferred embodiment of a virus-like particle in accordance with the present invention is a viral capsid such as the viral capsid of the corresponding virus, bacteriophage, preferably RNA-phage. The terms "viral capsid" or "capsid", refero to a macromolecular assembly composed of viral protein subunits. Typically, there arc 60, 120, 180, 240, 300, 360 and more than 360 viral protein subunits. Typically and preferably, the interactions of these subunits lead to the formation of viral capsid or viral-capsid like structure with an inherent repetitive organization, wherein said structure is, typically, spherical or tubular.

For example, the capsids of RNA bacteriophages or HBcAgS have a spherical form of icosahedral symmetry.

"Virus-like particle of a RNA bacteriophage": As used herein, the term "virus-like particle of a RNA bacteriophage" refers to a virus-like particle comprising, or preferably consisting essentially of or consisting of coat proteins, mutants or fragments thereof, of a RNA bacteriophage. In addition, virus-like particle of a RNA bacteriophage resembling the structure of a RNA bacteriophage, being non replicative and/or non-infectious, and lacking at least the gene or genes encoding for the replication machinery of the RNA bacteriophage, and typically also lacking the gene or genes encoding the protein or proteins responsible for viral attachment to or entry into the host. Preferred VLPs derived from RNA bacteriophages exhibit icosahedral symmetry and consist of 180 subunits. A preferred method to render a virus-like particle of a RNA bacteriophage non replicative and/or non-infectious is by genetic manipulation.
"Sequence identity": The amino acid sequence identity of polypeptides can be determined conventionally using known computer programs such as the Bestfit program. When using Bestfit or any other sequence alignment program, preferably using Bestfit, to determine whether a particular sequence is, for instance, 95% identical to a reference amino acid sequence, the parameters are set such that the percentage of identity is calculated over the full length of the reference amino acid sequence and that gaps in homology of up to 5% of the total number of amino acid residues in the reference sequence are allowed. This aforementioned method in determining the percentage of identity between polypeptides is applicable to all proteins, polypeptides or a fragment thereof disclosed in this invention.

"Sequence homology": The homology of nucleotide sequences can for example be determined by the program blastn which is an implementation of the BLAST algorithm, preferably using the default settings of the software.

"Fragment of a protein", in particular fragment of a recombinant protein or recombinant coat protein, as used herein, is defined as a polypeptide, which is of at least 70%, preferably at least 80%, more preferably at least 90%, even more preferably at least 95% the length of the wild-type recombinant protein, or coat protein, respectively and which preferably retains the capability of forming VLP. Preferably the fragment is obtained by at least one internal deletion, at least one truncation or at least one combination thereof. Further preferably the fragment is obtained by at most 10, at most 9, at most 8, at most 7, at most 6, at most 5, at most 4, at most 3 or at most 2 internal deletions; by at most 10, at most 9, at most 8, at most 7, at most 6, at most 5, at most 4, at most 3 or at most 2 truncations; or by at most 3, preferably at most 2, most preferably by exactly one combination thereof. Most preferably the fragment is obtained by exactly one internal deletion, exactly one truncation or by a combination thereof.

In one preferred embodiment of the invention, the virus-like particle of the invention comprises, consists essentially of, or alternatively consists of, recombinant coat proteins, mutants or fragments thereof, of a RNA-phage. Preferably, the RNA-phage is selected from the group consisting of (a) bacteriophage Qβ; (b) bacteriophage R17; (c) bacteriophage fr; (d) bacteriophage GA; (e) bacteriophage SP; (f) bacteriophage MS2; (g) bacteriophage M11; (h) bacteriophage MX1; (i) bacteriophage NL95; (k) bacteriophage f2; (l) bacteriophage PP7 and (m) bacteriophage AP205.

In one preferred embodiment of the invention, VLPs are produced comprising coat protein, mutants or fragments thereof of RNA bacteriophages, wherein the coat protein has an amino acid sequence selected from the group consisting of: (a) SEQ ID NO:5 referring to Qβ CP; (b) a mixture of SEQ ID NO:5 and SEQ ID NO:15 (Qβ A1 protein); (c) SEQ ID NO:16 (R17 capsid protein); (d) SEQ ID NO:17 (fr capsid protein); (e) SEQ ID NO:18 (GA capsid protein); (f) SEQ ID NO:19 (SP capsid protein); (g) a mixture of SEQ ID NO:19 and SEQ ID NO:20; (h) SEQ ID NO:21 (MS2 capsid protein); (i) SEQ ID NO:22 (M11 capsid protein); (j) SEQ ID NO:23 (MX1 capsid protein); (k) SEQ ID NO:24 (NL95 capsid protein); (l) SEQ ID NO:25 (f2 capsid protein); (m) SEQ ID NO:26 (PP7 capsid protein); and (n) SEQ ID NO:12 (AP205 capsid protein).

Upon expression in E. coli, the N-terminal methionine of Qβ coat protein is usually removed (Stoll, E. et al., J. BioL Chem. 252:990-993 (1977)). VLP composed of Qβ coat proteins where the N-terminal methionine has not been removed, or VLPs comprising a mixture of Qβ coat proteins where the N-terminal methionine is either cleaved or present are also within the scope of the present invention.

In one preferred embodiment of the invention, the VLP is a mosaic VLP comprising or alternatively consisting of more than one amino acid sequence, preferably two amino acid sequences, of coat proteins, mutants or fragments thereof, of a RNA bacteriophage.

In one very preferred embodiment, the VLP comprises or alternatively consists of two different coat proteins
of a RNA bacteriophage, said two coat proteins have an amino acid sequence of SEQ ID NO: 5 and SEQ ID NO:15, or of SEQ ID NO:19 and SEQ ID NO:20.

[0043] In preferred embodiments of the present invention, the produced VLP comprises, or alternatively consists essentially of, or alternatively consists of recombinant coat proteins, mutants or fragments thereof, of the RNA-bacteriophage Qβ, fr, AP205 or GA.

[0044] In one preferred embodiment, the VLP is a VLP of RNA-phage Qβ. The capsid or virus-like particle of Qβ shows an icosahedral phage-like capsid structure with a diameter of 25 nm and T=3 quasi symmetry. The capsid contains 180 copies of the coat protein, which are linked in covalent pentamers and hexamers by disulfide bridges (Golmohammadi, R. et al., Structure 4:543-554 (1996)).

[0045] Preferred virus-like particles of RNA bacteriophages, in particular of Qβ and fr in accordance of this invention are disclosed in WO 02/056905, the disclosure of which is herewith incorporated by reference in its entirety. Particular Example 18 of WO 02/056905 gave detailed description of preparation of VLP particles from Qβ.

[0046] In another preferred embodiment, the VLP is a VLP of RNA bacteriophage AP205. Assembly-competent mutant forms of AP205 VLPs, including AP205 coat protein with the substitution of proline at amino acid 5 to threonine, may also be used in the practice of the invention and leads to other preferred embodiments of the invention. WO 2004/007538 describes, in particular in Example 1 and Example 2, how to obtain VLP comprising AP205 coat proteins, and hereby in particular the expression and the purification thereto. WO 2004/007538 is incorporated herein by way of reference.

[0047] In one preferred embodiment, the VLP comprises or consists of a mutant coat protein of a RNA bacteriophage, wherein the mutant coat protein has been modified by removal of at least one lysine residue by way of substitution and/or by way of deletion. In another preferred embodiment, the VLP of the invention comprises or consists of a mutant coat protein of a RNA bacteriophage, wherein the mutant coat protein has been modified by addition of at least one lysine residue by way of substitution and/or by way of insertion. The deletion, substitution or addition of at least one lysine residue allows varying the degree of coupling with an antigen.

[0048] VLPs or capsids of Qβ coat protein display a defined number of lysine residues on their surface, with a defined topology with three lysine residues pointing towards the interior of the capsid and interacting with the RNA, and four other lysine residues exposed to the exterior of the capsid.

[0049] Qβ mutants, of which exposed lysine residues are replaced by arginines are also encompassed by the present invention. Preferably these mutant coat proteins comprise or alternatively consist of an amino acid sequence selected from the group of a) Qβ-240 (SEQ ID NO:7, Lys13→Arg); b) Qβ-243 (SEQ ID NO:8, Asn10→Lys); c) Qβ-250 (SEQ ID NO:9, Lys2→Arg); d) Qβ-251 (SEQ ID NO:10, Lys16→Arg); and e) Qβ-259 (SEQ ID NO:11, Lys2→Arg, Lys16→Arg). The construction, expression and purification of the above indicated Qβ mutant coat proteins, mutant QP coat protein VLPs and capsids, respectively, are described in WO02/056905. In particular is hereby referred to Example 18 of above mentioned application.

[0050] In a further preferred embodiment the recombinant capsid protein is a capsid protein of bacteriophage AP205 having the amino acid sequence depicted in SEQ ID NO:12 or a mutation thereof, which is capable of forming a VLP, for example the proteins AP205PST (SEQ ID NO:13) or AP205 N14D (SEQ ID NO:14.).

[0051] In a very preferred embodiment said recombinant capsid protein is composed of the 133 amino acid coat protein C of E. coli RNA bacteriophage Qβ comprising or preferably consisting of the amino acid sequence depicted in SEQ ID NO:5, wherein preferably recombinant capsid protein is capable of forming a VLP by self-assembly.

[0052] In one embodiment, the expression construct comprises a first stop codon and a second stop codon, wherein said first stop codon is located directly 3' of said first nucleotide sequence and wherein said second stop codon is located directly 3' of said first stop codon, and wherein at least one of said first or second stop codon is TAA. For example, plasmid pTac-nSDAP205 (SEQ ID NO:30) comprises the naturally occurring TAA stop codon as a first stop codon and an additional TGA stop codon directly 3' of the first stop codon.

[0053] In a preferred embodiment the expression construct comprises a first nucleotide sequence and a second nucleotide sequence, wherein said first nucleotide sequence is encoding a recombinant capsid protein, preferably Qβ CP, or a mutant or fragment thereof, most preferably SEQ ID NO:5, and wherein said second nucleotide sequence is encoding any other protein, preferably the Qβ A1 protein or a mutant or fragment thereof, most preferably SEQ ID NO:15, and wherein said first and said second nucleotide sequence are separated by exactly one sequence stretch comprising at least one TAA stop codon. In one embodiment said TAA stop codon is generated by replacing the naturally occurring stop codon, preferably TAA by the sequence TAA. Alternatively and more preferably said TAA stop codon is generated by replacing the naturally occurring stop codon, preferably TAA by the sequence TAATGA (SEQ ID NO:32).

[0054] For example, the region of Qβ gene C corresponds to the NCBI GenBank Acc. No. M99039 (nucleotides 46-1062). Gene C contains a first nucleotide sequence encoding the 133-amino acid Qβ coat protein (SEQ ID NO:5) and a second nucleotide sequence encoding the 329-amino acid read through protein A1 (SEQ ID NO:15). Nucleotides 1-399 of SEQ ID NO:6 (nucleotides 46-444 of NCBI GenBank Acc. No. M99039) correspond to said first nucleotide sequence encoding the 133-amino acid Qβ CP, Nucleotides 400 to 402 of SEQ ID NO:6 correspond to the strong TAA stop codon and nucleotides 403 to 405 of SEQ ID NO:6 to the leaky TGA stop codon, which is followed by said second
nucleotide sequence (Qβ A1). Surprisingly, it was found that the presence of the nucleotide sequence rotating to A1 in the expression construct results in higher RNA stability and, thus, in improved yield of Qβ CP and VLP as compared to a construct wherein the A1 sequence is deleted.

[0055] The expression of a recombinant protein can significantly reduce the growth rate of the bacterial host due to toxic effects of the accumulating protein and due to the metabolic burden caused by the protein synthesis. In particular, cell lysis and low plasmid retention may occur. Inducible promoters provide for the possibility to separate the growth phase from the production phase of a fermentation process. Inducible promoters are repressed by a repressor molecule during the growth phase of the bacterial host and are induced by exposing the bacterial host to inductive conditions during the production phase. Inducible promoters therefore allow the bacterial host to grow fast, preferably exponentially during the growth phase and to reach high cell densities. Thus, inducible promoters provide for high yield of the expression product at the end of the production phase. Therefore, the usage of inducible promoters for the expression of recombinant protein is preferred.

[0056] A well known example for an inducible promoter is the lac promoter which forms part of the lac operon and which can be induced by addition of lactose or the strong synthetic inducer isopropylthio-β-D-galactosid (IPTG) to the growth medium of the bacterial host. Donavan et al. 2000 (Can. J. Microbiol 46:532-541) report on an improved process for the expression of a monoclonal antibody fragment under the control of the lac promoter. Further examples of inducible promoters are provided in table 1 of Makrides 1996 (Microbiological Reviews, p. 512-538).

[0057] A typical drawback of expression systems based on inducible promoters is the "leakiness" of the promoter, meaning that the promoter is only insufficiently repressed and causes a certain expression rate of the recombinant protein during the growth phase. This typically leads to a reduced cell density or to plasmid instability and, as a consequence, to reduced yield of the recombinant protein Makrides 1996 (Microbiological Reviews, p. 512-538). An example of a promoter which is prone to insufficient repression is the VHB promoter which is repressed under high oxygen conditions and induced upon oxygen depletion.

[0058] For the purpose of the invention promoters are preferred which are stringently repressed. In one embodiment the promoter is repressed by the repressor lacI. Examples of such promoters are disclosed in Makrides 1996 (Microbiol. Rev. 60:512-538), Goldstein & Doi 1995 (Biotechnology Annual Review 1:105-128), Hannig & Makrides 1998 (TIBTECH 16:54-60) and Stevens 2000 (Structures 8, R177-R185). In a preferred embodiment the promoter is inducible by lactose, more preferably it is selected from the group consisting of lac, lacUV5, tac, trc, Psyn, Ipp-lac, T7-lac, T3-lac, and T5-lac. Especially preferred for the purpose of the invention is the tac promoter (SEQ ID NO:2) or a mutation or variant thereof. Within the scope of the invention are mutants or truncated or deleted variants of the tac promoter having a sequence homology with SEQ ID NO:2 which is at least 50 %, 60 %, 70 %, 80 %, 90 %, or 95 %, preferably 98 to 100 %, most preferably 99 %. Wherein the promoter strength of such mutated truncated or deleted variant is comparable to that of the promoter of SEQ ID NO:2. The skilled person will be able to determine the promoter strength of a given sequence by comparative expression studies using standard methods. In a specific embodiment of the invention the promoter driving the expression of the recombinant capsid protein comprises or alternatively consists of SEQ ID NO:2. The tac promoter is a fusion product of the -10 region of the lacUV5 promoter and the -35 region of the trp promoter and combines the high transcription efficiency of trp with the regulatory elements of the lac promoter (dc Boer et al. 1983, PNAS 80: 21-25; Aman et al. 1983 Gene 25:167-178). It provides for sufficiently high expression rates and high protein yield while avoiding the formation of insoluble or incorrectly folded recombinant protein which may occur with stronger promoters, such as the T7 promoter. The tac and the trc promoter are mutated versions of the tac promoter (Brosius et al. 1985, The Journal of Biological Chemistry 260(6):3539-3541). In a further preferred embodiment the promoter is selected from the group consisting of trc, tac and lac.

[0059] For the construction of an expression construct for the purpose of the invention the promoter is operably linked to said first nucleotide sequence encoding the recombinant capsid protein via a ribosome binding site (Shine-Dalgarno sequence, SD), typically comprising an ATG start codon at its 3’ end. Suitable Shine-Dalgarno sequences for the purpose of the invention are well known in the art (Dalbege et al. 1988, DNA 7(6):399-405; Ringquist et al. 1992, Mol. Micr. 6: 1219-1229). In one embodiment of the invention the expression construct comprises the SD sequence of Dalbege et al. 1988 (DNA 7(6):399-405) which is depicted in SEQ ID NO:4. In another, preferred embodiment the expression construct comprises a Shine-Dalgarno sequence of Ringquist et al. 1992 (Mol. Micr. 6:1219-1229, SEQ ID NO:3, nSD). Surprisingly, it was found that SEQ ID NO:3 is particularly suited for the purpose of the invention because it results in improved expression levels and improved yield of recombinant capsid protein. SEQ ID NO:3 is especially suited to enhance the expression of AP205 capsid protein. In a preferred embodiment of the invention the expression construct comprises a Shine-Dalgarno sequence selected from the group consisting of SEQ ID NO:3 and SEQ ID NO:4, preferably said Shine-Dalgarno sequence is SEQ ID NO:3.

[0060] Transcriptional terminators are functional elements of expression constructs. The skilled person will be able to choose a suitable terminator sequence from a wide range of sources. In a preferred embodiment of the invention the expression construct comprises a terminator sequence, wherein preferably, said terminator sequence is operably linked to said first nucleotide sequence, wherein further preferably said terminator sequence is the rRNB terminator sequence,
most preferably SEQ ID NO:28.

For the purpose of plasmid selection the skilled person will typically use an antibiotic resistance marker gene. Examples of antibiotic resistance genes which are widely used in the art and which are suitable for the purpose of the invention are resistance genes against the antibiotics ampicillin, tetracyclin and kanamycin. The use of kanamycin as a selective agent in the frame of a process for the production of a VLP is generally preferred because of the lower allergenic potential of kanamycin as compared to alternative antibiotics and because of the lower safety concerns resulting thereof for the use of the VLP as a vaccine. Furthermore, kanamycin provides better plasmid retention as compared to alternative antibiotics such as ampicillin. The kanamycin 3’-phosphotransferase gene (SEQ ID NO:29) which is derived from the transposon Tn903 is therefore a particularly useful selectable marker gene.

The addition of antibiotics to the medium is generally undesirable in a commercial production process for cost and safety reasons. In the context of the invention antibiotics, preferably kanamycin, are typically and preferably used for the selection of the expression strain. Media used in the production process are essentially free of antibiotics, in particular kanamycin. However, addition of an antibiotic to precultures used to produce the inoculum for the production culture can improve plasmid retention throughout the process (Example 10).

The skilled person will create expression plasmids comprising expression constructs which are useful for the production of VLPs of bacteriophages by combining the genetic elements described above applying standard methods of molecular biology. Particularly useful expression plasmids for the purpose of the invention are pTac-nSDQb-mut (SEQ ID NO:1) for the production of Qβ VLP and pTac-nSDAP205 (SEQ ID NO:30) for the production of AP205 VLP. The construction of these expression plasmids is described in detail in the Examples section.

The expression plasmids are transformed to a bacterial expression host by any method known in the art, preferably by electroporation. Individual clones of the host comprising the expression plasmid are selected for maximal expression of the recombinant capsid protein by SDS-PAGE after cell lysis. Selected clones of the expression host comprising the expression plasmid can be stored as frozen glycerol cultures.

Said bacterial host can be chosen from any bacterial strain capable of replicating and maintaining said expression plasmid during cell division. Preferred bacterial hosts are Escherichia coli strains having the specific features described in the following sections.

The repression of the promoter is improved by overexpression of the repressor by the bacterial host. In one embodiment said cultivating of said bacterial host is performed in batch culture and under conditions under which said promoter is repressed by lacI. In a preferred embodiment the gene causing overexpression of said lacI in said bacterial host is located on a plasmid, preferably on said expression plasmid. Alternatively, said gene is located on a separate plasmid contained in said bacterial host, wherein said separate plasmid preferably is a high copy number plasmid. Alternatively, and most preferably said gene is located on the chromosome of said bacterial host.

One example of a gene causing overexpression of lacI is lacIq (Menzella et al. 2003, Biotechnology and Bio-engineering 82(7)809-817) which is a single CG to TA change at -35 of the promoter region of lacI which causes a 10 fold increase in LacI expression. A further example is lacQ1 (Glascock & Weickert 1998, Gene 223(1-2):221-231). Improved repression of the promoter during the growth phase results in improved plasmid retention and higher cell density and, ultimately, in improved protein yield. For example, bacterial strains comprising the lacIq gene overexpress the lacI repressor molecule and therefore prevent formation of the recombinant protein during the growth phase more efficiently than strains comprising the wildtype gene. In a preferred embodiment the gene causing overexpression of said lacI is lacIq1 or lacIq, preferably lacIq. In a specifically preferred embodiment said bacterial host comprises the lacIq gene on its chromosome.

In one embodiment said inducing of said promoter is performed with an inducer, wherein said inducer is preferably selected from IPTG and lactose, most preferably said inducer is lactose. Upon exposure of the bacterial host to an inducer, the repressor is inactivated and the promoter becomes active. Addition of the strong inducer IPTG to the culture medium results in an immediate increase of the expression rate of the recombinant protein to a high level because IPTG directly enters the cells by diffusion and binds and inactivates the active repressor lacI. Inactivated lacI repressor molecules dissociates from the operator and allow high level transcription from the promoter. IPTG is not metabolized by the cell and the transcription continues with high rates until other metabolic parameters become limiting.

As mentioned before, high expression rates may lead to the formation of insoluble recombinant protein which is not capable of forming a VLP by self-assembly. Induction of protein expression with high concentrations of IPTG is particularly prone to the formation of insoluble protein. Therefore, induction of the promoter is preferably achieved by the addition of IPTG in concentrations which are below the concentration which causes the expression to occur at its maximum rate (Kopetzki et al. 1989, Mol Gen Genet 216:149-155).

In a preferred embodiment said inducing of said promoter is performed with IPTG, wherein the concentration of said IPTG in said medium is about 0.001 to 5 mM, preferably 0.001 to 1 mM, more preferably 0.005 to 1 mM, still more preferably 0.005 to 0.5 mM. In a specifically preferred embodiment the concentration of said IPTG is about 0.01 mM, most preferably 0.01 mM.

Alternatively, induction of the promoter is achieved by the addition of lactose. Induction of recombinant protein
expression with lactose requires that the bacterial host is capable of taking up lactose from the medium, e.g. by Lac permease and that it comprises β-galactosidase activity. The Lac permease dependent uptake of lactose into the cells follows a slower kinetic than the uptake of IPTG by diffusion. Furthermore, lactose does not directly interact with the lac operon but is converted by β-galactosidase to allolactose (1-6-0-β-galactopyranosyl-D-glucose) which is the actual inducer of the promoter. Induction of recombinant protein expression by the addition of lactose is advantageous because it avoids the immediate increase of the expression rate to a maximum level upon addition of the inducer and, thus, it reduces the risk of the formation of insoluble protein.

Allo lactose is metabolised by the bacterial host during the production phase and contributes carbon and metabolic energy to the bacterial metabolism. This may further contribute to improved protein yield as compared to induction with IPTG. Furthermore, induction by lactose allows to a certain extend the control of the expression rate of the recombinant protein during the production phase via the lactose concentration in the medium. Induction by lactose is further preferred in a pharmaceutical production process because IPTG is expensive and is believed to be toxic. Its removal needs to be demonstrated at the end of a the production process.

Fed-batch culture allows the maintenance of a constant growth rate \(\mu_{\text{max}} \) which is highly dependent on the bacterial strain, the expression construct and the growth conditions. The skilled person will understand that the determination of \(\mu_{\text{max}} \) is performed under conditions under which the promoter is repressed.

For a given experimental set up, \(\mu \) can be determined from the growth curve of the culture by plotting biomass concentration \(x \) as determined by OD\(_{600}\) or cell wet weight (CWW) against the cultivation time and determining the exponential growth coefficient \(\beta \) based on the equation \(x = x_0 e^{\beta t} \). The actual value of \(\mu_{\text{max}} \) is determined as the growth rate \(\mu \) of an exponentially growing batch culture in the beginning of the batch phase when no substrate limitation occurs, i.e. without supply of additional medium by feeding. The growth rate \(\mu \) can be determined by computing the ratio of the difference between natural logarithm of the total biomass \(X_2 \) measured at time \(t_2 \) and natural logarithm of the total biomass \(X_1 \) measured at time \(t_1 \) to the time difference \(t_2 - t_1 \):

\[
\mu = \frac{(\ln X_2 - \ln X_1)}{(t_2 - t_1)}.
\]

Fed-batch culture allows the maintenance of a constant growth rate (\(\mu \)). In a preferred embodiment the substrate,
preferably the major carbon source, is fed during the feed phase according to the exponential increase of the biomass
(x). If during the feed phase the substrate is supplied at the same rate it is consumed, the culture is in a quasi steady
state, analogous to the cultivation in a continuous culture. Because biomass formation and substrate consumption are
correlated over the substrate-referred yield coefficient \(Y_{x/s} \) (biomass [g] / substrate [g]), the substrate quantity (s) per time unit (t) to be supplied is calculated according to the formula \(ds/dt = \mu Y_{x/s} x_0 \text{tot} e^{\mu t} \), wherein \(x_0 \text{tot} \) is the total biomass at feed start.

Therefore, in a preferred embodiment said feeding of said batch culture with said major carbon source is
performed with a flow rate, wherein said flow rate increases with an exponential coefficient \(\mu \), and wherein preferably
said exponential coefficient \(\mu \) is below \(\mu_{\text{max}} \). Thus, the growth rate of said bacterial host during the feed phase is set
to a value which is below \(\mu_{\text{max}} \). In a preferred embodiment said exponential coefficient \(\mu \) is about 30 % to 70 %, most preferably about 50 % of \(\mu_{\text{max}} \). In a specific embodiment of the invention \(\mu \) is set to an absolute value of 0.15 to 0.45
h\(^{-1}\), more preferably 0.25 to 0.35 h\(^{-1}\), most preferably \(\mu \) is 0.3 h\(^{-1}\), provided that the set up of the process is such, that these values are below \(\mu_{\text{max}} \).

Bacteria are able to utilise a wide range of different substrates. For the purpose of the invention, preferred
major carbon sources are glucose and glycerol, preferably glycerol. Although the maximum specific growth rate \(\mu_{\text{max}} \)
of the expression host which can be achieved may be higher with glucose than with glycerol, glycerol causes less acetate
formation and provides higher biomass yield per substrate \((Y_{x/s}) \) and, ultimately, higher yield of the recombinant protein.
Furthermore, the handling of the liquid substrate glycerol is easier than that of solid carbon sources like glucose which
need to be dissolved in a separate process step.

As mentioned before, plasmid retention, i.e. the maintenance of the expression plasmid in the bacterial host
during the fermentation process, is essential for optimal yield of the recombinant protein. Plasmid retention can be
assessed by spreading bacteria cells on a solid medium to form single colonies and testing individual colonies for their
antibiotic resistance. For example, a plasmid retention of 100 % means that 100 out of 100 tested colonies comprise
the specific antibiotic resistance which conferred by the expression plasmid. For the purpose of the invention plasmid
retention at the end of the fermentation process is more than 80 %, preferably more than 90 %, more preferably more
than 95 %, even more preferably more than 97 % and most preferably 100 %.

The optimal growth temperature of a bacterial strain is the temperature at which it reaches its highest maximal
growth rate \(\mu_{\text{max}} \). Under otherwise not limiting conditions for most E. coli strains this temperature is about 37 °C.
However, growth of the bacterial strain comprising the expression construct at the optimal growth temperature and in
the absence of a selective antibiotic may favour the loss of the expression plasmid, whereas plasmid retention is generally
improved when the expression strain is grown at lower temperature. Although the maximum growth rate of the expression
strain is lower when the strain is grown at temperatures below its optimal growth temperature as compared to growth
at the optimal growth temperature, the yield of recombinant protein may be equal or even better at the lower temperature
due to improved plasmid retention.

In one embodiment of the invention, said cultivating of said bacterial host and/or said feeding of said batch
culture with said major carbon source and/or said inducing said promoter with an inducer is therefore performed at a
temperature below the optimal growth temperature of said bacterial host. In a preferred embodiment said temperature
is between 20 and 37 °C, preferably between 23 and 35 °C, more preferably between 25 and 33 °C, even more preferably
between 27 and 32 °C, still more preferably between 28 and 31 °C. Still more preferably said temperature is about 30
°C, most preferably said temperature is 30 °C.

The process of the invention comprises a production phase, wherein said production phase is initiated by said
inducing said promoter with an inducer. The time point for the initiation of said production phase can be determined
based on cultivation time and/or growth parameters.

The growth of the bacterial host during the fermentation process can be assessed by determining the optical
density at 600 nm (OD\(_{600}\)), the cell wet weight (CWW [g/l]) and the cell dry weight (CDW [g/l]). These parameters can
be used to define the optimal time point for the start of the production phase by addition of the inducer, preferably lactose,
to the medium. It is apparent for the skilled person, that on one hand higher CWW at the beginning of the production
phase can be achieved by an extended feed phase and may lead to improved yield of the recombinant protein but that
on the other hand over-aged cultures may show insufficient protein expression. The optimal time point for the beginning
of the production phase, which is initiated by said inducing of said promoter with an inducer, therefore needs to be
determined for the specific production conditions. For example, for expression of Qβ CP in E. coli RB791 in a total volume
of 2 l, induction is started after ca. 14 h, when OD\(_{600}\) has reached about 40 to 60. Surprisingly, similar parameters were
found for the same process in a 501 scale, where induction start is also after ca. 14 h when OD\(_{600}\) has reached about 50.

Therefore, in one embodiment of the invention, said inducing of said promoter with said inducer is performed
10 h to 16 h after the beginning of said growth phase, preferably after 12 h to 15 h, more preferably after 13 h to 15 h,
most preferably after about 14 h, wherein preferably said inducing of said promoter with said inducer is performed when
the OD\(_{600}\) has reached about 40 to 60, preferably about 50.

In a further embodiment, said inducing of said promoter with said inducer is performed after an extended feed
expression of the recombinant protein is an energy

5 phase, wherein preferably said inducing of said promoter with said inducer is performed 14 h to 20 b after the beginning of said cultivating of said bacterial host in a medium, preferably after 15 h to 18 h, more preferably after 16 h to 17 h, most preferably after about 16.5 h, wherein preferably said inducing of said promoter with said inducer is performed when the OD\textsubscript{600} has reached about 80 to 90, preferably about 85.

[0090] In one embodiment of the invention said inducing of said promoter with said inducer is performed when the OD\textsubscript{600} reached a value of 25 to 60, preferably 25 to 55, more preferably 30 to 50, most preferably 30 to 40. In a specifically preferred embodiment said inducing of said promoter with said inducer is performed when OD\textsubscript{600} is 35.

[0091] In another embodiment of the invention said inducing of said promoter with said inducer is performed after an extended feed phase, when the OD\textsubscript{600} reached a value of 60 to 120, preferably 70 to 110, more preferably 80 to 100, most preferably 80 to 90. In a specifically preferred embodiment the induction is started after and an extended feed phase when OD\textsubscript{600} is about 85, preferably 85.

[0092] Induction with IPTG: In one embodiment of the invention said inducing of said promoter with an inducer is achieved by the addition of IPTG, wherein preferably said feeding of the culture with the major carbon source is continued. Since IPTG is not metabolized by the bacterial host, induction can be achieve by a single addition of IPTG to the desired concentration. Alternatively, induction can be achieved by a continuous flow of IPTG to the culture. In a preferred embodiment induction is performed by addition of IPTG in a single addition or a continuous flow, wherein said feeding of the batch culture with the major carbon source is continued with a constant or an increasing flow rate of said major carbon source exponentially increasing flow rate of the major carbon source.

[0093] Induction with lactose: As described above, the induction of protein expression can alternatively be achieved by the addition of lactose to the culture medium. In one embodiment of the invention, at the beginning of the production phase the exponential feed of the substrate is interrupted and the culture is supplied with a constant flow of induction medium containing 100 to 300 g/l, preferably 100 g/l lactose as the sole carbon source (lactose feed medium). Preferably, the constant flow rate of lactose equals approximately the flow rate of the substrate at the end of the feed phase.

[0094] In a preferred embodiment of the invention said inducing of said promoter with an inducer is achieved by the addition of lactose, wherein preferably said lactose is fed to said batch culture in a continuous flow during and wherein preferably said feeding of said batch culture with said major carbon source is not continued.

[0095] Upon addition of lactose to the culture, the β-galactosidase activity increases, lactose is converted to allolactose which induces the tac promoter and the expression of the recombinant capsid is initiated. In parallel, allolactose is further metabolised and contributes to the energy supply for the bacterial host. The equilibrium of the feeding rate of the induction medium and the lactose consumption by the cells thus determines the expression rate. The enzymatic reactions involved in this cascade allow to control the process in such a way that the formation of inclusion bodies is minimised. The progress of induction process can be monitored by determining the β-galactosidase activity in the culture, e.g. by a β-Gal Assay Kit (Invitrogen, K1455-01).

[0096] In a more preferred embodiment of the invention said inducing of said promoter with an inducer is achieved by the addition of lactose, wherein preferably said lactose is fed to said batch culture in a continuous flow during and wherein preferably said feeding of said batch culture with said major carbon source is continued.

[0097] Discontinuous addition of inducer: Said inducer can be added to the culture discontinuously by a single addition at the beginning of the production phase or by a few subsequent additions during the production phase. Discontinuous addition of the inducer, especially by a single addition is particularly suited when the inducer is IPTG since IPTG is not metabolized by the bacterial host. Therefore, typically and preferably no replacement of metabolised IPTG is necessary during the production phase. In one embodiment said inducing of said promoter with an inducer is performed by the addition of said inducer, preferably IPTG or lactose, most preferably IPTG, to said medium, wherein said inducer is added to about its final concentration at once by a single addition at the beginning of the production phase, wherein preferably said feeding of said batch culture with said major carbon source is continued. In a preferred embodiment said inducing of said promoter with an inducer is performed by the addition of IPTG to said medium, wherein said IPTG is added to about its final concentration at once by a single addition, wherein preferably said feeding of said batch culture with said major carbon source is continued. Alternatively, said inducing of said promoter with an inducer is performed by the addition of said inducer, preferably IPTG or lactose, most preferably lactose, to said medium, wherein said addition is performed in several steps, preferably in 1 to 5, more preferably in 2 to 4, most preferably in 3 steps during the production phase, wherein preferably said feeding of said batch culture with said major carbon source is continued.

[0098] Continuous addition (feeding) of inducer: Preferably, said inducer is added to the medium in a continuous flow, preferably throughout the production phase. The continuous addition of the inducer is particularly suited for lactose, since lactose is metabolised by the bacterial host and therefore a continuous addition of lactose during the production phase allows to maintain a lactose concentration in the medium which allows for efficient induction of the promoter. In a preferred embodiment said inducing of said promoter with an inducer is performed by feeding said batch culture with said inducer, wherein preferably said inducer is IPTG or lactose, most preferably lactose, and wherein said feeding is performed in a continuous flow, wherein further preferably said feeding is performed throughout the production phase.

[0099] Co-feeding of inducer and major carbon source: The expression of the recombinant protein is an energy
demanding process. To prevent yield loss which might be caused by the excessive consumption of the inducer by the bacterial host and low expression rates resulting thereof, the culture can be additionally supplemented with substrate, preferably the major carbon source, during the production phase, wherein the flow rate of inducer and/or the major carbon source is constant or increasing, preferably constant. When during the production phase the culture is supplemented with substrate at an increasing flow rate, the flow rate is preferably increasing with an exponential rate.

[0100] Co-feeding with constant flow rate: In a preferred embodiment said inducing of said promoter with an inducer is performed by co-feeding said batch culture with said inducer and said major carbon source, wherein said inducer is preferably IPTG or lactose, most preferably lactose, and wherein said major carbon source is glucose or glycerol, preferably glycerol, wherein said inducer, preferably lactose and said major carbon source, preferably glycerol are co-fed to said batch culture at a flow rate, wherein said flow rate is preferably about constant. In a further preferred embodiment said flow rate is chosen to allow feeding of said major carbon source to said batch culture at about the same rate as at the end of the growth phase. In a still further preferred embodiment said inducer, preferably lactose, and said major carbon source, preferably glycerol, are contained in the same medium (co-feed medium). In a further preferred embodiment said co-feed medium is fed to said batch culture with a flow rate, wherein said flow rate is preferably about constant, and wherein further preferably said flow rate is chosen to allow feeding of said major carbon source to said batch culture at about the same rate as at the end of the growth phase. In a very preferred embodiment said inducer is lactose and said major carbon source is glycerol, wherein said lactose and said glycerol are co-fed to said batch culture in a ratio of about 2:1 to 1:4 (w/w).

[0101] In a further preferred embodiment of the invention lactose and said major carbon source, preferably glycerol, are co-fed to said batch culture in a ratio of 0:1 to 1:0 (w/w), preferably about 2:1 to about 1:4 (w/w), more preferably about 1:1 to 1:3 (w/w), most preferably the ratio is about 1:3 (w/w). In a preferred embodiment the ratio of lactose and the major carbon source, preferably glycerol, is 1:1 (w/w). In another preferred embodiment the ratio of lactose and the major carbon source, preferably glycerol, is 1:3 (w/w). In a more preferred embodiment said co-feed medium comprises ca. 200 g/l lactose and ca. 200 g/l glycerol. In a still more preferred embodiment the co-feed medium comprises ca. 100 g/l lactose and ca. 300 g/l glycerol.

[0102] Co-feeding with increasing flow rate: Alternatively, said inducing of said promoter with an inducer is performed by co-feeding said batch culture with said inducer and said major carbon source, wherein said inducer is preferably IPTG or lactose, most preferably lactose, and wherein said major carbon source is glucose or glycerol, preferably glycerol, wherein said inducer, preferably lactose and said major carbon source, preferably glycerol are co-fed to said batch culture at a flow rate, wherein said flow rate is increasing, wherein said flow rate may increase with a linear or with an exponential characteristic, wherein preferably the initial flow rate is chosen to to allow feeding of said major carbon source to said batch culture at about the same rate as at the end of the growth phase. In a preferred embodiment said inducer is lactose and said major carbon source is glycerol, wherein said lactose and said glycerol are co-fed to said batch culture in a ratio of about 2:1 to 1:4 (w/w).

[0103] Further alternatively said inducing of said promoter with an inducer is performed by co-feeding said batch culture with said inducer and said major carbon source, wherein said inducer is preferably IPTG or lactose, most preferably lactose, and wherein said major carbon source is glucose or glycerol, preferably glycerol, wherein said inducer, preferably lactose is fed to said batch culture at a first flow rate, and wherein said major carbon source, preferably glycerol is fed to said batch culture at a second flow rate, wherein said first flow rate is constant or increasing, preferably constant, and wherein second flow rate is constant or increasing, preferably increasing, wherein preferably the initial value of said second flow rate is chosen to to allow feeding of said major carbon source to said batch culture at about the same rate as at the end of the growth phase. In a very preferred embodiment said inducer is lactose and said major carbon source is glycerol, wherein said lactose and said glycerol arc co-fed to said batch culture in a ratio of about 2:1 to 1:4 (w/w).

[0104] The growth of the bacterial host as determined by CDW, CWW or OD500 continues during the production phase at a growth rate which is lower than that during the growth phase and which is decreasing with the process time. In a further embodiment of the invention, said inducing said promoter with an inducer is performed by co-feeding said inducer, preferably lactose and said major carbon source, preferably glycerol, to said batch culture with an increasing flow rate, preferably with a flow rate wherein the incremental increase of the flow rate is adapted to the actual growth rate of the culture. In a further preferred embodiment said inducer, preferably lactose, and said major carbon source, preferably glycerol, are contained in the same medium (co-feed medium), wherein preferably the ratio between lactose and glycerol in said medium (co-feed medium) ranges from about 0:1 to 1:0 (w/w), preferably about 2:1 to about 1:4 (w/w), more preferably about 1:1 to 1:3 (w/w), most preferably the ratio is about 1:3 (w/w). In a preferred embodiment the ratio of lactose and the major carbon source, preferably glycerol, is 1:1 (w/w). In another preferred embodiment the ratio of lactose and the major carbon source, preferably glycerol, is 1:3 (w/w). In a more preferred embodiment said medium (co-feed medium) comprises ca. 200 g/l lactose and ca. 200 g/l glycerol. In a still more preferred embodiment the induction medium comprises ca. 100 g/l lactose and ca. 300 g/l glycerol.

[0105] In one embodiment of the invention said inducing of said promoter with an inducer is performed by co-feeding said inducer, preferably lactose and said major carbon source, preferably glycerol to said batch culture, wherein said inducer, preferably lactose and said major carbon source, preferably glycerol are contained in separate media which arc separately fed to said culture.
[0106] At the end of the production phase the cells are harvested by centrifugation. Typically, cells are harvested about 5 h after induction start, when a final OD_{600} of 90 to 130 is reached. Further extension of the production phase leads to higher OD_{600} and CWW values and therefore to further improved yield of the expression construct.

[0107] Harvested cells may be suspended in a storage buffer and stored at -80 °C for further processing.

[0108] The total protein content of the cells is determined after cell lysis by SDS PAGE or LDS PAGE and comparison with a protein standard. The content of soluble protein is determined by HPLC. The identity of the expressed capsid protein is determined by western blotting. The concentration of assembled VLPs can be analysed by size exclusion chromatography (Example 18). VLP can preparatively be purified from lysed cells by chromatographic methods.

[0109] Scale-up of the process of the invention to large volumes is possible with only minor adaptations. The invention encompasses culture volumes in the range of 100 ml up to 6000 l. Preferred culture volumes are 40 to 100 l, most preferably about 50 l. It is apparent for the skilled person that larger culture volumes in particular require larger volumes of the preculture which is used for inoculation. For example, a preculture may be performed in two or more steps with increasing preculture volume. To ensure plasmid retention in large culture volumes, the precultures which are used as inoculum may contain an antibiotic to maintain selection pressure. The skilled person is aware that plasmid retention can further be improved by reducing the number of generations which is necessary to reach the desired final cell density. Therefore, it is advantageous to inoculate the precultures and the batch cultures with high cell densities. In a preferred embodiment the initial OD_{600} of the preculture is 0.1 to 0.4, preferably about 0.3.

[0110] In one embodiment, prior to said cultivation step, said process further comprises the step of introducing said bacterial host into a medium, wherein said introducing is performed with an inoculum, wherein said inoculum is produced in a preculture process comprising the step of growing said bacterial host in a medium comprising an antibiotic, preferably kanamycin. More preferably, said preculture process comprises the steps of growing said bacterial host in a first medium comprising an antibiotic, preferably kanamycin, and diluting said first medium comprising the bacterial host with a second medium to an OD_{600} of 0.1 to 0.4, preferably about 0.3, wherein said second medium is essentially free of an antibiotic, and further cultivating said bacterial host.

[0111] Furthermore, it is apparent for the skilled person, that the fermentation process of the invention is an aerobic process which requires adequate oxygen supply of the bacteria in the culture. The oxygen demand of the bacterial host is, inter alia, increasing with increasing cell density and increasing growth rate. Depending on the total volume and the oxygen demand of the bacterial host, oxygen can, for example, be supplied by stirring and/or by aeration with air. Alternatively, oxygen can also be supplied by aeration with pure oxygen or a mixture of pure oxygen with any other gas, preferably air, wherein pure oxygen refers to the technically pure gas as commonly available for technical purposes. A further possibility of supplying oxygen to the bacterial host is increasing the oxygen partial pressure in the medium by increasing the pressure in the fermenter.

[0112] In a preferred embodiment of the invention, said cultivating said bacterial host and/or said feeding of said batch culture and/or said inducing of said promoter with an inducer is performed under conditions, wherein said bacterial host is supplied with oxygen, preferably by aeration with air, most preferably by aeration with air in a constant flow, wherein preferably said oxygen is supplied throughout the entire process, most preferably throughout the lag-, growth- and production phase, and wherein further preferably the partial pressure of oxygen is monitored in the culture medium and wherein the bacterial host is alternatively or additionally supplied with oxygen by aeration with pure oxygen, preferably when the partial pressure of oxygen in the medium (pO_{2}) is below a certain threshold. In a specifically preferred embodiment said threshold of pO_{2} is in the range of 0 % to 60 %, preferably 10 % to 50 %, more preferably 20 % to 45 % most preferably said threshold is about 40 %.

[0113] Oxygen supply, preferably by aeration with air and/or pure oxygen to maintain the preferred pO_{2} as described above, is routinely applied in the process of the invention, preferably for culture volumes of 21 and more. Aeration with oxygen in the described manner is especially preferred in the scaled-up process, most preferably at 40 to 1001 and above.

[0114] Therefore, one embodiment of the invention is a process for expression of a recombinant capsid protein of a bacteriophage or a mutant or fragment thereof being capable of forming a VLP by self-assembly, wherein said bacteriophage is a RNA bacteriophage, and wherein said process comprising the steps of a) introducing an expression plasmid into a bacterial host, wherein said expression plasmid comprises an expression construct, wherein said expression construct comprises (i) a first nucleotide sequence encoding said recombinant capsid protein, or mutant or fragment thereof, and (ii) a promoter being inducible by lactose; b.) cultivating said bacterial host in a medium comprising a major carbon source; wherein said major carbon source is glucose or glycerol, and wherein said cultivating is performed in batch culture and under conditions under which said promoter is repressed by lacI, wherein said lacI is overexpressed by said bacterial host; c.) feeding said batch culture with said major carbon source; and d.) inducing said promoter with an inducer, wherein said feeding of said batch culture with said major carbon source is continued; wherein throughout steps b.) to d.) of said process oxygen is supplied to said bacterial host by a pO_{2} in said medium of at least about 10 % to 50 %, preferably about 40 %, and wherein further preferably said oxygen is supplied by aeration with air, pure oxygen, or a mixture of both, preferably by a mixture of air and pure oxygen.
EXAMPLES

Example 1

Cloning Strategy for the Expression Plasmid pTac-nSD-Qb-mut (SEQ ID NO:1)

[0115] The coat protein-encoding gene (C) of *E. coli* RNA bacteriophage Qβ is amplified from plasmid pSDQb-mut (SEQ ID NO:33). The plasmid contains the sequence of gene C coding for the 133-aa Qβ coat protein (CP) and the 329-aa read through protein (A1). To prevent read-through, nucleotides 445-450 according to NCBI GenBank Acc. No. M99030 TGAACA (SEQ ID NO:31) are replaced by the sequence TAATGA (SEQ ID NO:32).

[0116] The coat protein-encoding gene C from plasmid pSDQb-mut is amplified by PCR. Oligonucleotide Qb-FOR3/2 (SEQ ID NO:34) with an internal EcoRI site and a synthetic Shine-Dalgarno (SD) sequence anneals to the 5’ end of the Qβ CP gene. Oligonucleotide Qblang-REV2/2 (SEQ ID NO:35) contains an internal HindIII site and primes to the 3’ end of the noncoding region of gene C. The 1054 bp amplified PCR fragment includes nucleotides 46-1062 of NCBI GenBank Acc. No. M99039 (except the nucleotide changes described above) and the synthetic SD sequence. The PCR fragment is digested with the restriction enzyme HindIII/ EcoRI and the resulting 1036 bp fragment is inserted into the HindIII/EcoRI restriction sites of a modified pKK223-3 vector (Pharmacia, NCBI GenBank Acc. No.: M77749, SEQ ID NO:27). In this modified pKK223-3 vector the ampicillin resistance gene is replaced with the kanamycin resistance gene of vector pUC4K (Pharmacia, NCBI GenBank Acc. No.: X06404, SEQ ID NO:37).

[0117] Vector pTac-nSDQb-mut (SEQ ID NO:33) differs from vector pTacQb-mut in the Shine-Dalgarno sequence. This Shine-Dalgarno sequence (nSD) is introduced by amplifying the Qβ coat protein-encoding gene C via PCR from plasmid pTacQb-mut. Oligonucleotide nSDQb-mutEcoRIfor (SEQ ID NO:36) with an internal EcoRI site and the corresponding synthetic Shine-Dalgarno (nSD) sequence anneals to the 5’ end of the Qβ CP gene. Oligonucleotide Qblang-REV2/2 (SEQ ID NO:35) contains an internal HindIII site and primes to the 3’ end of the noncoding region of gene C. The 1054 bp amplified PCR fragment includes nucleotides 46-1062 of NCBI GenBank Acc. No. M99039 (except the nucleotide changes described above) and the synthetic SD sequence. The PCR fragment is digested with the restriction enzymes HindIII/EcoRI and the resulting 1036 bp fragment is inserted into the HindIII/EcoRI restriction sites of a modified pKK223-3 vector (Pharmacia, NCBI GenBank Acc. No.: M77749, SEQ ID NO:27). In this modified pKK223-3 vector the ampicillin resistance gene is replaced with the kanamycin resistance gene of vector pUC4K (Pharmacia, NCBI GenBank Acc. No.: X06404, SEQ ID NO:37).

Example 2

Cloning Strategy for the Expression Plasmid pTac-nSD-AP205 (SEQ ID NO:30)

[0118] The coat protein-encoding gene of *Acinetobacter* bacteriophage AP205 is amplified from plasmid pAP205-58. This plasmid contains the sequence of the coat protein gene (corresponding to nucleotides 1908-2303 of NCBI GenBank Acc. No. AF334111) coding for the 131-amino acid capsid protein of bacteriophage AP205.

[0119] The coat protein-encoding gene is amplified by PCR. Oligonucleotide nSDAP238-EcoRIfor (SEQ ID NO:38) with an internal EcoRI site and a synthetic Shine-Dalgarno (nSD) sequence anneals to the 5’ end of the coat protein gene. Oligonucleotide AP238HindIIIrev (SEQ ID NO:39) contains an internal HindIII site and primes to the 3’ end of the coat protein gene. This oligonucleotid introduces a second stop codon behind the naturally occurring stop codon of the coat protein. The 438 bp amplified PCR fragment includes nucleotides 1908-2303 of NCBI GenBank Acc. No. AF334111 and the synthetic nSD sequence. The PCR fragment is digested with the restriction enzymes HindIII/EcoRI and the resulting 420 bp fragment is inserted into the HindIII/EcoRI restriction sites of a modified pKK223-3 vector (Pharmacia, NCBI GenBank Ace. No.: M77749, SEQ ID NO:27). In this modified pKK223-3 vector the ampicillin resistance gene is replaced with the kanamycin resistance gene of vector pUC4K (Pharmacia, NCBI GenBank Ace. No.: X06404, SEQ ID NO:37).

Example 3

Expression of Qβ CP under control of the tac promoter and nSD

[0120] The *E. coli* strain RB791 was transformed with plasmids pTac-nSD-Qb-mut (SEQ ID NO:1). The clone was grown in shake flasks. Each flask contained 100 ml of R40 medium (main culture medium, Hypep 7455, glycerol, see Example 5) with kanamycin (25 μg/ml) and was inoculated with over night cultures at a start OD₆₀₀ of 0.3. The shake flasks were incubated for 4 h (OD₆₀₀ between 4 and 5) at 30 °C and an agitation of 220 rpm. The induction was carried out with 0.5 % of lactose for 4 h. Protein production was determined by SDS-PAGE. The gel showed a strong protein...
band which was identified as Qβ CP.

Example 4

Expression of AP205 CP under control of the tac promoter and SD vs. nSD

9 clones of pTac-nSDAP205 (SEQ ID NO:30) and 6 clones of pTac-SDAP205 were screened in shake flasks. pTac-SDAP205 (SEQ ID NO:40) is identical to pTac-nSDAP205 but comprises the Shine-Dalgarno sequence of SEQ ID NO:4 instead of that of SEQ ID NO:3. Each flask contained 50 ml of R40 medium (main culture medium, Hypep 7455, glycerol, see Example 5) with kanamycin (25 μg/ml) and was inoculated with over night cultures at a start OD600 of 0.3 (for pTac-nSDAP205) or 0.4 (pTac-SDAP205). The shake flasks were incubated for 4 h at 30°C and an agitation of 220 rpm. The induction was carried out with 0.5% of lactose. Protein production was determined by SDS-PAGE. For all tested clones expression of AP205 CP was significantly stronger from pTac-nSDAP205 than from pTac-SDAP205.

Example 5

Composition of Culture Media

Culture media were composed as described in Table 1.

<table>
<thead>
<tr>
<th>Component</th>
<th>R27</th>
<th>R40</th>
<th>R41</th>
<th>R42</th>
<th>R43</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na₂HPO₄ 2H₂O</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>K₂HPO₄</td>
<td>5.2</td>
<td>5.2</td>
<td>5.2</td>
<td>5.2</td>
<td>5.2</td>
</tr>
<tr>
<td>(NH₄)₂SO₄</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Vit B1</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>CaCl₂ 2H₂O</td>
<td>0.0147</td>
<td>0.0147</td>
<td>0.0147</td>
<td>0.0147</td>
<td>0.0147</td>
</tr>
<tr>
<td>MgSO₄ 7H₂O</td>
<td>0.05</td>
<td>0.05</td>
<td>9</td>
<td>9</td>
<td>0.5</td>
</tr>
<tr>
<td>FeCl₃ 6H₂O</td>
<td>0.0005</td>
<td>0.0005</td>
<td>0.0005</td>
<td>0.0005</td>
<td>0.0005</td>
</tr>
<tr>
<td>CoCl₂ 6H₂O</td>
<td>0.0003</td>
<td>0.0003</td>
<td>0.0003</td>
<td>0.0003</td>
<td>0.0003</td>
</tr>
<tr>
<td>MnCl₂ 4H₂O</td>
<td>0.0003</td>
<td>0.0003</td>
<td>0.0003</td>
<td>0.0003</td>
<td>0.0003</td>
</tr>
<tr>
<td>CuCl₂ 2H₂O</td>
<td>0.0003</td>
<td>0.0003</td>
<td>0.0003</td>
<td>0.0003</td>
<td>0.0003</td>
</tr>
<tr>
<td>H₂BO₃</td>
<td>0.0003</td>
<td>0.0003</td>
<td>0.0003</td>
<td>0.0003</td>
<td>0.0003</td>
</tr>
<tr>
<td>Na₂MoO₄ 2H₂O</td>
<td>0.0005</td>
<td>0.0005</td>
<td>0.0005</td>
<td>0.0005</td>
<td>0.0005</td>
</tr>
<tr>
<td>Zn(CH₃COO)₂ 2H₂O</td>
<td>0.0026</td>
<td>0.0026</td>
<td>0.0026</td>
<td>0.0026</td>
<td>0.0026</td>
</tr>
<tr>
<td>Glucose</td>
<td>5</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Glycerol</td>
<td>---</td>
<td>5</td>
<td>500</td>
<td>200</td>
<td>5</td>
</tr>
<tr>
<td>Lactose anhydrous</td>
<td>---</td>
<td>---</td>
<td>200</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>HyPep 7455</td>
<td>5</td>
<td>5</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Bacto Yeast Extract</td>
<td>---</td>
<td>---</td>
<td>5</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
Example 6

Expression of Qβ CP in a Fed-batch Process (2 L Scale)

[0123] The fermentation process was performed in a bioreactor (Applikon 5 L dished bottom) equipped with 2 disc stirrer (0 6 cm), baffles (3x 16 cm), pH-, pO2-, and temperature control, and fermenter software BioXpert Version 2.22

[0124] 5 μL cryo culture of RB791 transformed with plasmids pTac-nSD-Qb-mut were inoculated in 100 mL Erlenmeyer flasks containing 50 mL medium R40 (25μg/mL kanamycin) and cultivated for 14 h at 30°C and 220 RPM over night. After 14 h an OD600 value of 6.0 was reached. For batch fermentation, 2 L of medium (R40) were pumped into the bioreactor. In Table 2 the cultivation parameters are listed.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Set point</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stirrer speed</td>
<td>1000</td>
<td>[rpm]</td>
</tr>
<tr>
<td>Air supply</td>
<td>2.5</td>
<td>[L/min]</td>
</tr>
<tr>
<td>O2-supply, maximal</td>
<td>2</td>
<td>[L/min]</td>
</tr>
<tr>
<td>Temperature</td>
<td>30</td>
<td>[°C]</td>
</tr>
<tr>
<td>O2-saturation</td>
<td>> 40</td>
<td>[%]</td>
</tr>
<tr>
<td>pH</td>
<td>6.8</td>
<td>[-]</td>
</tr>
</tbody>
</table>

[0125] The bioreactor was inoculated with 100 mL inoculum. Samples of 2 mL were taken, OD600 determined and centrifuged at 14’000 RPM. Pellet and supernatant were separated and frozen for further analysis. The biomass concentration [g/L] was calculated using the following equation:

\[\text{OD}_{600} \times 0.45 \times [\text{g} \times \text{L}^{-1} \times \text{OD}_{600}^{-1}] = \text{biomass [g/L]}. \]

[0126] The Qbeta content in per cent of the total protein content was calculated as follows, assuming, that 50 % of the E. coli biomass is protein:

\[\frac{\text{Biomass [g x L}^{-1}],2}{\text{total protein [g x L}^{-1}]} \times 100 = \frac{\text{Qbeta [g x L}^{-1}]}{\text{total protein [g x L}^{-1}]}. \]

[0127] In the fed-batch mode, which followed the batch mode, a feeding phase was added. In the feeding phase substrate is supplied to the cells in the reactor according to a defined profile. The feed profile depends on the selected growth rate μ, the yield coefficient biomass to glycerol (Yx/Glycerol), the volume (Vf), and the concentration of substrate in the feed (cf). substrate concentration. The feed was calculated using the following equation:

\[\text{mf} = \frac{\mu / Y_{x/Glycerol} + m}{Vf \times Xf \times e^{ut}} \]

\[\text{pump} = \frac{(mf / cf + b) / a}{ \text{mass flow [g/h]} } \]

\[\mu = \text{specific growth rate [1/h]} \]

\[Y_{x/Glycerol} = \text{Yield biomass to glycerol [g/g]} \]

\[m = \text{maintenance energy [g*g}^{-1}h^{-1}] \]

\[Vf = \text{Volume at feed start} \]

\[Xf = \text{Biomass at feed start} \]
For the determination of the calibration parameters a and b, a pump calibration was carried out. In addition, the feed tube with feed bottle was clamped into the feed pump and the pump was run with 7, 14 and 21% pump performance. The pumped feed volume per time was noted. In a resulting diagram of the rotation of pump performance [%] to pumped feed solution [mL/h], the slope (a) and the Y-axis section (b) was determined. On the bioreactor the parameters in Table 3 were set for fed-batch cultivation.

After reaching a process time of approximately 7 h (end of batch) the feed pump was turned on automatically. After further 7 h cultivation, when the OD600 reached 55-60, the feed medium (for biomass propagation) was exchanged with the induction medium R42 (for biomass propagation and induction). After 5 h feeding of R42 was stopped and the culture was harvested by centrifugation.

Analysis of Process Parameters:

The following process parameters were routinely analysed. The pO2, pH, temperature and stirrer speed were measured online throughout the process time. The optical density was measured offline at 600 nm. The determination of the β-galactosidase activity was performed using a β-Gal Assay Kit (Invitrogen, cat. no. K1455-01). The activity was specified as units per mL OD600 = 1.0. It is defined as the quantity of Ortho-Nitrophenyl-β-D-Galactopyranosid (ONPG) in nmol, which is hydrolysed per minute and mL bacteria suspension (OD 600 = 1.0). The accumulated product was analysed by SDS-PAGE, the total protein content (soluble and insoluble protein) was determined and using HPLC analysis, the soluble fraction was measured. Cell disruption of E.coli was performed in lysis buffer (50 mM glucose, 25 mM tris/HCl (pH 8), 15 mM EDTA (pH 8.0)) with and ultrasonic homogeniser (Bandlin Sonoplus, HD2070). 250 μL bacteria suspension with an OD600 of 50 were centrifuged with 14000 RPM for 10 min. The pellet was resuspended in 250 μL lysis buffer (vortex) and placed at room temperature for 5 min. Afterwards, the cells were disrupted for 20 s with ultrasonic at 10 % device performance (cells on ice) and then the cell suspension was centrifuge at 14000 RPM, 10 min. The supernatant (soluble protein) was then analysed by SDS-PAGE and HPLC.

Samples before induction and at end of production (after 5h induction) were taken from the bioreactor for analysis of Qβ formation analyzed by SDS-PAGE standardized to OD 5.0. At the end of cultivation, 1.9 1 of the culture was harvested. After centrifugation, the following cell pellets were obtained in three independent reactor runs: 1.) End OD600 of 84: 194 g CWW; 2.) End OD600 of 88: 200 g CWW; 3.) End OD600 of 86:201 g CWW. The plasmid retention in run 1 and 2 was 100 % at induction start and 100 % at harvest. Based on comparison with a Qβ CP standard on SDS-PAGE the yield was roughly estimated to be about 5 g/l Qβ CP. HPLC analysis revealed a concentration of about 6 g/l Qβ VLP.

Selection of carbon source and bacterial strain

Glucose and glycerol as carbon sources were compared. In order to test the growth behaviour of each of the strains DH20 and RB791 on these carbon sources, shake flask experiments were conducted with medium containing glucose (R27) and medium containing glycerol (R40). Both media were supplemented with 25 μg/ml kanamycin. Each culture was started with an initial OD600 of 0.3. Induction was performed by adding 0.5% lactose. The maximum specific growth rates (μ_{max}) and the yield coefficients ($Y_{X/S}$) were determined and are listed in Table 4. RB791 grew faster on

Table 3: Parameters for fed-batch cultivation in bioreactor.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Set point</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stirrer speed</td>
<td>1000</td>
<td>[rpm]</td>
</tr>
<tr>
<td>Air supply</td>
<td>2.5</td>
<td>[L/min]</td>
</tr>
<tr>
<td>O2-supply, maximal</td>
<td>2</td>
<td>[L/min]</td>
</tr>
<tr>
<td>Temperature</td>
<td>30</td>
<td>[°C]</td>
</tr>
<tr>
<td>O2-saturation</td>
<td>> 40</td>
<td>[%]</td>
</tr>
<tr>
<td>pH</td>
<td>6.8</td>
<td>[-]</td>
</tr>
</tbody>
</table>

Example 7

Selection of carbon source and bacterial strain

Glucose and glycerol as carbon sources were compared. In order to test the growth behaviour of each of the strains DH20 and RB791 on these carbon sources, shake flask experiments were conducted with medium containing glucose (R27) and medium containing glycerol (R40). Both media were supplemented with 25 μg/ml kanamycin. Each culture was started with an initial OD600 of 0.3. Induction was performed by adding 0.5% lactose. The maximum specific growth rates (μ_{max}) and the yield coefficients ($Y_{X/S}$) were determined and are listed in Table 4. RB791 grew faster on...
both, glucose and glycerol. In addition, the resulting yield coefficients were higher. Although glucose allowed higher maximum specific growth rates (μ_{max}) the yield coefficients ($Y_{x/s}$) was higher for glycerol.

Table 4: Maximum specific growth rates and the yield coefficients of the cultivation experiments with RB791 and DH20 on glucose and glycerol.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Carbon source</th>
<th>Value after 4.5 h Culture Time</th>
<th>Max. spec. growth rate (μ_{max}) [h⁻¹]</th>
<th>Yield coefficient ($Y_{x/s}$) biomass from substrate [g/g]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>OD₆₀₀</td>
<td>Acetate [g l⁻¹]</td>
<td></td>
</tr>
<tr>
<td>RB791</td>
<td>glucose</td>
<td>6.24</td>
<td>0.44</td>
<td>0.71</td>
</tr>
<tr>
<td></td>
<td>glycerol</td>
<td>4.04</td>
<td>0.21</td>
<td>0.62</td>
</tr>
<tr>
<td>DH20</td>
<td>glucose</td>
<td>2.52</td>
<td>0.42</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td>glycerol</td>
<td>2.82</td>
<td>0.25</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Example 8

Determination of Optimal Temperature

[0133] The influence of temperature on product formation was investigated. Two shake flask cultures were inoculated and incubated at 30°C and 220 rpm. After an OD₆₀₀ of 5 was reached, the cultures were induced with lactose. Subsequently, one culture was continued to be incubated at 37°C and the other culture at 23°C. Results of the SDS-PAGE revealed that expression levels at 4 and 5 h after induction are higher in the culture induced at 37°C. Induction of the cultures for 19 h showed a higher Qβ level in the cultures induced at 23°C.

Example 9

Induction by Co-Feed of lactose and glycerol

[0134] A feed solution of 20 % glycerol and 20% lactose was composed (R42) and applied to fermentation as described in Example 6 at induction start. Figure 1 provides an overview over relevant process parameters throughout the entire process time. Expression was induced at 13.5 h at an OD₆₀₀ of about 55. Upon induction, the feed pump rate was set to constant. Glycerol did not accumulate with feeding. Lactose accumulated to 4 g/l and then it started to diminish. The β-galactosidase activity rose to 10 U/ml and decreased thereafter. Compared with the previous fermentation runs a.) lactose applied as a single lactose pulse at induction start, no feeding; b.) continuous lactose feed without glycerol, the activity was with 7 U/ml higher and the maximum activity was already reached after 2 h as compared to 4 h in runs a.) and b.).

Example 10

Plasmid retention

[0135] The effect of the following operating conditions on the plasmid retention was tested in the process described in Example 6: 1.) Preculture starting volume, 2.) Kanamycin in the preculture, 3.) Growth and/or induction at 37°C vs. 30°C. The results are summarised in Table 5. Precultures were started with volumes of 5 pi out of the cell bank vial. Inoculation of a small volume allowed growth of a preculture over-night. The preculture for QT0103_F8 contained 25 mg/l kanamycin, whereas the preculture for QT0103_F7 did not contain any kanamycin. Both fermentations were operated at 30°C and induced for 5 h. Judging from the plasmid retentions before and after 5 h induction, supplementing the preculture with kanamycin has a positive effect on plasmid retention. Plasmid retention remained at 98% before and after 5 h induction. In contrast, plasmid retentions reached only values of 80% when kanamycin was omitted from the preculture. For a subsequent run, QT0203_F7, the preculture was also started with 5 µl and grown in kanamycin containing medium. The resulting fermentation in the bioreactor was operated at 37°C from the beginning. Operation at 37°C had a detrimental effect on the plasmid stability. While the plasmid retention was at 99% before induction, it dropped to 0% after 5 h induction. In order to test whether a shorter preculture and thus, less generations, would improve the plasmid retention after 5 h induction, a set of precultures were started with 300 µl volume from a thawed cell bank vial and grown in kanamycin free medium. Two fermenters were operated at 30°C for the whole run. An additional two fermenters were operated first at 30°C for cell growth and then switched to 37°C for the production phase. The resulting
plasmid stabilities were all at 100% before and 5 h after induction.

Table 5: Summary of plasmid retention before and 5 h after induction obtained under different operating conditions in terms of generations in the preculture, with and without kanamycin in the preculture, and growth and/or induction at 37°C.

<table>
<thead>
<tr>
<th>Bioreactor run</th>
<th>Preculture Volume [μL]</th>
<th>Kanamycin in preculture</th>
<th>Plasmid retention before induc.[%]</th>
<th>Plasmid retention after 5h induc.[%]</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>QT0103_F8</td>
<td>5</td>
<td>25 mg/L</td>
<td>98</td>
<td>98</td>
<td>whole process at 30°C</td>
</tr>
<tr>
<td>QT0103_F7</td>
<td>5</td>
<td>no</td>
<td>80</td>
<td>80</td>
<td>whole process at 30°C</td>
</tr>
<tr>
<td>QT0203_F7</td>
<td>5</td>
<td>25 mg/L</td>
<td>99</td>
<td>0</td>
<td>Bioreactor run at 37°C</td>
</tr>
<tr>
<td>QT0603_F7</td>
<td>300</td>
<td>no</td>
<td>100</td>
<td>100</td>
<td>whole process at 30°C</td>
</tr>
<tr>
<td>QT0703_F8</td>
<td>300</td>
<td>no</td>
<td>100</td>
<td>100</td>
<td>Induction at 37°C, rest of the process at 30°C</td>
</tr>
<tr>
<td>QT0803_F9</td>
<td>300</td>
<td>no</td>
<td>100</td>
<td>100</td>
<td>whole process at 30°C</td>
</tr>
<tr>
<td>QT0903_F10</td>
<td>300</td>
<td>no</td>
<td>100</td>
<td>100</td>
<td>Induction at 37°C, rest of the process at 30°C</td>
</tr>
</tbody>
</table>

Example 11

Variation in Time Point of Induction

[0136] In a process essentially as described in Example 6 the exponential feed profile was programmed to start 7 h after the inoculation of the bioreactor. Under standard conditions, the scheduled time for induction was at 14 h process time. In order to test the effect of variations in the time point of induction on the final cell densities, one culture was induced at 13.5 h (resulting in 6.5 h of exponential feed) and another culture at 14.5 h (resulting in 7.5 h of exponential feed). One culture induced at the regular 14 h time point served as a control (7 h of exponential feed). Results are summarised in Table 6. Cell density increased with increasing length of feeding. Judged from a linear regression analysis of the available data points for final CWW, a linear relationship appears to exist ($r^2 = 0.92$).

Table 6: Variations in time point of induction: effect on final cell density in terms of OD$_{600}$ and CWW.

<table>
<thead>
<tr>
<th>Reactor</th>
<th>Process Time Point of Induction</th>
<th>Duration of Exp. Feed Phase [h]</th>
<th>Final OD$_{600}$</th>
<th>Final CWW [g/L]</th>
</tr>
</thead>
<tbody>
<tr>
<td>F2</td>
<td>13h32min</td>
<td>6.5</td>
<td>83.4</td>
<td>116.5</td>
</tr>
<tr>
<td>F1</td>
<td>14h02min</td>
<td>7.0</td>
<td>82.4</td>
<td>122.5</td>
</tr>
<tr>
<td>F3</td>
<td>14h29min</td>
<td>7.5</td>
<td>100.4</td>
<td>141.1</td>
</tr>
</tbody>
</table>

Example 12

Variation in Time point of harvest

[0137] Harvest of the culture in a process essentially as described in Example 6 is performed manually. Under standard conditions, the scheduled time for harvest was at 19 h process time. The operation "Harvest" involves the manual ending of the bioreactor operations. In order to test the effect of variations in the time point of harvest on the final cell densities, one culture was harvested at 18.8 h (resulting in 4.8 h of induction) and another culture at 19.5 h (resulting in 5.5 h of induction). One culture harvested at the regular 19 h time point served as a control (5 h of induction). Results are summarized in Table 7. Cell density increased with increasing length of induction because the cells are still growing...
while induced.

Example 13

Effect of Temperature

The effect of fermentation temperature in a process essentially as described in Example 6 was investigated by running 6 fermentations at 5 different temperature setpoints. Results are summarized in Table 8. Final cell densities were sensitive to the fermentation temperature with an optimum at a temperature of 30°C.

<table>
<thead>
<tr>
<th>Reactor</th>
<th>Temperature [°C]</th>
<th>Final OD<sub>600</sub></th>
<th>Final CWW [g/L]</th>
</tr>
</thead>
<tbody>
<tr>
<td>F5</td>
<td>25.0</td>
<td>37.8</td>
<td>62</td>
</tr>
<tr>
<td>F4</td>
<td>27.5</td>
<td>80.0</td>
<td>117</td>
</tr>
<tr>
<td>F3</td>
<td>30.0</td>
<td>92.8</td>
<td>123</td>
</tr>
<tr>
<td>F4</td>
<td>30.0</td>
<td>92.4</td>
<td>125</td>
</tr>
<tr>
<td>F5</td>
<td>32.5</td>
<td>85.0</td>
<td>111</td>
</tr>
<tr>
<td>F6</td>
<td>35.0</td>
<td>79.6</td>
<td>107</td>
</tr>
</tbody>
</table>

Example 14

Scaled-Up Fermentation (50 l)

The process described in Example 6 was scaled up to a volume of 50 l in order to evaluate scale-up capability from the 2 L working volume bioreactor system to a larger volume. Key process parameters for the scaled-up process are summarized in Table 9.

<table>
<thead>
<tr>
<th>Culture Step</th>
<th>Description</th>
<th>Time [h]</th>
<th>OD<sub>600</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Preculture 1</td>
<td>300 µl from cell bank vial are transferred into 100 ml preculture medium contained in 500 mL shake flask and cultured for 16 h</td>
<td>-11*</td>
<td>5.0</td>
</tr>
<tr>
<td>Preculture 2</td>
<td>Calculate the required volume for transfer in order to start with initial OD<sub>600</sub> of 0.3 in 750 ml. Transfer calculated volume (e.g. 50 ml) into 750 ml preculture medium contained in 5000 mL shake flask</td>
<td>-5*</td>
<td>4.0</td>
</tr>
<tr>
<td>Inoculation of Bioreactor</td>
<td>Pooled calculated volume (e.g. 1.4 L) is transferred into the 50 L Bioreactor. Initial volume: ≈40L</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Induction Start</td>
<td>The exponential feeding profile is switched to constant and feed is switched to induction feed</td>
<td>14</td>
<td>46</td>
</tr>
<tr>
<td>End of Culture</td>
<td>Culture is completed after 5 h of induction</td>
<td>19</td>
<td>128</td>
</tr>
</tbody>
</table>

* Relative to the time of bioreactor inoculation.
Example 15

Effect of Extended exponential feed

The exponential feeding phase for fermentations performed according to Examples 6 or 14 was 7 h. After this time the cells reached a density for induction, which increased during induction to the targeted maximum OD₆₀₀ of around 100 to 130 as final cell density. Final OD₆₀₀, final CWW, final CDW, plasmid retention at induction start and harvest and QB concentration at the end of culture are determined for reactor runs performed as described in Examples 6 and 14, preferably as in Example 14, wherein the exponential feeding phase is extended to a duration up to 11 h, preferably to 10 h.

Example 16

Effect of increased feeding during production

Example 9 demonstrates that the glycerol does not accumulate during production phase, indicating that production might be limited by the feeding rate of induction medium. Effect of extended feeding rate of induction medium on final OD₆₀₀, final CWW, final CDW, plasmid retention at induction start and harvest and QB concentration at the end of culture is determined in reactor runs as described in Example 6 and 14, preferably as in Example 14, wherein the feeding rate during production is increased. Alternatively or additionally, the ratio between lactose and glycerol in the feed medium shifted towards a higher glycerol and a lower lactose concentration.

Example 17

HPLC Analysis of QB CP

QB CP was measured with an HPLC system as follows: A sample containing QB CP was diluted appropriately in 1x reaction buffer (50 mM tris(hydroxymethyl)aminomethane buffer pH 8.0) containing 10 mM 1,4-Dithio-DL-thrcitol and incubated for 15 min at 50°C in a thermomixer. After incubation the sample was centrifuged and the supernatant was stored at 2°C to 10°C until HPLC analysis. 10 to 100 μl of the sample were injected.

QB was quantified with a regression curve of known QB standards regressed to the HPLC peak area detected at 215 nm after elution from a C4 reversed phase column, 300 Å, 5 μm, 4.6 x 150 mm, Vydac Inc., Hesperia, USA (Cat. No. 214TP5415) thermally equilibrated at 50°C. The flow rate through the system was 1 ml/min consisting of mobile phase A (0.12 % trifluoroacetic acid in water) and mobile phase B (0.12 % trifluoroacetic acid in acetonitrile) with the following gradient of phase B: 0 to 2 min constant at 40%, 2 to 8 min linear increase to 50%, 8 to 10 min constant at 50%, 10 to 10.1 min linear decrease to 40%, and 10.1 to 12 min constant at 40%.

Example 18

Determination of QB VLP by analytical size exclusion chromatography

Analysis of QB particles by analytical size exclusion chromatography was performed using a TskgclG5000 PWXL-column (10 μm, 7.8 x 300 mm, Tosoh Biosep; Cat.-No. 08023) equilibrated in phosphate buffered saline (20 mM Na₂HPO₄NaH₂PO₄, 150 mM NaCl pH 7.2). Elution was performed by an isocratic gradient for 20 min at 0.8 ml/min in phosphate buffered saline. The Qbcta concentration was determined from a regression curve of known QB standards regressed to the HPLC peak area detected at 260 nm.

Example 19

Effect of Extended exponential feed

The exponential feeding phase for fermentations performed according to Examples 6 or 14 was 7 h. After this time the cells reached a density for induction, which increased during induction to the targeted maximum OD₆₀₀ of around 100 to 130 as final cell density. Final OD₆₀₀, final CWW, plasmid retention before induction and at harvest and QB...
concentration at the end of culture were determined for reactor runs performed as described in Examples 6 and 14, preferably as in Example 14, wherein the exponential feeding phase was extended to a duration up to 12 h. In addition, the concentration of glycerol and lactose in the induction feed were changed to 300 g/L and 100 g/L respectively. The results are summarized in Table 10.

Table 10: OD$_{600}$ and CWW at the end of cultivations, Plasmid Retention before induction and at the end of cultivations as well as the peak oxygen mass flow. The cultivations were conducted with different duration of exponential feeding.

<table>
<thead>
<tr>
<th>Duration Exponential Feeding [h]</th>
<th>OD$_{600}$ [-]</th>
<th>CWW [g/L]</th>
<th>Plasmid Retention [%]</th>
<th>Peak Oxygen Mass Flow [vvm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>86</td>
<td>122</td>
<td>100</td>
<td>99</td>
</tr>
<tr>
<td>8</td>
<td>112</td>
<td>184</td>
<td>99</td>
<td>98</td>
</tr>
<tr>
<td>9</td>
<td>136</td>
<td>217</td>
<td>100</td>
<td>98</td>
</tr>
<tr>
<td>10</td>
<td>164</td>
<td>228</td>
<td>99</td>
<td>98</td>
</tr>
<tr>
<td>11</td>
<td>200</td>
<td>262</td>
<td>100</td>
<td>97</td>
</tr>
<tr>
<td>12</td>
<td>90</td>
<td>186</td>
<td>99</td>
<td>100</td>
</tr>
</tbody>
</table>

According to LDS-PAGE analysis, the specific Qbeta concentration of all cultivations except for the cultivation with 12 h exponential feeding was the same. An optimum regarding absolute Qbeta yield and oxygen consumption was found for 9.5 h exponential feeding. Therefore, the process is preferably run with 9.5 h exponential feeding phase.

Example 20

Scaled Up Fermentation (501)

The process described in Example 6 and with 9.5 h exponential feeding phase with 300 g/L glycerol and 100 g/L lactose as described in Example 19 was scaled up to a volume of 50 L in order to evaluate scale-up capability from the 2 L working volume bioreactor system to a larger volume. Key process parameters for the scaled up process are summarized in Table 11.

Table 11: Process parameters on the 50 L scale

<table>
<thead>
<tr>
<th>Culture Step</th>
<th>Description</th>
<th>Time [h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preculture</td>
<td>200 μL from cell bank vial were transferred into 800 ml preculture medium contained in 3000 mL shake flask and cultured for 18 h (2 flasks)</td>
<td>-18*</td>
</tr>
<tr>
<td>Inoculation of Bioreactor</td>
<td>Pooled total volume (approx. 1.6 L) was transferred into the 50 L Bioreactor. Initial volume: = 35L</td>
<td>0</td>
</tr>
<tr>
<td>Induction Start</td>
<td>The exponential feeding profile was switched to constant and feed was switched to induction feed</td>
<td>16.5</td>
</tr>
<tr>
<td>End of Culture</td>
<td>Culture was completed after 5 h of induction</td>
<td>21.5</td>
</tr>
</tbody>
</table>

* Relative to the time of bioreactor inoculation.

It was necessary to change the preculture procedure in order to inoculate the larger reactor with approximately the same cell density. The cultures in the 50 L bioreactors were performed with the time profile optimised for the 2 L scale as described in Example 19. The final cell wet weight for six cultivations was 188 g/L ± 9. Plasmid retention was 97.3% ± 1.4 at the end of culture. The concentration of QB CP protein in the medium at the end of culture was determined by C$_4$ reversed phase HPLC (Example 17) to 10.8 g/L ± 0.3. The total amount of QB CP was 540 g for one 50 L run. The crude extract of approximately two times concentrated biomass was analysed for QB CP and QB VLP (Example 18). The concentration of QB CP was 19.1 g/L ± 0.4 (C$_4$ reversed phase HPLC), the concentration of QB VLP was 18.8 g/L ± 1.1. Therefore, the VLP-yield of the fermentation process is estimated to approximately 9-11 g/L fermentation broth at the time of harvest.
SEQUENCE LISTING

[0151]

<110> Cytos Biotechnology AG
 Emmerling, Marcel
 Hennecke, Frank
 Pfründer, Holger
 Rhiel, Martin
 Steiner, Philipp

<120> SCALABLE FERMENTATION PROCESS

<130> P1049PC00

<150> EP05011416.4
<151> 2005-05-26

<150> EP05106729.6
<151> 2005-07-21

<160> 40

<170> Patent In version 3.3

<210> 1
<211> DNA
<212> artificial sequence
<220>
<223> plasmid

<400> 1
ggtgtgcaag gtcgtaaatc actgcataat tccggtcgct caagggccac tccggttcgg 60
gtaaagttt tttgcgcaga ccacgtaacgc gttcgcgaaat atattctgga aatgaactgtt 120
gacaatttaat cacggcgcgct tataatgttgt ggaatttgga gcggtataaca atttcaacaca 180
ggaaacagaa ttcttaaggg gaaaaaaaag ggccaaattt agagactgtgct actttaggtta 240
acatcgggag aagtgccaaa caaacctctgg ttctcaatcc ggctgggtgta aatcccaacta 300
acggcgttgc ctcgttttca caagcgggttg cagttcctgc gctggagaag cgtggttacgc 360
tttcggtatct tcagccctct cgcaatcgtgta agaactacaa ggtccaggttt aagttccaga 420
acccgaccgc tgtgacctgca aacggtttctt gttaccccatc cgttacctgc caggcataatg 480
tgtacgtgac ctttctcgttc acgcaagtata gtaccgatga ggaacgagct tttgttctgta 540
cagagccttgc tgtctgggtc gctagctcctc tgtctggctga tgtattgtgat cagctgaacc 600
cagcgtatta atgacctgcct attgccccgtg gtgggtccaggt gtcaaaaaacc gatccggtatta 660
ttccgatccc aacggatgtat ccgcgcgcag ggcaccggttaa gttatactgt ccctccgcaa 720
httgtcctct agagggaggtt tccggccttc ctactaagaa ccgaccggtgg ccattatatata 780
atgcgttgtga acctccagcct cgcgaatttg atgtgctcct caagatctt ttgggcaata 840
caaagtggcgc tgtggtggt atctgcctga gttataccac gttccgcggttg ccgcgtggca 900
atggatata tgcctttgt gcagacttac ttgctactga tcaagctatg cgtgactaga
agtatgata tcgcggaggg aagaaacctg tgcttttctg taacattgag cggattcatt
atatagaagc gataaatctg ttattgcttc ttaagcgtat tggccgctat cacgccccag
ggtgatagtt gggttttggg cgccgatccat caaggtggtg ttgcatcctgtatga agttt
ctaagtttga taagacataa tgtcctattc aagcggtgtg agtgcgtcttt cgtgcttattg
aatagggatt gaattgcatg ttaaagcttg gttgatttgg cggtgtagag aagatatta
ccagcataca gattaatca gaacgcagaa gcagctctgat aaaaacaagtt tgcagctgacg
cgcgtgggtg gtgggtcaca cctggacccca ttgcgaacct aagagttggag ccgccgagc
cggaggttc tgcggcagtc cttggtcctgg gtttttattc gtttgcttgc gttgagcgcct
tctctgagta ggcaaatcgc ggccggagcg gatttggaag ttgcgaacag acgccccgga
ggtggccggg cagcagccgc gccaataact ggcagcattc aataatagca gaagcgcacatc
tgacggagtt gctcttttggc ttaccttcaac actctttttgc ttatgttctgat aagacccgct

27
EP 1 885 847 B1

atcttttgta gattcttttt ttctgcgcgt aacctgtctg ttgcaaaaca aaaaaccacc
2820
gctaccgcag gtggtttgtt tgcggatca agagctacca aecttttttt cgaagtaaac
2880
tggctcagc agagccgaga taccaatatac tgctctctata gtgtacgcgt agttaagcga
2940
caccttaag aacctgtag cacgcctacct atacctcgcct ctgtaaatcc tgttacagtt
3000
gctgcgtgcc agtggcgatga agtgtgtctc taccgggttg gactcaagac gatatgttacc
3060
ggtataagcc cacgcgtcgec gtctagaaggg gggtgctggtc acacagccca gctttggaagc
3120
acgaacctac accgaactga gatacctaca gcgtgagcta tgagaaagg ccaacgcttcc
3180
cgaagggaga aaggcggaca ggtatccggt aagcggcagg gtccgaaacg gagagcgcac
3240
gaggagtc ccagggtgaa acgcctgatga tcttttatag cctgtgcggg ttgcgcacct
3300
cigacgttag cgtcaggatgt tggtagttgc tgacagggaggg cggacgctat gqaaaaacgc
3360
cagcaacggc gctttttttac ggttcctgge cttttgtcgg ctttttgtcct acatgttctt
3420
tctgcgctta tctcctgatt ctgtgcataa ccgatatta gcctttgagtt gacgctgatac
3480
cgctgcgcgc aagcgaacaga ccagcagcagc aagagtcgtg agcagcgagag cqgaagagcg
3540
tctgatgcgcg tatattcttcc ttaagcgtatc ttacgacgca ttaggtgcac
3600
ttcagttaca atctgtccttg atgcggataa gttaaaagcag tatacaactc gctatcgtca
3660
cgtgacgtgg tcagggcgctg gcggccgacac ccggcacaac ccggcacaac cgcgtgagcgc ccggtgcagcg
3720
gctgtgcctgc ttccggtcctc cggtatgacga caagcttgga cgcgtgtcgg gcacgctgatg
3780
tgcagaggt tttcaccgctc atcaccgaaa gcgcgcgggc agctgacgta aacgtcatca
3840
gcgtggcgtc gaagcgtttc acagatgtct gcctgttagct ccgcttcgcag ctcgcttgagtt
3900
ttcgccagga gctgttaagtt cgtggttctcgt aaaaagcgg ccagtttaag ggcggttttt
3960
tcttcggttgg tcacgtgatgc ctcgctgtttaa gggggattttc tgttcagttgc ggtatagttat
4020
ccgatgaaac gagagaggaag gtcacagata cggtgttaactg atgatgaaaca tgcgcgggtta
4080
tgcgagttttc gtaagggtaaa acaacggttgg gtatggtgatc ggcgggaccac gagaaaaatc
4140
actcgaggtc aatggccagcg cttggtttaaat acagatagttg gtgtgccccaa gggtagcagg
4200
cagcatctgtg cgagtgcagat ccggaaacata atgggtcaggg gcagctgactt ccggttctccc
4260
agaccttaag aaacacgagaa accgaaacgac atttcatgttg ttgctcaggt cgcaagcagt
4320
ttgcatgacgc agtcgcctcca cggtgtctcg cgtagtgcgtg attcattctg ctaaccagta
4380
agaggacaccc gcaaggcctagt cgccggttctc aaccagacag gcacgatcatg gcgcacccgt
4440
ggccaggacc caacgctgcgc cgagatgcgc cgctgtgcggg tgcgctagat ggcggcgcg
4500
atggtatgt ttgtccaaaaaggttggtttggc gcacatcacaag ttctcgccaa gaattgtgattg
4560
gctccaaattc ttgagatgtgt gaatccgtta gcgggtgcgc gcggccttcc attcaggtcgcg
4620
agtggtgcccg gtctccatgca cccgcagcac acgcggggag gcagacaaqg tatagggcg 4680
ccgctccta atctgcaaac cctgctctatg tgctgccgcg ggcgcctcaaat atgcggtgtcga 4740
cgaccccgct ccagcgtcaag gcatgcggag cctgacgccg cttggagcaag 4800
ggcagccgg atctgcgtctg ggtagggcctg aacagcctgc atgcggtgtcga 4860
tggcgcgcgtt gatgggctgat acgtggtgat gccagcgcgcg cttgagcctgc atgcggtgtcga 4920
ccgaccaac cagagccgag cgtagccgccg gcccgtcggtgc gatgggctgat gccagcgcgcg 4980
cgaaacagttt ggtgggctggg ccagctgacgt ggcgggtgc gatgggctgat gccagcgcgcg 5040
atccgcaag cagacgacgcc atcactcggtcg cgctccagcg aagcgggtcc tgcgcgaaaa 5100
tgacccacag cgtgcgcggcc acctgtccta cgaatttcat gataaagaga aatagcataaa 5160
gtgcggggcgc gatagttcag ccggcgcggc ac cgacgtggga ggtgactggg ttaagggccc 5220
tcaagggcat cggtcagacg ttcctctttta cggactcttg cattaggaag cagcaccagta 5280
gtagggttag gcgggtggat gccgcggcccg cacagatggg tgcgtcagaa gagaatggcg 5340
ccacagctgc ccggcgcagcc ggacgtgctca ccataccccac gcgggaaacaac gcgctcgtq 5400
gccgcgaagtg ggcaacggcga ctcctccccat ggttgatgct ggctgatagq ggcgcagcga 5460
ccgcacacctgt gcggcgcagtt atgcgccgcc ccgatgcggct gcgggatagq atcgcgggtt 5520
atcgcacgca cgggcacaat atgcgtctgg cgtcagggcag ccatcgagaac tgcgggttat 5579

<210> 2
<211> DNA
<212> artificial sequence
<220>
<223> promoter sequence
<400> 2

cgacccgatcg gccacacgatcg gttctgaggcc tccagccagcc atgcgaagctc gttggatgc 60
tgctcaggtc gtaaatctag gcataatacat cctgcgtgctg ggcgcactcc gttgcttctctg 120
aatgttttct gcgcggactat ctaacggttt cgccgacata ttcctggaatg agctgttgagc 180
aatatacat ccgtccgtat atgtgatgaa atgtgatgcg gatacataat cttcacaag 240
aacag 245

<210> 3
<211> DNA
<212> artificial sequence
<220>
<223> Shine-Dalgarno Sequence
<table>
<thead>
<tr>
<th><400></th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>taaggaggaa aaaaaatg</td>
<td>19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><210></th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><211></th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><212></th>
<th>DNA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><213></th>
<th>artificial sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><220></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><223></th>
<th>Shine-Dalgarno Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><400></th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>aggaggtaaa aaacgatg</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><210></th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><211></th>
<th>133</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><212></th>
<th>PRT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><213></th>
<th>Bacteriophage Qbeta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><400></th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Met Ala Lys Leu Glu Thr Val Thr Leu Gly Asn Ile Gly Lys Asp Gly |
|---------------------|------|------|------|------|
| 1 | 5 | 10 | 15 |

| Lys Gln Thr Leu Val Leu Asn Pro Arg Gly Val Asn Pro Thr Asn Gly |
|----------------------|------|------|------|------|
| 20 | 25 | 30 |

| Val Ala Ser Leu Ser Gln Ala Gly Ala Val Pro Ala Leu Glu Lys Arg |
|-------------|-----|-----|-----|
| 35 | 40 | 45 |

| Val Thr Val Ser Val Ser Gln Pro Ser Arg Asn Arg Lys Asn Tyr Lys |
|-------------|-----|-----|-----|
| 50 | 55 | 60 |

| Val Gln Val Lys Ile Gln Asn Pro Thr Ala Cys Thr Ala Asn Gly Ser |
|-------------|-----|-----|-----|
| 65 | 70 | 75 | 80 |

| Cys Asp Pro Ser Val Thr Arg Gln Ala Tyr Ala Asp Val Thr Phe Ser |
|-------------|-----|-----|-----|
| 85 | 90 | 95 |

| Phe Thr Gln Tyr Ser Thr Asp Glu Glu Arg Ala Phe Val Arg Thr Glu |
|-------------|-----|-----|-----|
| 100 | 105 | 110 |

| Leu Ala Ala Leu Leu Ala Ser Pro Leu Leu Ile Asp Ala Ile Asp Gln |
|-------------|-----|-----|-----|
| 115 | 120 | 125 |

<table>
<thead>
<tr>
<th>Leu Asn Pro Ala Tyr</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><210></th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><211></th>
<th>1017</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><212></th>
<th>DNA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

30
<213> artificial sequence

<220>
<223> Expression construct

<400> 6

```
atggcaaat tagagactgt tacattaggt aacatcggga aagatggaa acaaactctg   60
gtctctaacg ccgggtgggt aaatccccact aacgaggttcc cctcgctttc acaagcgggt  120
gcagttcctg ccctggagaa gcgttcttcc cttcgcgtat ctcagctctc tccaatacgt  180
aaqactaca aggccaggt taagatccag aacccgaccg cttgcactgc aacagtttct  240
tgtgcccat ccctactctg ccagctatgt getgaacgtga cttttctgtt cacgcagttat  300
agacaagccg agagaacgggc tttgtcctgt acaagacctt cttgcctcgt ctgtaatcctt  360
tctctgetcg atggctatgtga tcaagctgac caacgctattt aatgagctgct catgccccgggt  420
ggctgctcag cggccaaaacc ccgtccccgtt attccgggtc cacggatgga tcccggcggc  480
gggacaggta aqatatacctg tcctctcgcct aattggttccc tagaggaagtt ttaagcgccct  540
cctactaaga aacgacccggt gcctatatct aatgctgtgtg aacgccaccc tccggaatttt  600
qatgtgctcc tcaagatctt tttggcacaata caaagtgctg gcgtgtggagat ttcttgcgttctt  660
aqttatcaca cgttccggcg ttgctcgtgg aatgggtata ttggaccttg gaagcttattat  720
cctgctacgg ccagactcat gcgtgtcatt ggaatcataagtt ccacggggccaaaacctt  780
qgctgtcctcg gtaacctgg gcgatcttct tatcctaatg tcatgatgc tatttcgtctct  840
tctagcgata ttgctcgcct ctaacgccgt gcgtgtgattt ttgcttcttt gcgcagttc  900
tctcgaggt gcctcattac gcctgaacct aatataatttt gcggctattt attacattttt  960
cagcagcttg aagctgcttcc cttgcgtttaa taaaaagggat gcttaag  1017
```

<210> 7
<211> 132
<212> PRT
<213> Bacteriophage Qbeta

<400> 7
Ala Lys Leu Glu Thr Val Thr Leu Gly Asn Ile Gly Arg Asp Gly Lys
1 5 10 15

Gln Thr Leu Val Leu Asn Pro Arg Gly Val Asn Pro Thr Asn Gly Val
20 25 30

Ala Ser Leu Ser Gln Ala Gly Ala Val Pro Ala Leu Glu Lys Arg Val
35 40 45

Thr Val Ser Val Ser Gln Pro Ser Arg Asn Arg Lys Asn Tyr Lys Val
50 55 60

Gln Val Lys Ile Gln Asn Pro Thr Ala Cys Thr Ala Asn Gly Ser Cys
65 70 75 80

Asp Pro Ser Val Thr Arg Gln Lys Tyr Ala Asp Val Thr Phe Ser Phe
85 90 95

Thr Gln Tyr Ser Thr Asp Glu Glu Arg Ala Phe Val Arg Thr Glu Leu
100 105 110

Ala Ala Leu Leu Ala Ser Pro Leu Leu Ile Asp Ala Ile Asp Gln Leu
115 120 125

Asn Pro Ala Tyr
130

<210> 8
<211> 132
<212> PRT
<213> Bacteriophage Qbeta

<400> 8
Ala Lys Leu Glu Thr Val Thr Leu Gly Lys Ile Gly Lys Asp Gly Lys
1 5 10 15
Gln Thr Leu Val Leu Asn Pro Arg Gly Val Asn Pro Thr Asn Gly Val
20 25 30
Ala Ser Leu Ser Gln Ala Gly Ala Val Pro Ala Leu Glu Lys Arg Val
35 40 45
Thr Val Ser Val Ser Gln Pro Ser Arg Asn Arg Lys Asn Tyr Lys Val
50 55 60
Gln Val Lys Ile Gln Asn Pro Thr Ala Cys Thr Ala Asn Gly Ser Cys
65 70 75 80
Asp Pro Ser Val Thr Arg Gln Lys Tyr Ala Asp Val Thr Phe Ser Phe
85 90 95
Thr Gln Tyr Ser Thr Asp Glu Glu Arg Ala Phe Val Arg Thr Glu Leu
100 105 110
Ala Ala Leu Leu Ala Ser Pro Leu Leu Ile Asp Ala Ile Asp Gln Leu
115 120 125
Asn Pro Ala Tyr
130

<210> 9
<211> 132
<212> PRT
<213> Bacteriophage Qb

<400> 9
EP 1 885 847 B1

Ala Arg Leu Glu Thr Val Thr Leu Gly Asn Ile Gly Arg Asp Gly Lys
1 5 10 15

Gln Thr Leu Val Leu Asn Pro Arg Gly Val Asn Pro Thr Asn Gly Val
20 25 30

Ala Ser Leu Ser Gln Ala Gly Ala Val Pro Ala Leu Glu Lys Arg Val
35 40 45

Thr Val Ser Val Ser Gln Pro Ser Arg Asn Arg Lys Asn Tyr Lys Val
50 55 60

Gln Val Lys Ile Gln Asn Pro Thr Ala Cys Thr Ala Asn Gly Ser Cys
65 70 75 80

Asp Pro Ser Val Thr Arg Glu Lys Tyr Ala Asp Val Thr Phe Ser Phe
85 90 95

Thr Gln Tyr Ser Thr Asp Glu Glu Ala Phe Val Arg Thr Glu Leu
100 105 110

Ala Ala Leu Leu Ala Ser Pro Leu Leu Ile Asp Ala Ile Asp Gln Leu
115 120 125

Asn Pro Ala Tyr
130

<210> 10
<211> 132
<212> PRT
<213> Bacteriophage Qbeta

<400> 10

Ala Lys Leu Glu Thr Val Thr Leu Gly Asn Ile Gly Lys Asp Gly Arg
1 5 10 15

Gln Thr Leu Val Leu Asn Pro Arg Gly Val Asn Pro Thr Asn Gly Val
20 25 30

Ala Ser Leu Ser Gln Ala Gly Ala Val Pro Ala Leu Glu Lys Arg Val
35 40 45
Thr Val Ser Val Ser Gln Pro Ser Arg Asn Arg Lys Asn Tyr Lys Val
50 55 60

Gln Val Lys Ile Gln Asn Pro Thr Ala Cys Thr Ala Asn Gly Ser Cys
65 70 75 80

Asp Pro Ser Val Thr Arg Gln Lys Tyr Ala Asp Val Thr Phe Ser Phe
85 90 95

Thr Gln Tyr Ser Thr Asp Glu Glu Arg Ala Phe Val Arg Thr Glu Leu
100 105 110

Ala Ala Leu Leu Ala Ser Pro Leu Leu Ile Asp Ala Ile Asp Gln Leu
115 120 125

Asn Pro Ala Tyr
130

<210> 11
<211> 132
<212> PRT
<213> Bacteriophage Qbeta

<400> 11
EP 1 885 847 B1

Ala Arg Leu Glu Thr Val Thr Leu Gly Asn Ile Gly Lys Asp Gly Arg
1 5 10 15

Gln Thr Leu Val Leu Asn Pro Arg Gly Val Asn Pro Thr Asn Gly Val
20 25 30

Ala Ser Leu Ser Gln Ala Gly Ala Val Pro Ala Leu Glu Lys Arg Val
35 40 45

Thr Val Ser Val Ser Gln Pro Ser Arg Asn Arg Lys Asn Tyr Lys Val
50 55 60

Gln Val Lys Ile Gln Asn Pro Thr Ala Cys Thr Ala Asn Gly Ser Cys
65 70 75 80

Asp Pro Ser Val Thr Arg Gln Lys Tyr Ala Asp Val Thr Phe Ser Phe
85 90 95

Thr Gln Tyr Ser Thr Asp Glu Glu Arg Ala Phe Val Arg Thr Glu Leu
100 105 110

Ala Ala Leu Leu Ala Ser Pro Leu Leu Ile Asp Ala Ile Asp Gln Leu

115 120 125

Asp Pro Ala Tyr
130

<210> 12
<211> 131
<212> PRT
<213> Bacteriophage AP205

<400> 12
Bacteriophage AP205

Met Ala Asn Lys Pro Met Gln Pro Ile Thr Ser Thr Ala Asn Lys Ile
1 5 10 15
Val Trp Ser Asp Pro Thr Arg Leu Ser Thr Phe Ser Ala Ser Leu
20 25 30
Leu Arg Gln Arg Val Lys Val Gly Ile Ala Glu Leu Asn Asn Val Ser
35 40 45
Gly Gln Tyr Val Ser Val Tyr Lys Arg Pro Ala Pro Lys Pro Glu Gly
50 55 60
Cys Ala Asp Ala Cys Val Ile Met Pro Asn Glu Asn Gln Ser Ile Arg
65 70 75 80
Thr Val Ile Ser Gly Ser Ala Glu Asn Leu Ala Thr Leu Lys Ala Glu
85 90 95
Trp Glu Thr His Lys Arg Asn Val Asp Thr Leu Phe Ala Ser Gly Asn
100 105 110
 Ala Gly Leu Gly Phe Leu Asp Pro Thr Ala Ala Ile Val Ser Ser Asp
115 120 125
Thr Thr Ala
130

<210> 13
<211> 131
<212> PRT
<213> Bacteriophage AP205

<400> 13
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Leu</td>
<td>Arg</td>
<td>Gln</td>
<td>Arg</td>
<td>Val</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Gly</td>
<td>Val</td>
<td>Lys</td>
<td>Tyr</td>
<td>Val</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cys Ala Asp Ala Cys Val Ile Met Pro Asn Glu Asn Gln Ser Ile Arg

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thr Val Ile Ser Gly Ser Ala Glu Asn Ala Thr Leu Lys Ala Glu

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Trp Glu Thr His Lys Arg Asn Val Asp Thr Leu Phe Ala Ser Gly Asn

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ala Gly Leu Gly Phe Leu Asp Pro Thr Ala Ala Ile Val Ser Ser Asp

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<210> 14
<211> 131
<212> PRT
<213> Bacteriophage AP205

<400> 14
1 5 10 15	Met	Ala	Asn	Lys	Pro	Met	Gln	Pro	Ile	Thr	Ser	Thr	Ala	Asp	Lys	Ile
20 25 30	Val	Trp	Ser	Asp	Pro	Thr	Arg	Leu	Ser	Thr	Thr	Phe	Ser	Ala	Ser	Leu
35 40 45	Leu	Arg	Gln	Arg	Val	Lys	Val	Gly	Ile	Ala	Glu	Leu	Asn	Asn	Val	Ser
50 55 60	Gly	Gln	Tyr	Val	Ser	Val	Tyr	Lys	Arg	Pro	Ala	Pro	Lys	Pro	Glu	Gly
65 70 75 80	Cys	Ala	Asp	Ala	Cys	Val	Ile	Met	Pro	Asn	Glu	Asn	Gln	Ser	Ile	Arg
85 90 95	Thr	Val	Ile	Ser	Gly	Ser	Ala	Glu	Asn	Leu	Ala	Thr	Leu	Lys	Ala	Glu
100 105 110	Trp	Glu	Thr	His	Lys	Arg	Asn	Val	Asp	Thr	Leu	Phe	Ala	Ser	Gly	Asn
115 120 125	Ala	Gly	Leu	Gly	Phe	Leu	Asp	Pro	Thr	Ala	Ala	Ile	Val	Ser	Ser	Asp

<210> 15
<211> 329
<212> PRT
<213> Bacteriophage Qbeta

<400> 15
Met Ala Lys Leu Glu Thr Val Thr Leu Gly Asn Ile Gly Lys Asp Gly
1 5 10 15

Lys Gln Thr Leu Val Leu Asn Pro Arg Gly Val Asn Pro Thr Asn Gly
20 25 30

Val Ala Ser Leu Ser Gln Ala Gly Ala Val Pro Ala Leu Glu Lys Arg
35 40 45

Val Thr Val Ser Val Ser Gln Pro Ser Arg Asn Arg Lys Asn Tyr Lys
50 55 60

Val Gln Val Lys Ile Gln Asn Pro Thr Ala Cys Thr Ala Asn Gly Ser
65 70 75 80

Cys Asp Pro Ser Val Thr Arg Gln Ala Tyr Ala Asp Val Thr Phe Ser
85 90 95

Phe Thr Gln Tyr Ser Thr Asp Glu Glu Arg Ala Phe Val Arg Thr Glu
100 105 110

Leu Ala Ala Leu Leu Ala Ser Pro Leu Leu Ile Asp Ala Ile Asp Gln
115 120 125

Leu Asn Pro Ala Tyr Trp Thr Leu Leu Ile Ala Gly Gly Gly Ser Gly
130 135 140

Ser Lys Pro Asp Pro Val Ile Pro Asp Pro Pro Ile Asp Pro Pro Pro
145 150 155 160

Gly Thr Gly Lys Tyr Thr Cys Pro Phe Ala Ile Trp Ser Leu Glu Glu
165 170 175
Val Tyr Glu Pro Pro Thr Lys Asn Arg Pro Trp Pro Ile Tyr Asn Ala
180 185 190

Val Glu Leu Gln Pro Arg Glu Phe Asp Val Ala Leu Lys Asp Leu Leu
195 200 205

Gly Asn Thr Lys Trp Arg Asp Trp Asp Ser Arg Leu Ser Tyr Thr Thr
210 215 220

Phe Arg Gly Cys Arg Gly Asn Gly Tyr Ile Asp Leu Asp Ala Thr Tyr
225 230 235 240

Leu Ala Thr Asp Gln Ala Met Arg Asp Gln Lys Tyr Asp Ile Arg Glu
245 250 255

Gly Lys Lys Pro Gly Ala Phe Gly Asn Ile Glu Arg Phe Ile Tyr Leu
260 265 270

Lys Ser Ile Asn Ala Tyr Cys Ser Leu Ser Asp Ile Ala Ala Tyr His
275 280 285

Ala Asp Gly Val Ile Val Gly Phe Trp Arg Asp Pro Ser Ser Gly Gly
290 295 300

Ala Ile Pro Phe Asp Phe Thr Lys Phe Asp Lys Thr Lys Cys Pro Ile
305 310 315 320

Gln Ala Val Ile Val Val Pro Arg Ala
325

<210> 16
<211> 129
<212> PRT
<213> Bacteriophage R17

<400> 16
EP 1 885 847 B1

Ala Ser Asn Phe Thr Gln Phe Val Leu Val Asn Asp Gly Gly Thr Gly
1 5 10 15

Asn Val Thr Val Ala Pro Ser Asn Phe Ala Asn Gly Val Ala Glu Trp
20 25 30

Ile Ser Ser Ser Arg Ser Gln Ala Tyr Lys Val Thr Cys Ser Val
35 40 45

Arg Gln Ser Ser Ala Gln Arg Lys Tyr Thr Ile Lys Val Glu Val
50 55 60

Pro Lys Val Ala Thr Gln Thr Val Gly Gly Val Glu Leu Pro Val Ala
65 70 75 80

Ala Trp Arg Ser Tyr Leu Asn Met Glu Leu Thr Ile Pro Ile Phe Ala
85 90 95

Thr Asn Ser Asp Cys Glu Leu Ile Val Lys Ala Met Gln Gly Leu Leu
100 105 110

Lys Asp Gly Asn Pro Ile Pro Ser Ala Ile Ala Ala Asn Ser Gly Ile
115 120 125

Tyr

<210> 17
<211> 130
<212> PRT
<213> Bacteriophage fr

<400> 17
Met Ala Ser Asn Phe Glu Glu Phe Val Leu Val Asp Asn Gly Gly Thr
1 5 10 15
Gly Asp Val Lys Val Ala Pro Ser Asn Phe Ala Asn Gly Val Ala Glu
20 25 30
Trp Ile Ser Ser Asn Ser Arg Ser Gln Ala Tyr Lys Val Thr Cys Ser
35 40 45
Val Arg Gln Ser Ser Ala Asn Asn Arg Lys Tyr Thr Val Lys Val Glu
50 55 60
Val Pro Lys Val Ala Thr Gln Val Gln Gly Gly Val Glu Leu Pro Val
65 70 75 80
Ala Ala Trp Arg Ser Tyr Met Asn Met Glu Leu Thr Ile Pro Val Phe
85 90 95
Ala Thr Asn Asp Asp Cys Ala Leu Ile Val Lys Ala Leu Gln Gly Thr
100 105 110
Phe Lys Thr Gly Asn Pro Ile Ala Thr Ala Ile Ala Ala Asn Ser Gly
115 120 125
Ile Tyr

130
<210> 18
<211> 130
<212> PRT
<213> Bacteriophage GA

<400> 18
EP 1 885 847 B1

Met Ala Thr Leu Arg Ser Phe Val Leu Val Asp Asn Gly Gly Thr Gly
1 5 10 15

Asn Val Thr Val Val Pro Val Ser Asn Ala Asn Gly Val Ala Glu Trp
20 25 30

Leu Ser Asn Ser Asn Ser Arg Ser Gln Ala Tyr Arg Val Thr Ala Ser Tyr
35 40 45

Arg Ala Ser Gly Ala Asp Lys Arg Lys Tyr Ala Ile Lys Leu Glu Val
50 55 60

Pro Lys Ile Val Thr Gln Val Val Asn Gly Val Glu Leu Pro Gly Ser
65 70 75 80

Ala Trp Lys Ala Tyr Ala Ser Ile Asp Leu Thr Ile Pro Ile Phe Ala
85 90 95

Ala Thr Asp Asp Val Thr Val Ile Ser Lys Ser Leu Ala Gly Leu Phe
100 105 110

Lys Val Gly Asn Pro Ile Ala Glu Ala Ile Ser Ser Gln Ser Gly Phe
115 120 125

Tyr Ala
130

<210> 19
<211> 132
<212> PRT
<213> Bacteriophage SP

<400> 19

Met Ala Lys Leu Asn Gln Val Thr Leu Ser Lys Ile Gly Lys Asn Gly
1 5 10 15

Asp Gln Thr Leu Thr Leu Thr Pro Arg Gly Val Asn Pro Thr Asn Gly
20 25 30

Val Ala Ser Leu Ser Glu Ala Gly Ala Val Pro Ala Leu Glu Lys Arg
Val Thr Val Ser Val Ala Gln Pro Ser Arg Asn Arg Lys Asn Phe Lys
50
55
60

Val Gln Ile Lys Leu Gln Asn Pro Thr Ala Cys Thr Arg Asp Ala Cys
65
70
75
80

Asp Pro Ser Val Thr Arg Ser Ala Phe Ala Asp Val Thr Leu Ser Phe
85
90
95

Thr Ser Tyr Ser Thr Asp Glu Glu Arg Ala Leu Ile Arg Thr Glu Leu
100
105
110

 Ala Ala Leu Leu Ala Asp Pro Leu Ile Val Asp Ala Ile Asp Asn Leu
115
120
125

Asn Pro Ala Tyr
130

<210> 20
<211> 329
<212> PRT
<213> Bacteriophage

<400> 20
Ala Lys Leu Asn Gln Val Thr Leu Ser Lys Ile Gly Lys Asn Gly Asp
1 5 10 15

Gln Thr Leu Thr Leu Thr Pro Arg Gly Val Asn Pro Thr Asn Gly Val
20 25 30

Ala Ser Leu Ser Glu Ala Gly Ala Val Pro Ala Leu Glu Lys Arg Val
35 40 45

Thr Val Ser Val Ala Gln Pro Ser Arg Asn Arg Lys Asn Phe Lys Val
50 55 60

Gln Ile Lys Leu Gln Asn Pro Thr Ala Cys Thr Arg Asp Ala Cys Asp
65 70 75 80

Pro Ser Val Thr Arg Ser Ala Phe Ala Asp Val Thr Leu Ser Phe Thr
85 90 95

Ser Tyr Ser Thr Asp Glu Glu Arg Ala Leu Ile Arg Thr Glu Leu Ala
100 105 110
EP 1 885 847 B1

Ala Leu Leu Ala Asp Pro Leu Ile Val Asp Ala Ile Asp Asn Leu Asn 115 120 125

Pro Ala Tyr Trp Ala Ala Leu Leu Val Ala Ser Ser Gly Gly Gly Asp 130 135 140

Asn Pro Ser Asp Pro Asp Val Pro Val Pro Asp Val Lys Pro Pro 145 150 155 160

Asp Gly Thr Gly Arg Tyr Lys Cys Pro Phe Ala Cys Tyr Arg Leu Gly 165 170 175

Ser Ile Tyr Glu Val Gly Lys Glu Gly Ser Pro Asp Ile Tyr Glu Arg 180 185 190

Gly Asp Glu Val Ser Val Thr Phe Asp Tyr Ala Leu Glu Asp Phe Leu 195 200 205

Gly Asn Thr Asn Trp Arg Asn Trp Asp Glu Arg Leu Ser Asp Tyr Asp 210 215 220

Ile Ala Asn Arg Arg Arg Cys Arg Gly Asn Gly Tyr Ile Asp Leu Asp 225 230 235 240

Ala Thr Ala Met Gln Ser Asp Phe Val Leu Ser Gly Arg Tyr Gly 245 250

Val Arg Lys Val Lys Phe Pro Gly Ala Phe Gly Ser Ile Lys Tyr Leu 260 265 270

Leu Asn Ile Gln Gly Asp Ala Trp Leu Asp Leu Ser Glu Val Thr Ala 275 280 285

Tyr Arg Ser Tyr Gly Met Val Ile Gly Phe Trp Thr Asp Ser Lys Ser 290 295 300

Pro Gln Leu Pro Thr Asp Phe Thr Gln Phe Asn Ser Ala Asn Cys Pro 305 310 315 320

Val Gln Thr Val Ile Ile Ile Pro Ser 325

<210> 21
<211> 130
<212> PRT
<213> Bacteriophage MS2

<400> 21
<table>
<thead>
<tr>
<th></th>
<th>Met</th>
<th>Ala</th>
<th>Ser</th>
<th>Asn</th>
<th>Phe</th>
<th>Thr</th>
<th>Gln</th>
<th>Phe</th>
<th>Val</th>
<th>Leu</th>
<th>Val</th>
<th>Asp</th>
<th>Asn</th>
<th>Gly</th>
<th>Gly</th>
<th>Thr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Gly</td>
<td>Asp</td>
<td>Val</td>
<td>Thr</td>
<td>Val</td>
<td>Ala</td>
<td>Pro</td>
<td>Ser</td>
<td>Asn</td>
<td>Phe</td>
<td>Ala</td>
<td>Asn</td>
<td>Gly</td>
<td>Val</td>
<td>Ala</td>
<td>Glu</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>20</td>
<td></td>
<td></td>
<td>25</td>
<td></td>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Trp</td>
<td>Ile</td>
<td>Ser</td>
<td>Ser</td>
<td>Asn</td>
<td>Ser</td>
<td>Arg</td>
<td>Ser</td>
<td>Gln</td>
<td>Ala</td>
<td>Tyr</td>
<td>Lys</td>
<td>Val</td>
<td>Thr</td>
<td>Cys</td>
<td>Ser</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>35</td>
<td></td>
<td></td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Val</td>
<td>Arg</td>
<td>Gln</td>
<td>Ser</td>
<td>Ser</td>
<td>Ala</td>
<td>Gln</td>
<td>Asn</td>
<td>Arg</td>
<td>Lys</td>
<td>Tyr</td>
<td>Thr</td>
<td>Ile</td>
<td>Lys</td>
<td>Val</td>
<td>Glu</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td>55</td>
<td></td>
<td></td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Val</td>
<td>Pro</td>
<td>Lys</td>
<td>Val</td>
<td>Ala</td>
<td>Thr</td>
<td>Gln</td>
<td>Thr</td>
<td>Val</td>
<td>Gly</td>
<td>Gly</td>
<td>Val</td>
<td>Gly</td>
<td>Val</td>
<td>Glu</td>
<td>Leu</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td>65</td>
<td></td>
<td></td>
<td>70</td>
<td></td>
<td></td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Ala</td>
<td>Ala</td>
<td>Trp</td>
<td>Arg</td>
<td>Ser</td>
<td>Tyr</td>
<td>Leu</td>
<td>Asn</td>
<td>Met</td>
<td>Glu</td>
<td>Leu</td>
<td>Thr</td>
<td>Ile</td>
<td>Pro</td>
<td>Ile</td>
<td>Phe</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td>85</td>
<td></td>
<td></td>
<td>90</td>
<td></td>
<td></td>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Ala</td>
<td>Thr</td>
<td>Asn</td>
<td>Ser</td>
<td>Asp</td>
<td>Cys</td>
<td>Glu</td>
<td>Leu</td>
<td>Ile</td>
<td>Val</td>
<td>Lys</td>
<td>Ala</td>
<td>Met</td>
<td>Gln</td>
<td>Gly</td>
<td>Leu</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td>105</td>
<td></td>
<td></td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Leu</td>
<td>Lys</td>
<td>Asp</td>
<td>Gly</td>
<td>Asn</td>
<td>Pro</td>
<td>Ile</td>
<td>Pro</td>
<td>Ser</td>
<td>Ala</td>
<td>Ile</td>
<td>Ala</td>
<td>Ala</td>
<td>Asn</td>
<td>Ser</td>
<td>Gly</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td>115</td>
<td></td>
<td></td>
<td>120</td>
<td></td>
<td></td>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Ile</td>
<td>Tyr</td>
<td></td>
</tr>
</tbody>
</table>

<210> 22
<211> 133
<212> PRT
<213> Bacteriophage M11

<400> 22
Met Ala Lys Leu Gln Ala Ile Thr Leu Ser Gly Ile Gly Lys Lys Gly
1 5 10 15

Asp Val Thr Leu Asp Leu Asn Pro Arg Gly Val Asn Pro Thr Asn Gly
20 25 30

Val Ala Ala Leu Ser Glu Ala Gly Ala Val Pro Ala Leu Glu Lys Arg
35 40 45

Val Thr Ile Ser Val Ser Gln Pro Ser Arg Asn Arg Lys Asn Tyr Lys
50 55 60

Val Gln Val Lys Ile Gln Asn Pro Thr Ser Cys Thr Ala Ser Gly Thr
65 70 75 80

Cys Asp Pro Ser Val Thr Arg Ser Ala Tyr Ser Asp Val Thr Phe Ser
85 90 95

Phe Thr Gln Tyr Ser Thr Val Glu Glu Arg Ala Leu Val Arg Thr Glu
100 105 110

Leu Gln Ala Leu Leu Ala Asp Pro Met Leu Val Asn Ala Ile Asp Asn
115 120 125

Leu Asn Pro Ala Tyr
130

<210> 23
<211> 133
<212> PRT
<213> Bacteriophage MX1

<400> 23
Met Ala Lys Leu Gln Ala Ile Thr Leu Ser Gly Ile Gly Lys Asn Gly
1 5 10 15

Asp Val Thr Leu Asn Leu Asn Pro Arg Gly Val Asn Pro Thr Asn Gly
20 25 30

Val Ala Ala Leu Ser Glu Ala Gly Ala Val Pro Ala Leu Glu Lys Arg
35 40 45

Val Thr Ile Ser Val Ser Gln Pro Ser Arg Asn Arg Lys Asn Tyr Lys
50 55 60

Val Gln Val Lys Ile Gln Asn Pro Thr Ser Cys Thr Ala Ser Gly Thr
65 70 75 80

Cys Asp Pro Ser Val Thr Arg Ser Ala Tyr Ala Asp Val Thr Phe Ser
85 90 95

Phe Thr Gln Tyr Ser Thr Asp Glu Glu Arg Ala Leu Val Arg Thr Glu
100 105 110

Leu Lys Ala Leu Leu Ala Asp Pro Met Leu Ile Asp Ala Ile Asp Asn
115 120 125

Leu Asn Pro Ala Tyr
130

<210> 24
<211> 330
<212> PRT
<213> Bacteriophage NL95

<400> 24
Ile Glu Thr His Arg Arg Cys Arg Gly Asn Gly Tyr Val Asp Leu Asp
225 230 235 240

Ala Ser Val Met Gln Ser Asp Glu Tyr Val Leu Ser Gly Ala Tyr Asp
245 250 255

Val Val Lys Met Gln Pro Pro Gly Thr Phe Asp Ser Pro Arg Tyr Tyr
260 265 270

Leu His Leu Met Asp Gly Ile Tyr Val Asp Leu Ala Glu Val Thr Ala
275 280 285

Tyr Arg Ser Tyr Gly Met Val Ile Gly Phe Trp Thr Asp Ser Lys Ser
290 295 300

Pro Gln Leu Pro Thr Asp Phe Thr Arg Phe Asn Arg His Asn Cys Pro
305 310 315 320

Val Gln Thr Val Ile Val Ile Pro Ser Leu
325 330

<210> 25
<211> 129
<212> PRT
<213> Bacteriophage f2

<400> 25
EP 1 885 847 B1

Ala Ser Asn Phe Thr Gln Phe Val Leu Val Asn Asp Gly Gly Thr Gly

1 5 10 15

Asn Val Thr Val Ala Pro Ser Asn Phe Ala Asn Gly Val Ala Glu Trp

20 25 30

Ile Ser Ser Asn Ser Arg Ser Gln Ala Tyr Lys Val Thr Cys Ser Val

35 40 45

Arg Gln Ser Ser Ala Gln Asn Arg Lys Tyr Thr Ile Lys Val Glu Val

50 55 60

Pro Lys Val Ala Thr Gln Thr Val Gly Gly Val Glu Leu Pro Val Ala

65 70 75 80

Ala Trp Arg Ser Tyr Leu Asn Leu Glu Leu Thr Ile Pro Ile Phe Ala

85 90 95

Thr Asn Ser Asp Cys Glu Leu Ile Val Lys Ala Met Gln Gly Leu Leu

100 105 110

Lys Asp Gly Asn Pro Ile Pro Ser Ala Ile Ala Ala Asn Ser Gly Ile

115 120 125

Tyr

<210> 26
<211> 128
<212> PRT
<213> Bacteriophage PP7

<400> 26
Met Ser Lys Thr Ile Val Leu Ser Val Gly Glu Ala Thr Arg Thr Leu
1 5 10 15

Thr Glu Ile Gln Ser Thr Ala Asp Arg Gln Ile Phe Glu Glu Lys Val
20 25 30

Gly Pro Leu Val Gly Arg Leu Arg Leu Thr Ala Ser Leu Arg Gln Asn
35 40 45

Gly Ala Lys Thr Ala Tyr Arg Val Asn Leu Lys Leu Asp Gln Ala Asp
50 55 60

Val Val Asp Cys Ser Thr Ser Val Cys Gly Glu Leu Pro Lys Val Arg
65 70 75 80

Tyr Thr Gln Val Trp Ser His Asp Val Thr Ile Val Ala Asn Ser Thr
85 90 95

Glu Ala Ser Arg Lys Ser Leu Tyr Asp Leu Thr Lys Ser Leu Val Ala
100 105 110

Thr Ser Gln Val Glu Asp Leu Val Val Asn Leu Val Pro Leu Gly Arg
115 120 125

<210> 27
<211> 4586
<212> DNA
<213> artificial sequence

<220>
<223> Cloning Vector

<400> 27

ttctgtttcc tgtgtgaaat tgttatcgc tcacaattcc acacattata cgagccgatg 60
attaatgctc aacagctcat ttccagaat ttgccagaac cgattatgat tcgggcgcaaa 120
aaacattatc cagaacggga gtgcgcccttg agcgacagca attatgcagt gatttacgac 180
ctgcaacagcc atacacagcg ttcgcatgqc gcagaacgatt ggtgcacagt
gcagtcgata agtcctccggcg ctcttcagcgc ggacacaccg tgtgccgcatgc caccggcgcc
caccggcgcc ttcggggccggt ggaggtttgg ggccggtgtc cccggttcgc tgggggtttg gcagccggttt gcctgggttg
cgg gagttgggcc cctcgtggttg cggggttgg tguagtggtgc ttcggccggtg gccggtgtg gcacacagtgc
ggggtgcggc atgtgggtgg ctacttcccac ccttatcgtgc cgggtgtgtg ggcggtggtt gcgtgtggtgc
tccgcggctg gacgcacactc cctctcgtgc ttcgctcgtgc ttcgctcgtgc
aacgttgggc ggctgggtgtc ctcttcacgct gacgtgggtgc gacgtgggtgc gacgtgggtgc
gcatcgtgggc gacgtgggtgc gacgtgggtgc gacgtgggtgc
gtgcttcgcct cgcttcgctgc ttgctgctgc
ttcgctcgtgc ttcgctcgtgc ttcgctcgtgc
cttcggcccgt gacgcacactc cctctcgtgc ttcgctcgtgc ttcgctcgtgc
gtgcttcgcct cgcttcgctgc ttgctgctgc
ttcgctcgtgc ttcgctcgtgc ttcgctcgtgc
cttcggcccgt gacgcacactc cctctcgtgc ttcgctcgtgc ttcgctcgtgc
gtgcttcgcct cgcttcgctgc ttgctgctgc
ttcgctcgtgc ttcgctcgtgc ttcgctcgtgc
cttcggcccgt gacgcacactc cctctcgtgc ttcgctcgtgc ttcgctcgtgc
gacgcagaca gcgcgcgcc gcgcgcgcgc gggtgttgcc gggtggtcggc gcgcgcgcgc 2100
gaccacgatca cgtacgcgata gcgagggtgta tgtgcgcgtta actatgacgcc actacagcag 2160
attgtactga gactgtacca cgtgcgtgtg gaaataacgc acagatgcgt aagagaaaaa 2220
tacgcctatca gggtgttccttc cgctttctcg tatacgtcag cgtcgtcgcgc gggtgttgcgg 2280
cctgacggcag cgtatcgcag tcactcaaaa gcggtaataac ggttatcacg aagatcaggg 2340
gataacccag gaaagagcaac gtgaagccaa ggcagccgaa aagccagcgaa ccgtaaaaag 2400
gccgcttttc ttcaggtcct gcgcctccctt gcgcctcctt aacgagtacca cacaatactga 2460
cgtctcaagtgc aggattggcc aacacccgaca ggactataaa gatacaggg gccttcccctt 2520
gggaactcccg tcgtgcgcttc tcctgtcggc accgctgcgc gcctgcctggt tccactgcgc 2580	tttttccctt ccctggcgcgt catagcgcctc ctctgggttcg ttaaccctccgt 2640
gttatttgc ctgcgtccaa gctggggttgct gtcgcaagac cccccgtcgc gcgcgcgcgcgc 2700
tgctctttat ccggtacta tcgctcttgg tcacccgctgc gttgacccga tcagcagcagc 2760
tcgagcagcag ccaactgtgaa cagaggtacgc agcgggagtt atgtagcggg tgcctgagag 2820
ttctactaag gttggtgctaa ctaacgtcgc actagaagga caagatggtg aactggtgcct 2880
tcgctggagc cagttacctt cggagaaaaa gttggattgt ctcggatcc aaccaaaacc 2940
acctccggtg gctggtggttt ttttggttgc agaagcgcgc taacgcgagc aaaaaaaaag 3000
ttcacaggaag acctttttgc atcttttacgc gggctgtcgc ctcagttgaaa cagaaaaactca 3060
cgctagggga ttgggtcctgc gatgattatca aaaaagcta tcctctagat cctttttaat 3120	taaaatgaa gtttttaaatc aatctaaagtatatgaatc aaacttttgtc tgcagatcact 3180
cactgcttga tcaactgcgag gccttcttc ttcacctcttc tatacagtt 3240
gcttgtctcc ccgtggtgtga gataactacgc atacggggag gccttcaccgc tcggcccgccgt 3300
gtcgcataagat taacgcgcaag ccacacgcctc ccgggttccag atttatatcgc aataaaaccag 3360
cagccggaggg ggcgccgagcg cagaaagtgtg ccggcaacctt tataccgcct eacttcgctt 3420
attatgttgg ctcgggagac ctagaatcgt agttccgcag ttaataaatg gtcgcaagtt 3480
gttgcccttgc ctgcgtgcagc tgggtgtcgc gcgcgtgtgc tgggtatcgc tttaccaagc 3540	cccggtttcc cagctcaccag gcgcgggttt ctttttcctgca ctttctgcaaa aagacgggtt 3600
agcctctctcg gccttcgcgtg ctgggtcgcaga agttaagttg ccgcaagtgtg atctactacgt 3660
gttacctgcc caactgcataa ttctcttact gccatccgcat ccttcgaatag tttttctcttg 3720
acctgggtgact accaaaccacag taattttcgg caaataagatg tttttccttgca ggcaggcacc 3780
tgggccggct gcacccgcggc taataccggc ccacacgaca gcacttttaaa atgtgtcacttc 3840
attggaaaaacc gtctttcggg gcggaaactc tcaaggatct taaaagtgtg gatacagcag 3900
tgcagtaac ccaactgtgc aeccaactgta ttcacagcat cttttacttt caccagcgtt 3960
tctggttag caaaacagg aagcgaataa agccgaaaaa ggcgacaagg 4020
aaatgtggaa tactcatact cttctcttttt caatattatt gagcaattta tcagggtaat 4080
tgttccatga ggccgatacat atttgaatgt attttagaaaa attaacaaaaa aagttttag 4140
aaacgcacaa aagcccatcg tcagggtagc cttctgctta atttgaatcc ggcgtgatta 4200
tggcgggctt cctggccccgc acctcctcggg cccggtcttc gcacggttca aatccgctcc 4260
cggcggtt tggctactca ggaagacgtt cacggccaaa caacagataa aacggaaggc 4320
cagtcttttc gactgagcct ttcgcttttt ttgatgcttg gcagtctctct ctctctgcct 4380
ggggagccca cacaactcca tcgggcttaac gcgcccttcac ttctgagttc ggcaggggtt 4440
caggtggagc cacccgcttcg cgagggcctg tcggccggcg ccagatgttcc ggggtggtttcc 4500
gttctgtttt aacgctgtatc agggctaaaa tttttctctca tccgccaaaa cagaaaccttgg 4560
gctgcaagtc gacgggatccc cgggaa 4586

<210> 28
<211> 425
<212> DNA
<213> artificial sequence

<220>
<223> Terminator Sequence

<400> 28

tgtttttggc ggtatgagaa agattttccag cctgataacag attaaatcag aacgcaaaag 60
cggtctgataa aacagaaatt tcgctggcgg cagtagcgcg cttggctccac cttgaccccat 120
gccgaactca gaagtgaac gccgtaagcc gcagtgcagt gtaggggttc cccatgcggg 180
agtagggagc tgcggagcat cacaataaac gaaaggtctca gtcgaagacgc tgggctttcc 240
gttttatctg ttgttgtgctg gtaagaacgctc ttcctagagt gagaaatccg cccggacgcg 300
atttgaagct tcggcagcga ccgccccggcg ggtggcgggcg agggcgcgcgg ccataaacgg 360
cagggcatca aatcagccag aagggccatcc tgcaggttag cctttttggc tttctacaac 420
ccttt 425

<210> 29
<211> 816
<212> DNA
<213> artificial sequence

<220>
<223> Resistance gene
ttagaataac tcatcgagca tcaaatgaaa ctcgcaattta ttcatatcag gattatcaat

acccatattt tgaaaaaccc gttttctttaa tgaagggaga aactcaccga ggcaagttca

taggatgca aagatcctggt atcggtctgc gattcggact ctgccccacat caatacacc

tataatttc cctccgtcga aaataaggtt atcaagttag aataccacat gagtgacgac

tgaatccggt gagaatggca aaagctttgt cattttcttc cagaccttgtt caacagggca

gccattacgc tcgctcatca aatcactcgc atcaacccaa ccgatttca ttctgtgattg

cgccgagcg agacgaaata cgcgatcgtg gttaaagga cattacaaa caggaatcga

atgcaacccg gcagggacca ctcgcaacgcg acatcaacat atttacacctg aatcaggata

tctctctaat acctggaatg ctgtttttccc gggtacgca gtggtgagta accatgcac

atcaggaga ta cggataaaat gcttgatggt cgggaagggc ataaatcccg tcgcaggttt

tagtctgacc atctcctcgta atcactcatt ggcaacgctg cctttgctat gtttcagaaa

cacccctcgg gccatcgggct tccctataac tccgatagatt gtgcgaactcg atggcccgac

attatcgcca gcgccattat acccatataa atcagcattc acgttggaat ttaatcgccg

cctcgagcaaa gaagtccccccc gtgaatatag gctcat

<210> 30
<211> 4963
<212> DNA
<213> artificial sequence

<220>
<223> Plasmid

<400> 30
ggctgtcacg tgtgtaaatc actgacataat tcgtgtcgtc caagcgccac tccggttctg 60
gataatgttt ttacctgccqa cactataacg gtctttgcga aatattctgga atgagcgttt 120
gacaattaat cactggtctcg tataatgtg tggattgtga gctgataaca aatctacaca 180
 ggaaacgaa ttctaaagag gaaaaaattaa tgacaaatata gccatgccaa ccgatcacaat 240
cacacgcaaa taaaattgtg tgtgtcaggatc caacctcgttt atcaactaca ttttcagcaa 300
gtctgttaec ccaacgtgttt aagttggtta tagccgaaact gaataatgtt tcaggtcaaat 360
atgtatctgt ttataacgct tgtgacaccta aacccggaagg tttgcagat gcctgtgtca 420
ttatgcgaa ttggataacaa tccatcgcac gactgtatcc agggtcagcc gaaactttgg 480
cctcttaaa aagcagacttg gaaactcaca aacgtaacgt tgacacactc ttgcggagcg 540
gcaccgcacc ttggtgctttt cttgacccat ctgctggtat ctgtatctttg gataactactg 600
cctatcagtt cttggctggtt ttggcggagag agagagat ttcagcctca tacagattaa 660
atcagacgc agaagcggctgc tgataacaca gaatttccttt ggcggcagta ggcggggttgt 720
 cccacctgac cccactgcgga actcagaaagtc gaaacgcgctg aacggtcagt ataggtggtgg 780
EP 1 885 847 B1

gctcccccct gcggagagtac ggaaactgcca gcggatcataa aaaaaggaag gctcagtcga 840
aagactgggg cttcttggtt atctggttct tgtcgggtaa cgctctctgct attgggacaa 900
atcggcgggg acggattttg aagctgcca gagaacgccc gggagttttg cggggtgcagc 960
gccgcatta aacgctggagc catcataa atcgaaagag gcacgtgacgc atgggctttt 1020
ctgcgatttct acaaaaccttt tttgtttattt ttctagacgc acgggtgtgc tcaaaatctc 1080
tgactgtatc atgcacaaag taataaatat ttcatacgtac ccataaaacctcgtgctgg 1140
ataacagctg atacaaggag tttatagcgc catattcacc gaggaacggtc ctggctcggg 1200
cgcgattaa atcccacatat gcgtgttcgatt ttataattggt ataatggtgct ccgtcgaataat 1260
gtcggccaat caggtgcggac aacctatccga ttgtatgaga aagccccattgc gcgcagatgtt 1320
ttctgaacgc aagctggtggc aaaatgttta caagatgagtt ggctcagacta 1380
aactggtgtaa ccggataaat aataccctgg accatacaagc attttatccg tactctgtat 1440
gatgcattgt tatctcaccac tcggatccgc gggacaaag cattccaggt attagaagaa 1500
tactctattct ccggatcgaag agctctggcag ttttcttcgc cccgtgcat 1560
tcgattctctgt tttgtaatttg tttcctttac gcggatcggcg tatcttcgct ccgctcagccg 1620
caatcagcaaa taataaaggg ttgggtgatt gcgaqgtgatt ttgatgacga gcgtatggtcc 1680
tggcgcttgta gcaaccgctgg gaaagaatg ctaaagcttt ttgacttcctgc accggattca 1740
gtctcaccac atgggtattt ctcaattgat aatacttttt ttcggaggg gaaattattaata 1800
gtttgtattgt atgtctggagc ctggcgacag acctggagct gcggaggtgtgt twccatctca 1860
tgggaactgcc tgggtgatttt tttctctctca ttacagaaaa gcgtttttttta aaaaatattg 1920
attgataatc ccgatcgtgaa taataattgc cttccttttga tcgtcgatgta gtttctctaa 1980
acgctggtacc aagttttacc atatggatact tagattgatt taataactctct cttaattaatt 2040
aaaaggatct agggtgcaag ctttttctgat aatctcatga ccacaatccctttt aacgtcgag 2100
tttctctcc aacgtcgggtg agaacaagaga taataaagttg cattgctttc 2160
aaaaatctctc gcccggattc cctggtgaccc gaaaaagaata aaggtcttctctgtgacgatct 2220
tgtggccagg atcaacgacct cctacacttt tttccgaaag taactggcttt cagcagacgc 2280
cagataccaa atactctctct tcaatctcctt cgcacttggag ccacactcttt cacaoactct 2340
gtagcaccgc ctatcatactt cgctctgtgta atcctgttgac gattggtgcg tcgcaagtgcg 2400
atatggttgcgt ttcctacggc gttggactca aagcaqagttg taccggataaa gccgcaagccg 2460
tcgggtgaa cggggggttct gcggccagg gcagcttttc ggcgaacgcc ttttcacccga 2520
tcagatcacc tctagctgta gcgtatagaga agcggccacgc tttccgaaag gagaagagcg 2580
gcaggtattac gggtaagccg caggtctgga acaagagagc gcacgaggg gcacctcaggg 2640
ggaaacgcct ggtatctttta tagtcttgctc gggtttgcgc acctctgtgact tggagctgctg 2700
ttttctgtat gctggctcagg ggggccggcgc ctatggaaga acgcagcagaa cgcggccttt 2760
ttacggctcc tggcggtttttg cctggcttttt gctcacatgct tccttcgctgc gttatccctc 2820
gattctgttg atacccctat tacccctttctt gatgagagctg atacccctctgc ccgcagcgcgc 2880
acgccccagc gcagcgagcgc atgcagcgacag gaagcggaaag aagcgctgctat gcgggtatttt 2940
cctcttacgc atctgtgctg accttacctac gcctatatgt gcaaccttcag tacaactctgc 3000
tctgtggcgc cctaggttaac cccaggtataca ctcgctctatc gcctacgtgacc ggctgcatcg 3060
cctgcccctc acacccgccaca acacccgctg acgcgcctctg acgggatgttg ctctccctgcg 3120
cacctgccca cagacaaagtt gttacgctct cccgggagctg catttgctcag aggttttccac 3180
cgctctaccc gaacaaacgcag aggacgctgac gtaaaaaagg ttcagcggtg tctgtaagcg 3240
atccacagat gtctgcctgt tcatacgcgtcc cagctctgtt gatgctttctcc agaagctgta 3300
agtctgtcgt tctgataaaag cgggcactgt tattttgctt ttgctgatct 3360
agcctccctat gtaaggggaag tttttgcata agaagctgatc aacagagaga 3420
ggacgtctac gacacggttct actgtatgtgg aacatcgcctt gttactggaa ctgtgaggtg 3480
ghtaaacaact gcggctgttgg atgcggcgcgg aaccagagaa aacctaccaag ggctcaatgc 3540
ag cgctctctgt tatacatag atgttgcttc ctacgggttag ccaacgcaacatt cctggggtgc 3600
agatcggcagaa cataaagttg caagggctctc gactcccgtgt ttcacagcttt taacaaagac 3660
ggaaacgcga gaaccctcatg tggttgctcc aggtgctcaga cgtttttgcaag cagcgctgagc 3720
ttcacgttgc ctcggtcttc ggtgattctc tctgttacac acagaaaggaa ccggcgcgagc 3780
cctacggggtt cctcaacgac agagacgctg ctcagcgcac ccttggcgcgg gaccccaagc 3840
tgcgccgagat gcggcgcgctg gggctctgttg agatggccgga ccggcttggtat agtgcttccac 3900
aaggggtgtgt ttcggccttc acagtcccttc gcaagaatttg atttgctcca atctcattgag 3960
tggtgtaatcc gttacgctgg acggccggttc tcctatcagcgtgaggtggg ccggtgctca 4020
tgcacggcga cgcaacgcgg ggagcgccagc aaggtatagg gcgcgctctta caaatctagtc 4080
cacccccctc atctgtgtcg ccagagcgcgg ataatctgcc ggagatcgttcc gggcttccaaat 4140
gtcgaaatgt attgcttgaa gcggcgctgcg cagtcctttga agctgtcctct atggctgtctg 4200
atctacgcttc ctggaacagca tgggctgcgapc cccgggcatc ccgatgcggcc ggagacgagc 4260
aggaatacat atgggggaaag cccatccacgc tcggcgcgcag aacgcacgcga agacgtacgc 4320
cacgcggtgcg cgccgcatgc cggcgtataat gcgctgtcttc tcgcgggaaac gtttggtgctg 4380
gggaccagtt aggcaagttt gaggaggggc ctgcagattt ccagataccgc cagacgacagc 4440
gcggatcacttc gtcgctcttc acggaaacgcg tctctcgcgcg aaatgacgca agacgcctgcg 4500
cggcaacctgt cctacgagtt gcagcataaa gaagacagtc ataatgctcg gcaagcatagt

catgccgc gcgggaaaga agagagtag cggggggaag gctctcaagg gcattcggctg

acgctggccc ttatgtgcat ccttgcatag gaagcagccc agtagtaggt ttaggcccgtg
gagcaacggc cggcgaagga atgggtgcag caaggagatg gcgggcaaca atcccgcggc

cagggggcct gccaccaata cgacgcagaa acaagccttc atggagcggga gttgagcaggc
gcatctgccc ccacggtgta tggccgctat atgggagca gcaacggtac cttggtgcggc

ggtgatgccg gcacgcatgc gttcggctga gaggacccag gcttatcgcag tgcacggtgc

acaatgcttt ctggcgtcac gcagccatcg gaagcgtgtgg tat

<210> 31
<211> 6
<212> DNA
<213> artificial sequence

<220>
<223> Stop Codon

<400> 31
tgaaca 6

<210> 32
<211> 6
<212> DNA
<213> artificial sequence

<220>
<223> Stop Codon

<400> 32
taatga 6

<210> 33
<211> 4525
<212> DNA
<213> artificial sequence

<220>
<223> Plasmid

<400> 33
tcgcgcgttt cggtgatgac ggtgaaaacc tctgacacat gcagctcccc gagacggtca 60
cagcttgctt gtaagcgagc gcgcgggagca gacaagcccc tcagggcgcg tcagcgggtg 120
ctggcgccgtc tcggggtctgg ctaaactatg cggcatcaga gcagattgta ctgagagtgc 180
accatatgcc gtgtgaaata ccgccacagat gcgtaagggg aaaaataccgc attaggccgc 240
attcgcacatt caggtgctgcg aacctggtggt aagggcctgc ggtgccgggcc ttcctgctat 300
tacgccagcct ggcgaaaggg ggtggtgctg caagccgatt aaagttggta agcccaaggt 360
tttccccagtc agcaggtggt aaaaagcaggg ccagtggaatt cagacatgca ttttcctctt
420
agttactaag cacagagaaac gactatcaag gcttgataag gacatttaag cttaacaaac
480
ttagtgaag caaaacctat acacacacca ctggatggt ggctgcaaaaa gcacaactac
540
acgccacgag cgtgatagtg gcaaatatcg caaagagac aataagcatc tatacaattg
600
agataatag aacgctcaat gcttcggaac gcaccaggtt tcttgccttc gcgaatatac
660
tactttcgat cacgcatagc ctgatcagta gcaagataag tcggcatcaag gctaataata
720
ccattgcac gcgaacacgg cgaagtaggtg taactaagcc gagaatccca atcaacgcaac
780
tttgtattgc ccaaaagatgc tttgaggcca acataaaatt cgcagaggtg ggtataaaca
840
gcattataga taggcccaggg tcggttctta gttaggagct ctgaacaattc ctcttagggac
900
caaattgcga agggctgca atactactt gttcctgccc gcctgatcaat cgggtggtc
960
ggaattcagc gatcgaggttt tcagctctgg cgccaccaggg ccacgagcag caagagcagc
1020
gctgggctca gctgatcaat agcagctgac agcagaggac tagcgagcag agcagcagcag
1080
tctgtaaccga ccaaggctcg tttcctcttt ctctatactc gctgaacagc aaggtgctcg
1140
tcgactatag cctgccaggt aaccgtagtg tcacacacaac cgtttcacgt gcacgcagcgtc
1200
gggtcttggta tttaaccctg gacctttgat tcctacgat gtcgagaagg ctgagatacc
1260
gaaacgttaa cactccttct cagcgcagga acctgaccce ctggtagaag ccagggcagc
1320
ccgttagcgg gattacccc aacgccagttt aggcagccgaag tttgtttccc atctcttccc
1380
atgttacctga aagtaacagt tcctaaattt gcctactgttt ttctcctcct ttctagcgtca
1440
ttatatgtt cccattcata actgatggtt agcagcacttt attataacct tttttgtcctc
1500
tttaaaacctta atccacacatc aacctcatca attttttatcc ccagctctctc gttaagcctcg
1560
cattaattgaa tcgyccacagc ccgggagaga ggccggtttgc gttatggccc ctcttccgct
1620
tctctgcctca ctagctcgct gcctcgtggt tcctggctgc gcggagccgt atcatactac
1680
tcagagggcg taatacgggt atccacagag tcaggggata acgcggaaaa gaaacctgta
1740
gccaaaggc agcacaagct gcgaaagggc cgttgctgcc gttttttcact
1800
agctctcgcg cccctgcagc gcataccaaaa aatcgaagct caagttagag gtggcgaaac
1860
ccgccagga cacataaag ccagggccttt ccctccggga gtctctcctg gctcctctct
1920
gttccaccc tgcgccttc acagcttttc ttcctgccttc gccacctggc aacgctgccg
1980
ccttttcata gctcagctgt taggttatctc agttcgggtgtc agttcgttcc gcctcaagcgtc
2040
ggcggtgtgc agcagacccc ccgctcaggg gcaccgctgct ccctatcccg taactatcgt
2100
ccttagttca acgccgttaag agcagactta tcgcacatgg cagcgcccac tgttaaccgg
2160
attagcaag caggggtttg acagaggttct tgaagtggtg gcctaaactc
2220
ggctacacta gaagacacgt atttgggtac tgcgctctgc tgaagccaggt taccttcgga 2280
aaagagtgtg gtatgctcttg attccggccaa ccaaccaccc cgctgtacgct cgtggtttttttt 2340
gttgcaagc agcagattac gcgcagaaaaa aaggaagatcc aagaagatc cttgtagcttt 2400
tctacgctgggt ctgcggctca gtgggaacgaa aactcagcttt aaggagatttt ggtcctagaga 2460
ttatccaaaaa ggtaccctccat ctatgccttt ttaaatta aaatgaagttt taatatcatcc 2520	
	taagagtcatt atagttacaa tcggctcag acgttacctaat cgttaactac tgggacactt 2580
atctcagcagta tcgctctcatt tcgctatcctc atagttgcct gactccgcctt gctgctagata 2640
actacgataac ggggagctgt ccacacgtgcg cccagcgtgcg caatgataacc gcgacaccca 2700
cgcctacgcc ctccagatttt atcagcataa aaccaacgagcg ccgaaggggc cggagcagaga 2760
agtggtcctcg caagtcctctac cagctcattta attgtggcgc ggagagctaga 2820
gtaagtagttg ccacagcctaa taattggcgc aacgttgggt ccatcgtac aggcaacgtcg 2880
gtctacgtgct ctgtcgttggc tattgctgct tcacgtgcgc ttcctcaacag atccaagcggc 2940
gttcagcatg ttcctctttggg cgctggagttg catctgtcctc ccgcagatgct 3000
gtcagaaatga agtggtgcgc ccaggtattaa tcagatgcgt tgcgacactacc gcataaacct 3060
cctactgtcct tgtcctacgcc ttaattcttt ttctgtgactcg tgtgaagggg gggggggggc 3120
cctgaggtcct tgctcgtgaggt agggttggtgc tgactcataac cagccgctgaat tccgccactcc 3180
atccagccag aagagtgaaggg ccgaccagcct gtggagatgaatt tggaccaggt 3240
gtgatgtttgc aacctttgtgc tggacccagag aacggaaaaa tttctgtcgcg tggacggagtt 3300
cctgatcttc aacctcgacaa aagccgtcatt tatctccaaac agccgcgccct ccctcagatc 3360
agcgtaatgc ttcgcggcgtg ttcaacccatt ttaaccacact tctgattagaa aaaccaacagc 3420
agcataaatt gccagcctcaa ttattcata ttcaggatttt ccattaacatt ttttggaaaa 3480
agcggtttct gcattgaaag ccagaaactca cgcagggcaagt tccataaggct ggcaagatcc 3540
tggtaacgctt ctgcgtaccttc aactcggact tccatcattaa tttccccctcgcg 3600
tcacaattatat ccgctattcag ttcgaggata cccatggtca gcgccgatac cggtagagat 3660
gcgaagactg tcatgctcataa tttccagactg ttcgactcac gcgacccagt acctctgtct 3720
tcacaattcag gcgactcatc ccaacgccct cttactcctgc attgcgccttg agcggacagaa 3780
aatgcggatc ccgcttggaa aggcaacat taacacaggg ccgagctcaag tcgaatgcga cggagcggagg 3840
aacacctgca gcgcgtcactaa cattttctct cctgaatccag gataatcttc taataacctttc 3900
aatgcttggt tcccgcggtg cgcaggtgggt agtaaactag catcatcagg aatgaaggataa 3960
aatgcgttga tgggtccgagag gccgtaataat tccgctagcc agtttactct gaccatctca 4020
tcgttaacatt cattggcgaac gcctacttttt ccatgttcctaa gaacaaactc tgggccagcatc 4080
ggcttcccat acaatcgtga atattgtgca cctgattgcc cgacattac gcagcctcat 4140

<210> 34
<211> 56
<212> DNA
<213> artificial sequence

<220>
<223> Primer Sequence

<400> 34
gcgccggaat tcaagggtga aaaacaggtg gcacattttac agactgttaa ttagg 56

<210> 35
<211> 33
<212> DNA
<213> artificial sequence

<220>
<223> Primer Sequence

<400> 35
gcatgcaagc ttagacatgc atttcatcct ttag 33

<210> 36
<211> 57
<212> DNA
<213> artificial sequence

<220>
<223> Primer Sequence

<400> 36
gcgccggaat ttaagagg aaaaaaatgg gcacattttac agactgttaa ttagg 57

<210> 37
<211> 3914
<212> DNA
<213> artificial sequence

<220>
<223> Cloning Vector
tgcgcggttt cgggtgatgc cggtgaaacc tcggacacat gcagctcccc ggagaaggtca 60
cagctgtgct gtgaagcggat ggcggagaca gacaagcccg tcagggcgcg tcagggggtg 120
tggcgggttg tcggggtcgg cttaactatg ggcgcacaga gcagattgta ctgagagctgc 180
accatagtgc gttgtaataa ccgcacagat gcgttaagag aaattaccgc atcagggcgc 240
attccacctt caggtgctgcc aacgtgttggg aaaggcgatc ggtgagggccc ttcttgctat 300
tacgcagacct ggcaaaagg gggtgtgctg caagggcatt aagttgggta aacgcacagggt 360
tttcgacgct acgcagttgtt aaaaacgcag ccagtgcaaat ccgccgatcc gctacatgc 420
aggggggggg gggcgctgag gctcgtcccg tgaagaaggt gttcgtact caataccaggc 480
tcgaatcgc ccatcatcga ccgcagaaaa gggggacgcc cggtgtgagca gactttggtt 540
ttgggtggac cagttggttgc tttgtgttctg aacggacagt ctggctgtgc 600
gggaaagtgc gttgtctgtat ccctcacaatc agcacaagaagg cagattatgc aacaaacgagc 660
cgccgccctc gcactagcgcg gatgtcgtgct ccagtttaca acacattaaac ccatttctc 720
tagaaaaact cactgagcat caatgaaaca tcgattattt tcatactcgg attatacataa 780
ccaatatgtt gaaaaacgcgg ttctttgtaat gaagagagaa aacctacccgag gcagttcccat 840
aggtggccga gatccctgtta tgcgtctgcgc atctgccactc gtcgacacgc aatacacaactt 900
attaattcgc ctctgcagaa aataaagttta tcgaattgaga aatcaccatg aagttcagact 960
gatacgggtg agaataggcga aagcattatgc atttttttc cagctttggtc aacgggccccg 1020
ccattcgcgt cgtcatcagaa atcaactcagc tcacacaaaa ccctataatgc ccattttctc 1080
gegtgacgga gacgaaataac gcgacgtgctg tttaaagggc aatacacaac aggaaacgaa 1140
tgcacggcg gcaggaacac ttgcuacgcca tcaaacatag ttttcacctc gtaaggtatat 1200
tttctaaata ccctggaattgc ttttttttttc gggatcgcag tgggtgatgaa ccactgcatac 1260
tcaggattaca ggaataaagt cttcgtttgc ggaagaggca taaatccctg cagccagcttt 1320
agttcgcacca ttcctactgt aacatccttg gcaacgctac cttttccatag tttcgaagac 1380
aacctgctgc ctacgggttt cccatcaca atgtagattg tcgacacttg tctgccgaca 1440
ttatcggcg cccatattata cccatataaa tcaacactca tggtaatttg mtacgctgcg 1500
ctcgacgca acgttttcccgg ttggaatttg ttctcataac cccctgttct actgctttatg 1560
taaccacaca gttttttattgt tcattgatgt atatattttat cttgctcaat gtaaactcag 1620
agatatttg acaacacagtg gttttttttcc cccccccctgc aggtgcagcg atcgggggaa 1680
ttcggaaaa caaagagcgtg gtttctttccgt gttgaaattgt tattcgcctca caattccaca 1740
cacatacgc ggcggagagca taaaagttga agcctttgggt gccataagag ttagctacaat 1800
cacattaatt gcgtttgctct cactgccccc ttctcagctg ggaacacctg cggtgcaagct 1860
gcatatatga atcgcccaac gcgcggggag aggcgggtttg cgatattgggc gctcttcegc 1920
tctctgcgcg actgactcgcg tcgtcgtcgg ctggtggctg cggcgacgcgg tatacgccta 1980
tctaaaagcg ctaataacgg tataccacaga atcaggggt aacgcggcag aagaacatgg 2040
agacaagggc caacagaaaggc ccaaggaacgc taaaaggggc gcgttgcctcg cgtttttccca 2100
taggtgcgcg cccccctgcacg agcactaccaaa aaatacagcgc tcaagtcaagc gttggcggga 2160
ccccacagca ctaataaaagc accacgcgctt tccccctggga acgcctcctcg tgcgectctcc 2220
tgttcggacc cccgccgcttc ccgggtactct gtcctcgtttt cttccctcgg gaaggggtggc 2280
ggctttcgcg agcgcgcgtct gtagttgtct cagttcgggc ttcgccgaaat gttggctgctc 2340
ggcctgtgtg cagccacgccc cccgctcagcc cgacgcgtgct gcctaatcgcz gttaactctcg 2400
tcttgcgctcc aacccggttgc gaacagcactt atccgctactg gcagcgcggc ctgtgttaacag 2460
gatagcaga gcgcgggtatg taggccccggt gcatacgcgtt tagggtggtg gcgttatacta 2520
cgcgtcactc agaagggcgac tattttgtat cggtgcgcttg cttgatgcgac ctaacctgcg 2580
aaatagajtt gtagctcttc gttggtgctac aaaaaaaccgc gctggtagtg ccgggttttt 2640
tgtttgcaag cagcagattac cgccagcagag aaaaagacgt caagagagct ctttctgcctt 2700
ccacacgcttc agttagaacga aaaaactcaactc taagggcatc ctttgcatgag 2760
attacaatag acgattccttc cctagatctct tttaaatattaa aataagatgt tttaaatcactt 2820
ttaagattaa tattgataaa cttggcctga ccattacccaa tgtttaatca aatgggcgcc 2880
tatctcagcg atctgtcctat tctccttcac catagttgccc tggacttcacg tctgtgtagat 2940
aatcagata cggagggcgct tacccatcggccccaggtct gcataagttc ccggcagaccc 3000
acgcctacgct gcctcagatt tataccaagc aaaaacgcag cggcgcggag ccgacgcgag 3060
aatgtgtcttc gaacactttat cccgccttcg cctagttcatt aatttggtgc gggaaagctag 3120
agtaagttgct cgccgagtta aatggttgggc aacggttggg gcacctgtcgtc cagccagtctg 3180
gggtgcagccg tgtctgttggg gtagttgcct attcagctcc gcgttccaca gcataagcccg 3240
agatcatact ctccccataag tggcagcagga aagcggttgtgc ctcttcgggct ctcgcagctg 3300
tgcagccagct aagttgccgc ccagttgtcct acctcatggct atggccagcag ctgctcttgc 3360
tctctacttc atgcctacgcg tataagtgct ttcggctgcag ggtgtgactc caaccagaatc 3420
attctgagaa taggtgtatgc gcggccagcagc tgtgttcctgc cccgggtcata caccggatata 3480	tacgcggcag catagcagaa cttaaagagt gctcatactt gcgggacgcgc ctctcgagggc 3540
aaaactctca aggatttttc gcgtggttgag atccagttgct atggtaacccct ctgcgtgaccc 3600
caacgtatct tcagcatccttt tcacacccag cagcgttttct ggttgacgcaaa aacagcggag 3660
gcacaatgcc gccaaaaaggg gaataaggggc gcacgcgggaac tgggtgaatc tcatactctt 3720
EP 1 885 847 B1

ccttttcaa tattattgaa gcatttatca gggttattgt ctcatgagcgc gatacatatt 3780
tgaatgtatt tagaaaaata aacaaatagg ggttccggegc acatttccc gaaaaagtgc 3840
acctgacgtc taagaaacca ttattaccat gacattaacc tataaaata ggcgtatcac 3900
gaggccttt tgtc 3914

<210> 38
<211> 57
<212> DNA
<213> artificial sequence

<220>
<223> Primer sequence

<400> 38
gcgcggaat tcaaaggg aaaaaaaat ggcaataag ccaatgca cagatcac 57

<210> 39
<211> 44
<212> DNA
<213> artificial sequence

<220>
<223> Primer Sequence

<400> 39
gcatgcaagc ttcattaagc agtagtatca gacgatacga tagc 44

<210> 40
<211> 4962
<212> DNA
<213> artificial sequence

<220>
<223> Expression Construct

<400> 40
ttaatgagct tggtgcgttt tggcggatga gagaagatatt tcacgcctgat acagattaat
660
tccagacgca gaagcggtct qataaaacag aatttggctg ggcggcatag cgcggtggct
720
tccagctgcc ccatgcgcgaata ccacagactg aaacgcgcgta ggcggcgatgg tattggtcgc
780
tcctcccaagt ccagacgtag gcacagctcc gactacaata aaacgaaagc ctcagtccgaa
840
agacttggccc tttctgatcct tctgtgatcc gtcgggtgac gctctctctg gtagaacaat
900
tccgcccggga gcggattttgac agcttgccgaa gcacacggccc gggagggctgc gggcagagag
960
cccgcgcccc agctgccagcc atccaatatt gcagaagggc agatcagacg atggcgccattt
1020
tgcgttttcct caaatttccttg cctttatcgg tctctgagcgc cgcagttctct taaatactct
1080
gatgtctaat tgtcacaagag ataaatatac catctatagac aataaaactgt tctgcttacc
1140
taaacagttaca aacaggagct gtattagccct atattttaaag gcacgtaacttg tgcggctagg
1200
cgcgattaaac tcacacatag gatgctgatt tatttggtta taatattggt gcccgtatagt
1260
tcgggcacttc aggtgcgaca atctctagtt tgcattggam gcccagcggt ggggtgtgcc
1320
ttcgtaacaca tgcggagtttag atctggccca attgtgagtcc atggagagtc gtacatgtaa
1380
actggttgac gaaaaattgtt cctttctccg ccatcaagcc ttttaccttg actcctgtctg
1440
atgcagttgc actccaccact gcagcatcctcc gcgaaagccg ahcgtcgagt aatggagata ttaagagat
1500
atctctggctt aagggcataat attgcttagct gcgtgtagcct gttctctgagc ccgggcacat
1560
cgattccgt ctgattttct ctttttttaact gcgcattagct attctgtctc gtcctgacgc
1620
aatccagaaat acatgtcagtt tgggttcttg ccaggtgattt tgcgtacgag cgttaatctct
1680
ggcgctttgga aaagaataagc ataaagctttc ggcattctcg ccggatctagc
1740
tgcctcactca tgctggatct tcaattctgata acctattttt tgcacgaggg aataaataag
1800
gtgtatattga tggtgagcaga gtgcggatatg ccagacgcga ccagatctct gcacatctct
1860
ggaactgacct ccggtagattc ttccttcctat ccaagaaagcc gtttttttcca aatattgtta
1920
tttacattctct cagatgtgatt tcctttcgag attttttgag gtcggtgtagc tttttctaaa
1980
cgcgtgacca aatcctactca ttatttcttt agattgattt aaaaactctt ctttatatta
2040
aaaggtctct gcggagatac ctttttgata attctctagcc caaatacctt tagatgtcatt
2100
tttctccactca ctgagcagcag gacccgcgtag aaaaagatca aagatctctc tgaagatcctt
2160
ttttttctcg ccgtaatctcg tgccttgaaa caaacaaccc accgcatcaca gcgcgtgatttt
2220
gtttgccgga tcaagagcata ccaactcttttt tccggaaggt aacctgtgctt accggagccg
2280
agatacaactc actctctctct ctagtggac ccgtatctag gcacactctc aagaactctct
2340
tagaccggcccc tacataactcc gtcgctctaa tctcggctaac agtgggctgt gcgaagtggccg
2400
atagaagttcgtc ttcctccgag gaggactctca aacggatagtt accggataag gcgcagcggtt
2460
cgggctgaac ggggggttcg tcgacacacgc ccagctttgga gcgaacgacc tacacccgaac 2520
tgagatacct acacgcttgag ctatgagaaaa gcgcacacgt tcgcaagqgg agaagggcgg 2580
acaggtatcc gtagaagccg agggtcgggaa caggagagcc cagagggagq cctcagaggg 2640
gaaacgccttg gtatcttttat aatgcgtcttg ggttctgcaaa ccttctgactt gacgcgtcag 2700
tttttgtatg ctgctcaggg gggccggagcc tattgaaaaaa cccagaccaac gcggccctttt 2760
tacggtttctt ggcctttttgc tggcccttttg ctcacatggt ttcctctcag ttatcccccgtg 2820
atctctgtga taacgcgtatt acgecccttttg agtgagcgtga taacgcgtcgc gcgcagccga 2880
cgacccagcc cagcagctca gtgaagcagg aagcgggaaga gcgcgcctgat ccgtattttc 2940
tctatcagca tcctcgctgt atttcaacc gcacattggtg cactctcaagt acaattgtct 3000
ctgatgcgcc aataagtaagc cagttatcac ttgctaatcgc ttgcgctgct ggttcctggtc 3060
tgaccggcaga acacccgcca acacgcgtga ccgcgcccttga cpggcctggtc tgcctgcgggc 3120
atcgctttac agacacgtcct tgcacgttcgc ccggagctgc atgtgcgtaaa ggtttttcacc 3180
gtcataacgq aagagccgga gcgcagttgct gtaaagctca ctcagctgtgt cgtgagaagcga 3240
ttcacagatq tcgctcgttt tcagcgcgtgt cagtttcctca gaagcgcttaa 3300
tgctctgctt ctgtaaaagc gggccatgttt aaggcggtt ttttcctgttt tcgctgaactga 3360
tgcctcctgt taagggggtatt ttcgctctat gggtggataag atacagatqa aaccgagag 3420
gatgcctacgc atacccggttt ataagctatg acaagcccttg ttacttggaac gttgtgaggg 3480
taaacaacttg gcgcgtatggaa tcgcgcgggaa ccaagaaaaa ataacctgagg gtaaatgcca 3540
gcgcctttgt aatacagatg taggtgttccc aacaggttacgc cagcagcactc ctgctgtgca 3600
gatgctgggaac ataattgtgc aggagcgctga cttcgcggttt tccagacttt acaaaaaacq 3660
gaacccggaag acacatccttg tgcggtcgcag gttttggcgc agcagcgtcgt 3720
tcagcttgcgc tcgctgatcg gtatcctatt ctgcttacca gtaagggcaac cccgcccacgc 3780
tagcggggttc ctcacacacgc ggaagcagcag ctgcgctgcac cggggtcgggc aaccacagct 3840
gccgcagatgc gcgcgcggtttt gcgcgcttggag atgcgcggagg gccgcttgaaa tgggctgcaac 3900
aggggtgtgtt tgccgctatca cagttctccg cagagaattga ttggctccaa ttctttgagtt 3960
ggtaatcggt tcagcaggggt ccgcgcggttt tccatcgcag tggaggtggc ccgcgcgctat 4020
gcaccgcgcag cgaacgccggg gggcgagaca aggtataggg cgcgcgcttac aatccatgcgc 4080
aaccctttcc atgtgcctgc gcaggcggcga taatccgcgc tggcagcgtag cggtcctacaag 4140
atcgaagttta ggcgtcgttaa agccgccggc gatcccttgaa gtcgctcccg atggcgctca 4200
tctacgccgct ttggcagcat gcgcctgccaa cgccgcatcc cgatgcgcgcg ggaagcggaga 4260
agaatcataac tgtggagggc catccagcctc cgccgctgccga aacgccacca gacgtagcct 4320
Claims

1. A process for expression of a recombinant capsid protein of a bacteriophage or a mutant or fragment thereof being capable of forming a VLP by self-assembly, wherein said bacteriophage is a RNA bacteriophage, and wherein said process comprising the steps of:

 a.) introducing an expression plasmid into a bacterial host, wherein said expression plasmid comprises an expression construct, wherein said expression construct comprises (i) a first nucleotide sequence encoding said recombinant capsid protein, or mutant or fragment thereof, and (ii) a promoter being inducible by lactose;
 b.) cultivating said bacterial host in a medium comprising a major carbon source; wherein said major carbon source is glucose or glycerol; and wherein said cultivating is performed in batch culture and under conditions under which said promoter is repressed by lacI, wherein said lacI is overexpressed by said bacterial host;
 c.) feeding said batch culture with said major carbon source; and
 d.) inducing said promoter with an inducer, wherein said feeding of said batch culture with said major carbon source is continued.

2. The process of claim 1, wherein said bacteriophage is selected from the group consisting of:

 a.) bacteriophage QB;
 b.) bacteriophage AP205;
 c.) bacteriophage fr;
 d.) bacteriophage GA;
 e.) bacteriophage SP;
 f.) bacteriophage MS2;
 g.) bacteriophage M11;
 h.) bacteriophage MX1;
 i.) bacteriophage NL95;
 j.) bacteriophage f2;
 k.) bacteriophage PP7 and
 l.) bacteriophage R17.

3. The process of claim 1, wherein said bacteriophage is bacteriophage QB or bacteriophage AP205, preferably bacteriophage QB.
4. The process of claim 1, wherein said bacteriophage is bacteriophage QB, and wherein said recombinant capsid protein has the amino acid sequence of SEQ ID NO:5.

5. The process of claim 1, wherein said expression construct comprises a first nucleotide sequence and a second nucleotide sequence, wherein said first nucleotide sequence is encoding QB CP, or a mutant or fragment thereof, and wherein said second nucleotide sequence is encoding the QB A1 protein or a mutant or fragment thereof, and wherein said first and said second nucleotide sequences are separated by exactly one sequence stretch comprising at least one TAA stop codon, and wherein preferably said expression construct comprises or alternatively consists of the nucleotide sequence of SEQ ID NO:6; and wherein further preferably said expression plasmid comprises or preferably consists of the nucleotide sequence of SEQ ID NO:1.

6. The process of any one of claims 1 to 5 wherein said promoter is selected from the group consisting of the

 a.) tac promoter;
 b.) trc promoter;
 c.) tic promoter;
 d.) lac promoter;
 e.) lacUV5 promoter;
 f.) P_{syn} promoter;
 g.) lpp\^a promoter;
 h.) lpp-lac promoter;
 i.) T7-lac promoter;
 j.) T3-lac promoter;
 k.) T5-lac promoter; and
 l.) a promoter having at least 50% sequence homology to SEQ ID NO:2; and wherein preferably said promoter comprises the nucleotide sequence of SEQ ID NO:2.

7. The process of any one of claims 1 to 6, wherein said major carbon source is glycerol; and wherein preferably said feeding of said batch culture is performed with a flow rate, wherein said flow rate increases with an exponential coefficient \(\mu \), and wherein further preferably said exponential coefficient \(\mu \) is below \(\mu_{\text{max}} \).

8. The process of any one of claims 1 to 6, wherein said inducing of said promoter is performed by co-feeding said batch culture with said inducer and said major carbon source at a constant flow rate or at an increasing flow rate.

9. The process of any one of the preceding claims, wherein said inducer is IPTG.

10. The process of any one of the preceding claims, wherein said inducer is lactose.

11. The process of claim 8, wherein said inducer is lactose, and wherein said lactose and said major carbon source are co-fed to said batch culture in a ratio of about 2:1 to 1:4 (w/w).

12. The process of any one of claims 1 to 11, wherein said lacI is overexpressed by said bacterial host, wherein said overexpression is caused by lacI\^q or lacQ\^1, preferably by lacI\^q.

13. The process of any one of claims 1 to 12, wherein said cultivating and said feeding of said batch culture and said inducing of said promoter are performed at a temperature which is below the optimal growth temperature of said bacterial host, wherein preferably said temperature is between 27 and 32 °C, more preferably between 28 and 31 °C, and wherein most preferably said temperature is 30 °C.

14. The process of claim 1 wherein:

 a.) said expression plasmid comprises or preferably consists of the nucleotide sequence of SEQ ID NO:1;
 b.) said major carbon source is glycerol;
 c.) said feeding of said batch culture is performed with a flow rate, wherein said flow rate increases with an exponential coefficient \(\mu \), and wherein preferably said exponential coefficient \(\mu \) is below \(\mu_{\text{max}} \);
 d.) said inducer is lactose;
 e.) and said lactose and said major carbon source are co-fed to said batch culture in a ratio of 2:1 to 1:4 (w/w), preferably 1:1 to 1:3 (w/w), most preferably 1:3 (w/w);
f.) said bacterial host is E. coli RB791; and
g.) said cultivating and feeding of said batch culture and said inducing of said promoter is performed at a temperature of about 30 °C.

15. The process of claim 1 wherein:

a.) said expression plasmid comprises or preferably consists of the nucleotide sequence of SEQ ID NO:30;
b.) said major carbon source is glycerol;
c.) said feeding of said batch culture is performed with a flow rate, wherein said flow rate increases with an exponential coefficient μ, and wherein preferably said exponential coefficient μ is below μ_{max};
d.) said inducer is lactose;
e.) said lactose and said major carbon source are co-fed to the batch culture in a ratio of 2:1 to 1:4 (w/w), preferably 1:1 to 1:3 (w/w), most preferably 1:3 (w/w);
f.) said bacterial host is E. coli RB791; and
g.) said cultivating and feeding of said batch culture and said inducing of said promoter is performed at a temperature of about 30 °C.

Patentansprüche

1. Verfahren zur Expression eines rekombinanten Kapsidproteins eines Bakteriophagen oder einer Mutante oder eines Fragments davon, das/die fähig ist, ein VLP (virus-like particle, virusartiges Partikel) durch Selbstassemblierung zu bilden, wobei der Bakteriophage ein RNA-Bakteriophage ist, und wobei das Verfahren die Schritte umfasst:

 a) Einführen eines Expressionsplasmids in einen bakteriellen Wirt, wobei das Expressionsplasmid ein Expressionskonstrukt umfasst, wobei das Expressionskonstrukt (i) eine erste Nukleotidsequenz, kodierend das rekombinante Kapsidprotein oder eine Mutante oder ein Fragment davon, und (ii) einen Promotor, der durch Lactose induzierbar ist, umfasst;
 b) Kultivieren des bakteriellen Wirts in einem Medium, umfassend eine Hauptkohlenstoffquelle; wobei die Hauptkohlenstoffquelle Glucose oder Glycerin ist; und wobei das Kultivieren in Batch-Kultur und unter Bedingungen durchgeführt wird, unter welchen der Promotor durch lacI reprimiert wird, wobei das lacI durch den bakteriellen Wirt überexprimiert wird;
 c) Beschicken der Batch-Kultur mit der Hauptkohlenstoffquelle; und
 d) Induzieren des Promotors mit einem Induktionsmittel, wobei das Beschicken der Batch-Kultur mit der Hauptkohlenstoffquelle fortgesetzt wird.

2. Verfahren nach Anspruch 1, wobei der Bakteriophage ausgewählt ist aus der Gruppe bestehend aus:

 a) Bakteriophage Qβ;
 b) Bakteriophage AP205;
 c) Bakteriophage fr;
 d) Bakteriophage GA;
 e) Bakteriophage SP;
 f) Bakteriophage MS2;
 g) Bakteriophage M11;
 h) Bakteriophage MX1;
 i) Bakteriophage NL95;
 j) Bakteriophage f2;
 k) Bakteriophage PP7 und

1) Bakteriophage R17.

3. Verfahren nach Anspruch 1, wobei der Bakteriophage Bakteriophage Qβ oder Bakteriophage AP205, bevorzugt Bakteriophage Qβ ist.

4. Verfahren nach Anspruch 1, wobei der Bakteriophage Bakteriophage Qβ ist, und wobei das rekombinante Kapsidprotein die Aminosäuresequenz von SEQ ID NO: 5 aufweist.
5. Verfahren nach Anspruch 1, wobei das Expressionskonstrukt eine erste Nukleotidsequenz und eine zweite Nukleotidsequenz umfasst, wobei die erste Nukleotidsequenz Qβ-CP oder eine Mutante oder ein Fragment davon kodiert, und wobei die zweite Nukleotidsequenz das Qβ A1-Protein oder eine Mutante oder ein Fragment davon kodiert, und wobei die erste und die zweite Nukleotidsequenz durch genau einen Sequenzabschnitt umfassend mindestens ein TAA-Stoppkodon getrennt werden, und wobei bevorzugt das Expressionskonstrukt die Nukleotidsequenz von SEQ ID NO: 6 umfasst oder alternativ aus ihr besteht; und wobei weiterhin bevorzugt das Expressionsplasmid die Nukleotidsequenz von SEQ ID NO: 1 umfasst oder bevorzugt aus ihr besteht.

6. Verfahren nach einem beliebigen der Ansprüche 1 bis 5, wobei der Promotor ausgewählt ist aus der Gruppe bestehend aus dem

- a) tac-Promotor;
- b) trx-Promotor;
- c) tic-Promotor;
- d) lac-Promotor;
- e) lacUV5-Promotor;
- f) P_{syn}-Promotor;
- g) lpp/lac-Promotor;
- h) lpp-lac-Promotor;
- i) T7-lac-Promotor;
- j) T3-lac-Promotor;
- k) T5-lac-Promotor;
- l) einem Promotor, der mindestens 50% Sequenzhomologie zu SEQ ID NO: 2 aufweist;

und wobei bevorzugt der Promotor die Nukleotidsequenz von SEQ ID NO: 2 umfasst.

7. Verfahren nach einem beliebigen der Ansprüche 1 bis 6, wobei die Hauptkohlenstoffquelle Glycerin ist; und wobei bevorzugt das Beschicken der Batch-Kultur mit einer Flussrate durchgeführt wird, wobei die Flussrate mit einem exponentiellen Koeffizienten μ ansteigt, und wobei weiterhin bevorzugt dieser exponentielle Koeffizient μ unter μ_{max} liegt.

8. Verfahren nach einem beliebigen der Ansprüche 1 bis 6, wobei das Induzieren des Promotors durch gemeinsames Beschicken der Batch-Kultur mit dem Induktionsmittel und der Hauptkohlenstoffquelle bei einer konstanten Flussrate oder bei einer ansteigenden Flussrate durchgeführt wird.

9. Verfahren nach einem beliebigen der vorstehenden Ansprüche, wobei das Induktionsmittel IPTG ist.

10. Verfahren nach einem beliebigen der vorstehenden Ansprüche, wobei das Induktionsmittel Lactose ist.

11. Verfahren nach Anspruch 8, wobei das Induktionsmittel Lactose ist, und wobei die Batch-Kultur mit der Lactose und der Hauptkohlenstoffquelle in einem Verhältnis von etwa 2:1 bis 1:4 (Gew/Gew) zusammen beschickt wird.

12. Verfahren nach einem beliebigen der Ansprüche 1 bis 11, wobei das lacI durch den bakteriellen Wirt überexprimiert wird, wobei die Überexpression durch lacRI oder lacQ1, bevorzugt durch lacRI verursacht wird.

13. Verfahren nach einem beliebigen der Ansprüche 1 bis 12, wobei das Kultivieren und das Beschicken der Batch-Kultur und das Induzieren des Promotors bei einer Temperatur durchgeführt wird, die unter der optimalen Wachstumstemperatur des bakteriellen Wirts liegt, wobei bevorzugt die Temperatur zwischen 27 und 32 °C, weiter bevorzugt zwischen 28 und 31 °C liegt, und wobei am meisten bevorzugt die Temperatur 30 °C beträgt.

14. Verfahren nach Anspruch 1, wobei:

- a) das Expressionsplasmid die Nukleotidsequenz von SEQ ID NO: 1 umfasst, oder bevorzugt aus ihr besteht;
- b) die Hauptkohlenstoffquelle Glycerin ist;
- c) das Beschicken der Batch-Kultur mit einer Flussrate durchgeführt wird, wobei die Flussrate mit einem exponentiellen Koeffizienten μ ansteigt, und wobei bevorzugt der exponentielle Koeffizient μ unter μ_{max} liegt;
- d) das Induktionsmittel Lactose ist;
- e) und die Batch-Kultur mit der Lactose und der Hauptkohlenstoffquelle in einem Verhältnis von 2:1 bis 1:4 (Gew/Gew), bevorzugt 1:1 bis 1:3 (Gew/Gew), am meisten bevorzugt 1:3 (Gew/Gew) zusammen beschickt wird;
15. Verfahren nach Anspruch 1, wobei:

a) das Expressionsplasmid die Nukleotidsequenz von SEQ ID NO: 30 umfasst, oder bevorzugs aus ihr besteht;
b) die Hauptkohlenstoffquelle Glycerin ist;
c) das Beschicken der Batch-Kultur mit einer Flussrate durchgeführt wird, wobei die Flussrate mit einem exponentiellen Koeffizienten \(\mu \) ansteigt, und wobei bevorzugt der exponentielle Koeffizient \(\mu \) unter \(\mu_{\text{max}} \) liegt;
d) das Induktionsmittel Lactose ist;
e) die Batch-Kultur mit Lactose und der Hauptkohlenstoffquelle in einem Verhältnis von 2:1 bis 1:4 (Gew/Gew), bevorzugs 1:1 bis 1:3 (Gew/Gew), am meisten bevorzugt 1:3 (Gew/Gew) zusammen beschickt wird;
f) der bakterielle Wirt E. coli RB791 ist; und

g) das Kultivieren und Beschicken der Batch-Kultur und das Induzieren des Promotors bei einer Temperatur von etwa 30 °C durchgeführt werden.

Revendications

1. Procédé pour l’expression d’une protéine de capsid recombinante d’un bactériophage ou d’un mutant ou d’un fragment de celle-ci qui est de capable de former une pseudoparticule virale (VLP) par autoassemblage, dans lequel ledit bactériophage est un bactériophage à ARN, et dans lequel ledit procédé comprenant les étapes de :

a.) introduction d’un plasmide d’expression dans un hôte bactérien, dans laquelle ledit plasmide d’expression comprend une construction d’expression, dans laquelle ladite construction d’expression comprend (i) une première séquence nucléotidique codant pour ladite protéine de capsid recombinante, ou un mutant ou un fragment de celle-ci, et (ii) un promoteur qui est inductible par le lactose ;
b.) culture dudit hôte bactérien dans un milieu comprenant une source majeure de carbone ; dans laquelle ladite source majeure de carbone est le glucose ou le glycérol ; et dans lequel ladite culture est réalisée en culture discontinue et dans des conditions dans lesquelles ledit promoteur est réprimé par lacI, dans lesquelles ledit lacI est surexprimé par ledit hôte bactérien ;
c.) alimentation de ladite culture discontinue avec ladite source majeure de carbone ; et
d.) induction dudit promoteur avec un inducteur, dans lequel ladite alimentation de ladite culture discontinue avec ladite source majeure de carbone est poursuivie.

2. Procédé selon la revendication 1, dans lequel ledit bactériophage est choisi parmi le groupe constitué :

a.) du bactériophage Qβ ;
b.) du bactériophage AP205 ;
c.) du bactériophage fr ;
d.) du bactériophage GA ;
e.) du bactériophage SP ;
f.) du bactériophage MS2 ;
g.) du bactériophage M11
h.) du bactériophage MX1 ;
i.) du bactériophage NL95 ;
j.) du bactériophage f2 ;
k.) du bactériophage PP7 ; et
l.) du bactériophage R17.

3. Procédé selon la revendication 1, dans lequel ledit bactériophage est le bactériophage Qβ ou le bactériophage AP205, de préférence le bactériophage Qβ.

4. Procédé selon la revendication 1, dans lequel ledit bactériophage est le bactériophage Qβ, et dans lequel ladite protéine de capsid recombinante a la séquence d’acides aminés de SEQ ID NO: 5.

5. Procédé selon la revendication 1, dans lequel ladite construction d’expression comprend une première séquence
nucléotidique et une deuxième séquence nucléotidique, dans laquelle ladite première séquence nucléotidique code pour la protéine de capsid (CP) de Qβ, ou un mutant ou un fragment de celle-ci, et dans laquelle ladite deuxième séquence nucléotidique code pour la protéine A1 de Qβ ou un mutant ou un fragment de celle-ci, et dans laquelle ladite première et ladite deuxième séquences nucléotidiques sont séparées par exactement un enchaînement de séquence comprenant au moins un codon d’arrêt T AA et dans lequel de préférence ladite construction d’expression comprend ou alternativement consiste en la séquence nucléotidique de SEQ ID NO: 6 ; et dans lequel en outre de préférence ledit plasmide d’expression comprend ou de préférence consiste en la séquence nucléotidique de SEQ ID NO: 1.

6. Procédé selon l’une quelconque des revendications 1 à 5, dans lequel ledit promoteur est choisi parmi le groupe constitué :

a.) du promoteur tac ;
b.) du promoteur trc ;
c.) du promoteur tic ;
d.) du promoteur lac ;
e.) du promoteur lacUV5 ;
f.) du promoteur Psyn ;
g.) du promoteur lpp" ;
h.) du promoteur lpp-lac ;
i.) du promoteur T7-lac ;
j.) du promoteur T3-lac ;
k.) du promoteur T5-lac ; et
l.) d’un promoteur ayant au moins 50 % d’homologie de séquence avec SEQ ID NO: 2 ;

et dans lequel de préférence ledit promoteur comprend la séquence nucléotidique de SEQ ID NO: 2.

7. Procédé selon l’une quelconque des revendications 1 à 6, dans lequel ladite source majeure de carbone est le glycérol ; et dans lequel de préférence ladite alimentation de ladite culture discontinue est réalisée avec un débit, dans laquelle ledit débit augmente avec un coefficient exponentiel \(P \), et dans laquelle ledit coefficient exponentiel \(\mu \) est inférieur à \(\mu_{\text{max}} \).

8. Procédé selon l’une quelconque des revendications 1 à 6, dans lequel ladite induction dudit promoteur est réalisée par la co-alimentation de ladite culture discontinue avec ledit inducteur et ladite source majeure de carbone à un débit constant ou à un débit croissant.

9. Procédé selon l’une quelconque des revendications précédentes, dans lequel ledit inducteur est l’IPTG.

10. Procédé selon l’une quelconque des revendications précédentes, dans lequel ledit inducteur est le lactose.

11. Procédé selon la revendication 8, dans lequel ledit inducteur est le lactose, et dans lequel ledit lactose et ladite source majeure de carbone sont co-alimentés à ladite culture discontinue dans un rapport d’environ 2:1 à 1:4 (poids par poids)

12. Procédé selon l’une quelconque des revendications 1 à 11, dans lequel ledit lacI est surexprimé par ledit hôte bactérien, dans lequel ladite surexpression est provoquée par lacIq ou lacQ1, de préférence par lacIq.

13. Procédé selon l’une quelconque des revendications 1 à 12, dans lequel ladite culture et ladite alimentation de ladite culture discontinue et ladite induction dudit promoteur sont réalisées à une température qui est inférieure à la température de croissance optimale dudit hôte bactérien, dans lequel de préférence ladite température est entre 27 et 32°C, plus préférentiellement entre 28 et 31°C, et dans lequel de manière encore plus préférée ladite température est de 30°C.

14. Procédé selon la revendication 1, dans lequel :

a.) ledit plasmide d’expression comprend ou de préférence consiste en la séquence nucléotidique de SEQ ID NO: 1 ;
b.) ladite source majeure de carbone est le glycérol ;
EP 1 885 847 B1

c.) ladite alimentation de ladite culture discontinue est réalisée avec un débit, dans laquelle ledit débit augmente avec un coefficient exponentiel μ, et dans laquelle de préférence ledit coefficient exponentiel μ est inférieur à μ_{max} ;
d.) ledit inducteur est le lactose ;
e.) et ledit lactose et ladite source majeure de carbone sont co-alimentés à ladite culture discontinue dans un rapport de 2:1 à 1:4 (poids par poids), de préférence 1 : 1 à 1 : 3 (poids par poids), de manière préférée entre toutes 1:3 (poids par poids) ;
f.) ledit hôte bactérien est *E. coli* RB791 ; et
g.) ladite culture et alimentation de ladite culture discontinue et ladite induction dudit promoteur sont réalisées à une température d’environ 30°C.

15. Procédé selon la revendication 1, dans lequel :
a.) ledit plasmide d’expression comprend ou de préférence consiste en la séquence nucléotidique de SEQ ID NO: 30 ;
b.) ladite source majeure de carbone est le glycérol ;
c.) ladite alimentation de ladite culture discontinue est réalisée avec un débit, dans laquelle ledit débit augmente avec un coefficient exponentiel μ, et dans laquelle de préférence ledit coefficient exponentiel μ est inférieur à μ_{max} ;
d.) ledit inducteur est le lactose ;
e.) et ledit lactose et ladite source majeure de carbone sont co-alimentés à ladite culture discontinue dans un rapport de 2:1 à 1:4 (poids par poids), de préférence 1 : 1 à 1 : 3 (poids par poids), de manière préférée entre toutes 1:3 (poids par poids) ;
f.) ledit hôte bactérien est *E. coli* RB791 ; et
g.) ladite culture et alimentation de ladite culture discontinue et ladite induction dudit promoteur sont réalisées à une température d’environ 30°C.
Fermentation QT0602, Induction with Cofeed (20% Glycerol + 20% Lactose)

- betaGal. Activity [U/ml*OD=1]
- Lactose [g/L]
- Glycerol [g/L]
- OD600
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 02056905 A [0002] [0003] [0045] [0049]
- WO 2004007538 A [0046]
- EP 05011416 A [0151]
- EP 05106729 A [0151]

Non-patent literature cited in the description

- Peabody; Al-Bitar. Nucleic Acid Research, 2001, vol. 29 (22), e113 [0005]
- Makrides. Microbiological Reviews, 1996, 512-538 [0056] [0057]
- Hannig ; Makrides. TIBTECH, 1998, vol. 16, 54-60 [0058]
- Stevens. Structures, 2000, vol. 8, R177-R185 [0058]
- Dalbøge et al. DNA, 1988, vol. 7 (6), 399-405 [0059]
- Dalbøge et al. DNA, 1998, vol. 7 (6), 399-405 [0059]