EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 30.10.2013 Bulletin 2013/44

Application number: 07107828.1

Date of filing: 09.05.2007

Method and apparatus for dispensing diagnostic test strips

Verfahren und Vorrichtung zur Abgabe von diagnostischen Teststreifen

Procédé et appareil de distribution de bandes de test de diagnostic

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

Priority: 09.05.2006 US 430179

Date of publication of application: 14.11.2007 Bulletin 2007/46

Divisional application: 12174913.9 / 2 508 884

Proprietor: Becton, Dickinson & Company
Franklin Lakes, NJ 07417-1880 (US)

Inventors:
• Lovell, John
 North Bergen, NJ New Jersey (US)
• West, Robert E.
 Basking Ridge, NJ, New Jersey 07920 (US)

Representative: von Kreisler Selting Werner
Deichmannhaus am Dom
Bahnhofsvorplatz 1
50667 Köln (DE)

References cited:
EP-A2- 1 369 686 WO-A2-02/059600

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] The present invention generally relates to diagnostic test strips for testing biological fluids. More specifically, the present invention relates to an apparatus and method for storing and dispensing diagnostic test strips.

Background of the Invention

[0002] Diagnostic test strips are used to measure analyte concentrations in biological fluids. For example, diagnostic test strips are often used by diabetic patients to monitor blood glucose levels.

[0003] To preserve their integrity, diagnostic test strips must be maintained in appropriate environmental conditions. That is, the test strips should be maintained at appropriate humidity levels, and should remain free of foreign substances. Furthermore, to avoid contamination by skin oils or foreign substances, test strips should not be handled prior to use.

[0004] Thus, to preserve test strips, they are typically maintained in a storage vial or the like. In order to use a test strip, a user must reach into the vial, and retrieve a single test strip. However, many users, such as diabetic patients, who have impaired vision or physical dexterity, may find it difficult to retrieve a single test strip from a storage vial. Further, users may accidentally touch multiple test strips while reaching into the storage vial to withdraw a test strip, and potentially contaminate the unused test strips.

[0005] EP 1 369 083 A1 discloses a test strip container system adapted to individually receive a plurality of test strips in a sealed fashion. The container comprises a canister including a plurality of receptacles, each containing a test strip. The test strips may be accessed by an access member provided in a meter.

[0006] EP 1 475 630 A1 describes a measuring device for taking out an object from a package. The measuring device comprises a cartridge, which is rotatable about an axis. The cartridge comprises a hollow drum having recesses, each for accommodating one test strip. A plurality of test strips can be transferred one by one to a position where a movable member takes out the test strips.

[0007] EP 1 369 866 A2 describes a meter using test strips contained in a test strip area. When the meter is positioned, the device is turned or rotates a plurality of test strips contained in a cavity of a test strip selecting element that is capable of selecting and dispensing a single test strip from within a housing. The test strip selecting element operates by simple manipulation without the requirement of actuating a device or any component thereof.

[0008] A test strip while as disclosed in US 2004/0007585 A1 comprises an outer container and an inner cassette for accommodating a stack of test strips and disposing the test strips one-by-one using a dispensing mechanism. A biasing spring presses the stack of test strips towards the dispensing mechanism to facilitate one-by-one dispensing. The test strips are not kept separate from each other within the stack.

[0009] Accordingly, there is a need for an apparatus for storing diagnostic test strips in appropriate environmental conditions, and for conveniently dispensing the test strips one at a time.

SUMMARY OF THE INVENTION

[0010] An object of the present invention is to address at least the above problems and/or disadvantages and to provide at least the advantages described below. Accordingly, an object of the present invention is to provide an apparatus for storing a plurality of test strips and dispensing the test strips one at a time.

[0011] The apparatus of the invention is defined by claim 1.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] The above and other objects, features, and advantages of certain exemplary embodiments of the present invention will be more apparent from the following description taken in conjunction with the accompanying drawings, in which:

[0013] FIG. 1 is a perspective view of a storage vial for storing and dispensing test strips outside the scope of the present invention;

[0014] FIG. 2 is a top view of the container of the storage vial of FIG. 1, with the lid and rotatable cover both removed to expose the radial slots within the vial;

[0015] FIG. 3 is a top view of the container of FIG. 1, with only the lid removed to expose the rotatable cover;

[0016] FIG. 4 is a bottom perspective view of the rotatable cover of the storage vial of FIG. 1;

[0017] FIG. 5 is an exploded perspective view of a storage vial for storing and dispensing test strips, according to an embodiment of the present invention;

[0018] FIG. 6 is a perspective view of the spinner of the storage vial of FIG. 5;

[0019] FIG. 7 is a cut-away perspective view of the sleeve of the storage vial of FIG. 5;

[0020] FIG. 8 is a perspective view of the cam sleeve and the spinner of the storage vial of FIG. 5;

[0021] FIG. 9 is a top view showing the interaction between the cam sleeve and the spinner of the storage vial of FIG. 5;

[0022] FIG. 10 is an enlarged view of the circled area in FIG. 9;

[0023] FIG. 11 is another top view showing the interaction between the cam sleeve and the spinner of the storage vial of FIG. 5;
FIG. 12 is an enlarged view of the circled area in FIG. 11;

FIGS. 13-16 are diagrams showing the operation of the storage vial of FIG. 5.

Throughout the drawings, the same reference numerals will be understood to refer to the same elements, features, and structures.

DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

First Exemplary Embodiment

Referring to FIGS. 1-4, a storage vial 100 for storing and dispensing test strips outside the scope of the present invention includes a container 102 with a plurality of radial slots 104 formed by a plurality of dividing walls 106. Each slot 104 is sized to receive one test strip 108. A rotatable cover 110 is positioned on top of the slots 104 to at least partially cover the plurality of slots 104 and prevent test strips received within the slots 104 from being removed from the slots 104. The rotatable cover 110 has a cover opening 112 which is sized to allow one test strip 108 to pass through the cover opening 112. The cover 110 may be rotated to align the cover opening 112 with one of the plurality of slots 104 to allow a test strip 108 located within the slot 104 to be dispensed.

As seen in FIG. 1, the container 102 may be provided with a lid 114 to prevent humidity and other environmental contaminants from entering the container 102. The lid 114 may be a separate detachable component, but preferably the lid 114 is connected to the container 102 by a hinge 116. In the illustrated embodiment, the lid 114 is formed integrally with the container 102 so that it is connected to the container 102 by a living hinge 116. The lid 114 preferably forms a substantially hermetic seal with the container 102. Such seals are known to those skilled in the art, and therefore, a detailed description of the seal will be omitted for conciseness. The lid 114 has an extended portion 118 which serves as a handle for a user to conveniently open the lid 114. For convenience of explanation, the lid 114 is only shown in FIG. 1.

FIG. 2 is a top view of the container 102 after the lid 114 has been opened, with the rotatable cover 110 removed. The container 102 has a plurality of dividing walls 106 which form a plurality of slots 104. Each slot 104 is sized to receive one test strip. A boss 120 is located at the center of the container 102. The boss 120 has a recess 122. The recess 122 has an undercut portion (not illustrated) to cooperate with an elongated shaft 124 located on the rotatable cover 110, as will be described in further detail below.

Each of the dividing walls 106 extends radially inwardly from the outer wall 126 of the container 102. In an exemplary embodiment, the dividing walls 106 extend inwardly for approximately one-half (1/2) the width of a test strip. This allows a larger number of strips to be contained within the container 102 because each test strip does not need to be enclosed on all sides. It also allows each of the dividing walls 106 to have a substantially even wall thickness, thereby improving moldability. In the illustrated embodiment, the dividing walls 106 are formed integrally with the container 102. The dividing walls may, however, be formed separately as a sleeve to be inserted into the container 102, as will be described in further detail in connection with the second exemplary embodiment.

The dividing walls 106 may be formed of a desiccant entrained polymer to regulate the specific relative humidity within the container 102 (to prevent damage to humidity-sensitive test strips). U.S. Patent No. 5,911,937, discloses one suitable desiccant entrained polymer. Forming the dividing walls 106 of a desiccant entrained polymer increases the exposed surface area of the desiccant entrained polymer, thereby improving humidity regulation within the container 102. Alternatively, the container 102 may be formed of a polymer with an insert-molded desiccant, or a desiccant may be placed in the bottom of the container 102, in the lid 114 of the container 102, or in one or more of the slots 104.

FIG. 3 is a top view of the container 102 after the lid 114 has been opened, with the rotatable cover 110 shown in place. The cover 110 has a cover opening 112 which is sized to allow one test strip 108 to pass through the cover opening 112. The cover 110 has a handle (128) to allow a user to grasp the cover 110 to rotate the cover 110. The outer diameter of the cover 110 is smaller than the inner diameter of the outer wall 126 of the container 102. This provides a gap between the outer wall 126 and the cover 110 so that a user may peer into the slots 104 in the container 102 and visually determine how many test strips are remaining in the container 102, and the placement of those test strips.

FIG. 4 is a bottom perspective view of the rotatable cover 110. The cover 110 has an upper surface 130 and a lower surface 132. The lower surface 132 of the cover 110 has an elongated shaft 124. The elongated shaft 124 is configured so that it is positionable within the recess 122 located in the boss 120 in the container 102. Preferably, the elongated shaft 124 has an undercut portion 134 which cooperates with a mating portion (not illustrated) in the recess 122 of the boss 120. In this way, the elongated shaft 124 can be snap-fit into the boss 120.

The lower surface 132 of the cover 110 has detents 136 that engage the dividing walls 106 to control the rotation of the cover 110. In the illustrated embodiment, the detents 136 are formed by a plurality of extended protrusions. Preferably, the detents 136 are sized and positioned so that they align the cover opening 112 with one of the slots 104. The detents 136 also provide tactile feedback to a user indicating when the cover 110 has been rotated to the next slot 104.

The method of using the storage vial 100 for storing and dispensing test strips outside the scope of the invention will now be described. Initially, test strips are loaded into the radially extending slots 104 formed
in the container 102 so that one test strip is located in each slot 104. The rotatable cover 110 is then assembled to the container 102 by placing the elongated shaft 124 into the recess 122 in the boss 120. The elongated shaft 124 is retained in the recess by a snap-fit or the like. The lid 114 is then placed on the container 102 to form a substantially hermetic seal. The storage vial 100 may now be stored, and the test strips will be protected from environmental hazards, such as moisture. Typically, the foregoing steps will be performed by a manufacturer, rather than an end user of the storage vial 100.

[0036] To dispense a test strip, a user opens the lid 114 to expose the rotatable cover 110 and the cover opening 112. The user rotates the cover 110 by manipulating the cover handle 128, with the user’s fingers or the like, so that the cover opening 112 is aligned with one of the slots 104. The detents located on the cover 110 provide assistance in aligning the cover opening 112 with one of the slots 104. When the cover opening 112 is aligned with a desired slot 104, a user then inverts the container 102. A test strip located within the slot 104 is dispensed through the cover opening 112 with the aid of gravity. The user may then grasp the dispensed test strip to withdraw the test strip from the container 102 and use the test strip. To dispense another test strip, the user rotates the cover 110 again to the next slot with an unused test strip. After dispensing the desired number of test strips, the user may then replace the lid 114 on the container 102 to store the remaining test strips for future use.

[0037] After all of the test strips stored in the container 102 have been dispensed, the storage vial 100 may be discarded, or may be returned to the manufacturer for recycling. Reusable embodiments of the container 102 are also within the scope of the present invention.

Second Exemplary Embodiment

[0038] Referring to FIGS. 5-16, a storage vial 200 for storing and dispensing test strips according to an embodiment of the present invention includes a container 200 with a plurality of radial slots 204 formed by a plurality of dividing walls 206. Each slot 204 is sized to receive one test strip 208. A rotatable spinner 210 forms a cover which is positioned on top of the slots 204 to at least partially cover the plurality of slots 204 and prevent test strips received within the slots 204 from being removed from the slots 204. The spinner 210 has a cover opening 212 which is sized to allow one test strip to pass through the cover opening 212. The spinner 210 is rotated by a pushbutton 214. Each time the pushbutton 214 is pressed, the spinner 210 rotates so that the cover opening 212 is aligned with a new radial slot 204. Once the spinner 210 is aligned with a slot 204 containing a test strip, a user may invert the container 200 to dispense the test strip.

[0039] Referring to FIG. 5, the storage vial 200 includes a container 200, a sleeve 216, a biasing element 218, a spinner 210, and a cam sleeve 220. The container 200 is preferably formed of a substantially vapor impermeable material. The container 200 has a lid (not shown) which is substantially similar to the lid described with respect to the first embodiment.

[0041] Referring to FIG. 7, the sleeve 216 has a plurality of dividing walls 206 which form a plurality of slots 204. Each slot 204 is sized to receive one test strip. A boss 222 is located at the center of the sleeve 216. The boss 222 has a recess 224. The recess 224 receives an elongated shaft 226 located on the spinner 210, as will be described in further detail below.

[0042] Each of the dividing walls 206 extends radially inwardly from the outer wall 228 of the sleeve 216. In an exemplary embodiment, the dividing walls 206 extend inwardly for approximately two-thirds (2/3) the width of a test strip, for the reasons discussed above with respect to the first embodiment. A plurality of guiding ribs 230 may be formed on the outer surface of the boss 222. The guiding ribs 230 help align test strips in the slots 204 to prevent the test strips from becoming misaligned. The outer diameter of the sleeve 216 is sized so that it fits snugly within the container 200.

[0043] Preferably, the sleeve 216 is formed of a desiccant entrained polymer to regulate the specific relative humidity within the container 200. As discussed above, forming the dividing walls 206 of a desiccant entrained polymer increases the exposed surface area of the desiccant entrained polymer, thereby improving humidity regulation within the container 200. Alternatively, the sleeve 216 is formed of a standard polymer and a desiccant is placed within the container 200.

[0044] The biasing element 218 is located between the spinner 210 and the sleeve 216. The biasing element 218 may be, for example, a coil spring which fits around the elongated shaft 226 of the spinner 210. The biasing element 218 applies a biasing force to press the spinner 210 in an upward direction (with reference to FIG. 5).

[0045] As seen most clearly in FIG. 6, the spinner 210 has an upper surface 232 and a lower surface 234, and a cover opening 212 which extends through the spinner 210. The cover opening 212 is sized to allow one test strip to pass through the cover opening 212. A plurality of first cams 236 are located around the outer periphery of the spinner 210. The first cams 236 have first, angled guiding ribs 230 help align test strips in the slots 204 to prevent the test strips from becoming misaligned. The outer diameter of the sleeve 216 is sized so that it fits snugly within the container 200.

[0046] The spinner 210 has at least one flexing beam 240 located on the upper surface 232 of the spinner 210. In the illustrated embodiment, four flexing beams 240 are provided. A pushbutton 214 is also provided on the upper surface 232 of the spinner 210.

[0047] A portion 264 of the spinner 210 may be formed of an optically transparent material so that a user may determine how many test strips are in the storage vial 200. The optically transparent portion 264 of the spinner 210 may be configured so that it magnifies the image being viewed, thus magnifying the edge of a strip.

[0048] An elongated shaft 226 is located on the lower surface 234 of the spinner 210. The elongated shaft 226
preferably has a first portion 242 with a first, smaller diameter, and a second portion 244 with a larger diameter. The transition area between the first and second portions 242, 244 forms a stop 246. The first portion 242 of the elongated shaft 226 is sized to fit within the recess 224 in the boss 222. The stop 246 prevents the spinner 210 from being pressed too far downward, as will be discussed in detail further below.

[0049] Referring to FIG. 8, the cam sleeve 220 is a generally circular ring 248 which is sized to fit into the interior of the container 200. On its interior surface, the cam sleeve 220 has a plurality of cam teeth 250, and a plurality of second cams 252. The second cams 252 have second, angled cam surfaces 254 which cooperate with the first, angled cam surfaces 238, as will be discussed in detail below.

[0050] The spinner 210 and the cam sleeve 220 may be formed of a polymer or any other suitable material. They may also be formed of a desiccant entrained polymer, so long as the addition of the desiccant does not reduce the mechanical characteristics of the polymer enough to result in premature failure.

[0051] The method of using the storage vial 200 for storing and dispensing test strips according to the embodiment of the invention will now be described. Initially, test strips are loaded into the radially extending slots 204 formed in the sleeve 216 so that one test strip is located in each slot 204. The sleeve 216 is then placed in the container 200. The biasing element 218 is placed around the elongated shaft 226 of the spinner 210, and the elongated shaft 226 is inserted into the boss 222 in the sleeve 216. The cam sleeve 220 is then placed into the container 200. Rotational alignment between the cam sleeve 220 and the slots 204 can be maintained during assembly by using keyways, visual alignment or other conventional methods. The teeth on the cam sleeve 220 overhang the spinner 210, so that the cam sleeve 220 retains all of the components within the container 200. The cam sleeve 220, in turn, is retained in the container 200 by an undercut in the container 200, or by affixing the cam sleeve 220 to the container 200 with adhesives, ultrasonic welding, or other conventional fixation methods. A replaceable lid (not shown but similar to the lid 114 of the previous embodiment) is then placed on the container 200 to form a substantially hermetic seal. The storage vial 200 may now be stored, and test strips will be protected from environmental hazards, such as moisture. Typically, these steps will be performed by a manufacturer, rather than an end user of the storage vial 200.

[0052] To dispense a test strip, a user opens the lid and pushes the pushbutton 214 to rotate the spinner 210 to the next slot 204. FIGS. 9-16 illustrate the operation of the spinner 210 in detail. Initially, as seen in FIG. 13, before a user presses the pushbutton 214, the first cams 236 on the spinner 210 are disposed above the second cams 252 on the cam sleeve 220 due to the biasing force of the biasing element 218. And, as seen in FIGS. 9, 10, and 13, the flexing beams 240 are seated within the cam teeth 250. The flexing beams 240 prevent the spinner 210 from freely rotating, and align the cover opening 212 with one of the plurality of slots 204.

[0053] When a user begins to press the pushbutton 214 on the spinner 210 and overcomes the biasing force of the biasing element 218, the spinner 210 is pressed lower into the container 200. Thus, as seen in FIG. 14, the first cam surfaces 238 begin to engage the second cam surfaces 254. Since the second cam surfaces 254 are fixed with respect to the container 200, the contact between the first cam surfaces 238 and the second cam surfaces 254 causes the first cam surfaces 238 to move towards the right (with reference to the illustrations), thereby causing the spinner 210 to begin to rotate in a forward direction. At this time, the flexing beams 240 also begin to flex to pass by the cam teeth 250 located on the cam sleeve 220. If the pushbutton is released at this point, the interaction of the flexing beams 240 with the cam teeth 250 will restore the spinner 210 to the original position shown in FIG. 13. This is because the surfaces 256 of the flexing beams 240 that contact the cam teeth 250 are rounded and have an ascending portion 258, a top 260, and a descending portion 262. At this initial stage, the cam teeth 250 have not passed the tops 260 of the rounded surfaces 256, and the ascending portions 258 of the rounded surfaces 256 of the flexing beams 240 engages the cam teeth 250 and generate a force in a reverse direction (i.e., a leftward direction).

[0054] If a user continues to press the pushbutton, however, the spinner 210 continues to rotate, and the tops 260 of the rounded surfaces 256 of the flexing beams 240 pass by the cam teeth 250, as illustrated in FIGS. 11, 12, and 15. At this position, the descending portions 262 of the rounded surfaces 256 of the flexing beams 240 generate a force in a forward direction (i.e., a rightward direction). Thus, as shown in FIG. 15, the first cams 236 contact the second cams 252, so that the rotation of the spinner 210 is restricted. At this point, the stop 246 on the spinner 210 engages the boss 222 to prevent the spinner 210 from being pressed further into the housing.

[0055] Finally, when the user releases the pushbutton 214, the biasing element 218 urges the spinner 210 upward. The first cams 236 are disengaged from the second cams 254, and the descending portions 262 of the rounded surfaces 256 of the flexing beams 240 interact with the cam teeth 250 to generate a force which rotates the spinner 210 in a forward direction so that the cover opening 212 is aligned with the next slot 204, as shown in FIG. 16. Thus, the flexing beams 240 ensure that the spinner 210 is completely rotated to the next slot 204 so that the cover opening 212 is aligned with the next slot 204.

[0056] After the cover opening 212 is aligned with a slot 204 containing a test strip, the user inverts the container 202. A test strip located within the slot 204 is dispensed through the cover opening 212 with the aid of gravity. The user may then grasp the exposed test strip to withdraw the test strip from the container 200 and use the test strip.
To dispense another test strip, the user rotates the cover 210 again by pressing the pushbutton 214 on the spinner 210. After dispensing the desired number of test strips, the user may then replace the lid on the container 200 to store the remaining test strips for future use.

After all of the stored test strips stored in the container 202 have been dispensed, the storage vial 200 may be discarded, or may be returned to the manufacturer for recycling. Reusable embodiments of the container 102 are also within the scope of the present invention.

Claims

1. An apparatus for dispensing test strips, comprising:
 a container (102; 202) including an outer wall;
 a plurality of radially extending slots (104; 204) formed by a plurality of dividing walls (106; 206), each slot sized to receive a single test strip; and a cover (110; 210) for covering the radially extending slots, wherein the cover (210) is a rotatably positionable cover including an opening (212), characterized in that the cover (110; 210) comprises a spinner (210) that includes the first set of cam surfaces (238), the apparatus further comprising a cam sleeve (220) with a second set of cam surfaces (254) operatively engageable with the first set of cam surfaces (238) to rotate the spinner (210); wherein when the cover (110) rotates, the cover opening (112; 212) aligns with one of the slots (104; 204) at a time to allow removal of a single test strip located within a respective slot.

2. The apparatus of claim 1, further comprising a boss (120; 222) centrally disposed within the container (102; 202), the boss including a recess (122; 224).

3. The apparatus of claim 2, wherein the cover (110; 210) comprises an upper surface (130; 232) and a lower surface (132; 234), and the lower surface of the cover comprises an elongated shaft (124; 226) positioned within the recess (122; 224) of the boss (120; 222).

4. The apparatus of claim 3, wherein the lower surface (234) of the cover (110) further comprises a plurality of detents that engage the plurality of dividing walls (206) to control rotation of the cover (110).

5. The apparatus of claim 1, wherein the spinner (210) comprises at least one flexing beam (240).

6. The apparatus of claim 5, wherein the cam sleeve (220) has teeth (250) which engage the at least one flexing beam (240) to control rotation of the spinner.

7. The apparatus of claim 1, further comprising a spring (218) which biases the spinner (210).

8. The apparatus of claim 1, wherein the spinner includes a portion (264) composed of an optically clear material.

9. The apparatus of claim 1, wherein the spinner has an elongated shaft including a stop (246).

10. The apparatus of claim 9, wherein the stop (246) on the spinner contacts the boss (222) to control movement of the spinner.

11. The apparatus of claim 1, wherein the sleeve (216) is made of a desiccant entrained polymer.

12. The apparatus of claim 1, further comprising a desiccant disposed within the container (200).

Patentansprüche

1. Vorrichtung zur Abgabe von Teststreifen, mit:
 einem Behälter (102; 202) mit einer Außenwand;
 mehreren radial verlaufenden Schlitz (104; 204), die von mehreren Trennwänden (106; 206) gebildet sind, wobei jeder Schlitz zur Aufnahme eines einzelnen Teststreifens bemessen ist; und einer Abdeckung (110; 210) zum Abdecken der radial verlaufenden Schlitz, wobei die Abdeckung (210) eine drehrbar positionierbare Abdeckung mit einer Öffnung (212) ist, dadurch gekennzeichnet, dass die Abdeckung (110; 210) ein Schleuderrad (210) aufweist, das mit dem ersten Satz von Nockenflächen (238) versehen ist, wobei die Vorrichtung ferner eine Nocken-Hülse (220) mit einem zweiten Satz von Nockenflächen (254) aufweist, die mit dem ersten Satz von Nockenflächen (238) in Wirkein griff bringbar sind, um das Schleuderrad (210) zu drehen; wobei, wenn sich die Abdeckung (110) dreht, die Abdeckungsführung (112; 212) jeweils mit einem der Schlitzte (104; 204) ausgerichtet wird, um das Entnehmen eines in einem jeweiligen Schlitz angeordneten Teststreifens zu ermöglichen.

2. Vorrichtung nach Anspruch 1, ferner mit einem zentral in dem Behälter (102; 202) angeordneten Vorsprung (120; 222), der eine Vertiefung (122; 224) aufweist.
3. Vorrichtung nach Anspruch 2, bei der die Abdeckung (110;210) eine obere Fläche (130;232) und eine untere Fläche (132;234) aufweist, und die untere Fläche der Abdeckung eine längliche Welle (124;226) aufweist, die in der Vertiefung (122;224) des Vorsprungs (120;222) positioniert ist.

4. Vorrichtung nach Anspruch 3, bei der die untere Fläche (234) der Abdeckung (110) mehrere Rückhaltelemente aufweist, die mit den mehreren Trennwänden (206) zusammengreifen, um die Drehung der Abdeckung (110) zu steuern.

5. Vorrichtung nach Anspruch 1, bei der das Schleuderrad (210) mindestens einen elastischen Stabteil (240) aufweist.

6. Vorrichtung nach Anspruch 5, bei der die Nocken-Hülse (220) Zähne (250) aufweist, die mit dem mindestens einen elastischen Stabteil (240) zusammengreifen, um die Drehung des Drehrads zu steuern.

7. Vorrichtung nach Anspruch 1, ferner mit einer Feder (218), die das Drehrad (210) vorspannt.

8. Vorrichtung nach Anspruch 1, bei der das Drehrad einen aus optisch klarem Material bestehenden Abschnitt (264) aufweist.

9. Vorrichtung nach Anspruch 1, bei der das Drehrad eine langleiche Welle mit einem Anschlagteil (246) aufweist.

10. Vorrichtung nach Anspruch 9, bei welcher der an dem Drehrad angeordnete Anschlagteil (246) den Vorsprung (222) kontaktiert, um die Drehung des Drehrads zu steuern.

11. Vorrichtung nach Anspruch 1, bei der die Hülse (216) aus einem mit Trocknungsmittel behandelten Polymer ausgebildet ist.

12. Vorrichtung nach Anspruch 1, ferner mit einem in dem Behälter (200) angeordneten Trocknungsmittel.

Revendications

1. Appareil pour la distribution de bandes de test comprenant :

 un conteneur (102 ; 202) contenant une paroi extérieure ;
 une pluralité de fentes s’étendant radialement (104 ; 204) formées par une pluralité de parois de séparation (106 ; 206), chaque fente étant dimensionnée pour recevoir une seule bande de test ; et
 un couvercle (110 ; 210) pour couvrir les fentes s’étendant radialement, dans lequel
 le couvercle (210) est un couvercle positionnable de manière rotative et contenant une ouverture (212) et
 caractérisé en ce que
 le couvercle (110 ; 210) comprend une roulette (210) qui contient le premier ensemble de surfaces de came (238), l’appareil comprenant en outre un manchon de came (220) avec un second ensemble de surfaces de came (254) pouvant être engagé en fonctionnement avec le premier ensemble de surfaces de came (238) pour tourner la roulette (210) ;

2. Appareil selon la revendication 1, comprenant en outre une bosse (120 ; 222) disposée centralement dans le conteneur (102 ; 202), la bosse contenant un évidement (122 ; 224).

3. Appareil selon la revendication 2, dans lequel le couvercle (110 ; 210) comprend une surface supérieure (130 ; 232) et une surface inférieure (132 ; 234), et la surface inférieure du couvercle comprend une tige allongée (124 ; 226) positionnée dans l’évidement (122 ; 224) de la bosse (120 ; 222).

4. Appareil selon la revendication 3, dans lequel la surface inférieure (234) du couvercle (110) comprend en outre une pluralité de boulons de butée qui engagent la pluralité de paroie de séparation (206) pour commander la rotation du couvercle (110).

5. Appareil selon la revendication 1, dans lequel la roulette (210) comprend au moins une poutre flexible (240).

6. Appareil selon la revendication 5, dans lequel le manchon de came (220) présente des dents (250) qui engagent l’au moins une poutre flexible (240) pour commander la rotation de la roulette.

7. Appareil selon la revendication 1, comprenant en outre un ressort (218) qui incline la roulette (210).

8. Appareil selon la revendication 1, dans lequel la roulette contient une partie (264) composée d’un matériau clair optiquement.

9. Appareil selon la revendication 1, dans lequel la roulette contient une tige allongée contenant une butée
10. Appareil selon la revendication 9, dans lequel la butée (246) sur la roulette touche la bosse (222) pour commander le mouvement de la roulette.

11. Appareil selon la revendication 1, dans lequel le manchon (216) est fabriqué en un polymère entraîné desséchant.

12. Appareil selon la revendication 1, comprenant en outre un desséchant disposé dans le conteneur (200).
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• EP 1369083 A1 [0005]
• EP 1475630 A1 [0006]
• EP 1369686 A2 [0007]

• US 20040007585 A1 [0008]
• US 5911937 A [0031]