NOTE: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
EP 1 849 762 B1

Description

[0001] The present invention relates to compounds having the general formula (I) with the definitions of A, X, R₁-R₄ given below, and/or a salt or ester thereof.

Furthermore, the invention relates to the use of said compounds for the treatment of Alzheimer’s disease and their use for the modulation of γ-secretase activity.

[0002] Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder marked by loss of memory, cognition, and behavioral stability. AD afflicts 6-10% of the population over age 65 and up to 50% over age 85. It is the leading cause of dementia and the third leading cause of death after cardiovascular disease and cancer. There is currently no effective treatment for AD. The total net cost related to AD in the U.S. exceeds $100 billion annually.

[0003] AD does not have a simple etiology, however, it has been associated with certain risk factors including (1) age, (2) family history (3) and head trauma; other factors include environmental toxins and low level of education. Specific neuropathological lesions in the limbic and cerebral cortices include intracellular neurofibrillary tangles consisting of hyperphosphorylated tau protein and the extracellular deposition of fibrillar aggregates of amyloid beta peptides (amyloid plaques). The major component of amyloid plaques are the amyloid beta (A-beta, Abeta or Aβ) peptides of various lengths. A variant thereof, which is the Aβ1-42 peptide (Abeta-42), is believed to be the major causative agent for amyloid formation. Another variant is the Aβ1-40 peptide (Abeta-40). Amyloid beta is the proteolytic product of a precursor protein, beta amyloid precursor protein (beta-APP or APP).

[0004] Familial, early onset autosomal dominant forms of AD have been linked to missense mutations in the β-amyloid precursor protein (β-APP or APP) and in the presenilin proteins 1 and 2. In some patients, late onset forms of AD have been correlated with a specific allelle of the apolipoprotein E (ApoE) gene, and, more recently, the finding of a mutation in alpha2-macroglobulin, which may be linked to at least 30% of the AD population. Despite this heterogeneity, all forms of AD exhibit similar pathological findings. Genetic analysis has provided the best clues for a logical therapeutic approach to AD. All mutations, found to date, affect the quantitative or qualitative production of the amyloidogenic peptides known as Abeta-peptides (Aβ); specifically Aβ42, and have given strong support to the "amyloid cascade hypothesis" of AD (Tanzi and Bertram, 2005, Cell 120, 545). The likely link between Aβ peptide generation and AD pathology emphasizes the need for a better understanding of the mechanisms of Aβ production and strongly warrants a therapeutic approach at modulating Aβ levels.

[0005] The release of Aβ peptides is modulated by at least two proteolytic activities referred to as β- and γ-secretase cleaving at the N-terminus (Met-Asp bond) and the C-terminus (residues 37-42) of the Aβ peptide, respectively. In the secretory pathway, there is evidence that β-secretase cleaves first, leading to the secretion of s-APPβ (s5) and the retention of a 11 kDa membrane-bound carboxy terminal fragment (CTF). The latter is believed to give rise to Aβ peptides following cleavage by γ-secretase. The amount of the longer isoform, Aβ42, is selectively increased in patients carrying certain mutations in a particular protein (presenilin), and these mutations have been correlated with early-onset familial Alzheimer’s disease. Therefore, Aβ42 is believed by many researchers to be the main culprit in the pathogenesis of Alzheimer’s disease.

[0006] WO-A-2004080376 describes compounds which are inhibitors of the Asp2 enzyme. WO-A-2005110963 describes compounds which are inhibitors of γ-secretase.

[0007] It has now become clear that the γ-secretase activity cannot be ascribed to a single particular protein, but is in fact associated with an assembly of different proteins. The gamma-secretase activity resides within a multiprotein complex containing at least four components: the presenilin (PS) heterodimer, nicasrin, apoh-1 and pen-2. The PS heterodimer consists of the amino- and carboxy-terminal PS fragments generated by endoproteolysis of the precursor protein. The two aspartates of the catalytic site are at the interface of this heterodimer. It has recently been suggested that nicasrin serves as a gamma-secretase-substrate receptor. The functions of the other members of gamma-secretase are unknown, but they are all required for activity (Steiner, 2004. Curr. Alzheimer Research 1(3): 175-181).

[0008] Thus, although the molecular mechanism of the second cleavage-step has remained elusive until present, the γ-secretase-complex has become one of the prime targets in the search for compounds for the treatment of Alzheimer’s disease.

Various strategies have been proposed for targeting gamma-secretase in Alzheimer’s disease, ranging from targeting the catalytic site directly, developing substrate-specific inhibitors and modulators of gamma-secretase activity (Marjaux et al., 2004. Drug Discovery Today: Therapeutic Strategies, Volume 1, 1-6). Accordingly, a variety of compounds were described that have secretases as targets (Lamer, 2004. Secretases as therapeutics targets in Alzheimer’s disease: patents 2000 - 2004. Expert Opin. Ther. Patents 14, 1403-1420.)

Thus, there is a strong need for compounds which modulate γ-secretase activity thereby opening new avenues for the treatment of Alzheimer’s disease.

The object of the present invention is to provide such compounds.

The object is achieved by a compound having the general formula (I)

\[R_1, R_2, R_3 \text{ and } R_4 \text{ are independently selected from the group consisting of } H; F \text{, } Cl; Br; I; CN; OH; C(O)N(R_7)R_8; S(O)_2R_7; SO_2N(R_7)R_8; S(O)N(R_7)R_8; N(R_7)S(O)R_8; N(R_7)S(O)R_8; S(O)_2R_7; N(R_7)S(O)_2N(R_8R_9); SR_7; N(R_7)R_9; N(R_7)C(O)R_8; N(R_7)C(O)N(R_8R_9); N(R_7)C(O)OR_9; OC(O)N(R_7)R_9; C(O)R_7; substituted and unsubstituted C_1-C_4-alkyl and substituted and unsubstituted C_1-C_4-alkoxy, and wherein the substituents of both groups C_1-C_4-alkyl and C_1-C_4-alkoxy are selected from } F, Cl, Br, I and CF_3; \]

\[R_7, R_8, R_9, \text{ and } R_{10} \text{ are independently selected from the group consisting of } H; C_1-C_4-alkyl; heterocyclyl; and C_3-C_7-cycloalkyl, wherein C_1-C_4-alkyl: heterocyclyl; and C_3-C_7-cycloalkyl are optionally substituted with one or more substituents independently selected from the group consisting of } F, Cl, Br, I and CF_3; \]

\[Y \text{ is a carboxy group } -\text{C(O)OH or a substituted or unsubstituted tetrazole group and/or a salt or ester thereof.} \]
"Heterocycl" or "heterocycle" means a cyclopentane, cyclohexane or cycloheptane ring that may contain up to the maximum number of double bonds (aromatic or non-aromatic ring which is fully, partially or un-saturated) wherein at least one carbon atom up to 4 carbon atoms are replaced by a heteroatom selected from the group consisting of sulfur (including -S(O)\, \text{or} \, -S(O)_2\), oxygen and nitrogen (including \text{=N(O)}\, \text{or} \, -N(O)\) and wherein the ring is linked to the rest of the molecule via a carbon or nitrogen atom. Examples for a heterocycle include but are not restricted to furan, thiophene, pyrrole, pyrrole, imidazole, imidazoline, pyrazole, pyrazoline, oxazole, oxazoline, isoxazole, isoxazoline, thiazole, thiazoline, isothiazole, isothiazoline, thiadiazole, thiadiazoline, tetrahydrofuran, tetrahydrothiophene, pyrrolidine, imidazolidine, pyrazolidine, oxazolidine, isoxazolidine, thiazolidine, sulfolane, pyran, dihydropyran, tetrahydropyran, imidazolidine, pyridine, pyridazine, pyrazine, pyrimidine, piperazine, piperidine, morpholine, tetrazole, triazoline, tetrathiazoline, azepine or homopiperazine. "Heterocycle" means also azetidine.

In preferred embodiments, the invention relates to a compound having the general formula (I) wherein A, X; Y; R\, \text{and} \, R_2; \text{and} \, R_3, R_4, R_5 \text{and} \, R_6 \text{independently of each other have the following meanings:}

A is O; and/or

X is a group \text{-CR}_5R_6 \text{wherein R}_5 \text{and R}_6 are, independently of each other, selected from the group consisting of H; alkyl selected from the group CH_3, C_2H_5, i-C_3H_7, n-C_3H_7, i-C_4H_9, n-C_4H_9, sec-C_4H_9, tert-C_4H_9; wherein in the all named alkyl groups one or more H atom is optionally substituted with one or more substituents independently selected from the group consisting of F, Cl, Br and I; and/or

R_1, R_2, R_3 \text{and R}_4 \text{are independently selected from the group consisting of H; OH; C}_1-C_4\text{-alkyl or C}_1-C_4\text{-alkoxy, substituted partly or fully by F, Cl, Br, I; and/or}

R_5 \text{and R}_6 being H; or R_5 being H and R_6 being CH_3, C_2H_5, C_3H_7 or C_4H_9 or isomers thereof; or R_1 \text{and R}_2 being CH_3 or R_1, R_2 jointly form together with the carbon atom to which they are attached a cyclopropyl ring; and/or

Y is a carboxy group

and/or a salt or ester thereof

Within this group of embodiments, it is even more preferred if all the groups A; X; Y; R\, \text{and} \, R_2; \text{and} \, R_3, R_4, R_5 \text{and} \, R_6 have the meanings defined beforehand.

It is even more preferred if A; X; Y; R\, \text{and} \, R_2; \text{and} \, R_3, R_4, R_5 \text{and} \, R_6 independently of each other have the following meanings:

A is O; X is a group \text{-CR}_5R_6 \text{with R}_5 \text{and R}_6 being H; or R_5 being H and R_6 being CH_3, C_2H_5, C_3H_7 or C_4H_9 or isomers thereof; or R_5 \text{and R}_6 being CH_3 or R_1, R_2 jointly form together with the carbon atom to which they are attached a cyclopropyl ring; and/or

R_1, R_2, R_3 \text{and R}_4 are independently selected from the group consisting of H; OH; C}_1-C_4\text{-alkyl or C}_1-C_4\text{-alkoxy, substituted partly or fully by F, Cl, Br, I; and/or}

Y is a carboxy group

and/or a salt or ester thereof

Within this group of embodiments, it is even more preferred if all the groups A; X; Y; R\, \text{and} \, R_2; \text{and} \, R_3, R_4, R_5 \text{and} \, R_6 have the meanings defined beforehand.

It is still more preferred if A; X; Y; R\, \text{and} \, R_2; \text{and} \, R_3, R_4, R_5 \text{and} \, R_6 independently of each other have the following meanings:

A is O;

X is a group \text{-CR}_5R_6, \text{with R}_5 \text{and R}_6 being H; or R_5 being H and R_6 being CH_3, C_2H_5, C_3H_7 or C_4H_9 or isomers thereof;

Y is a carboxy group
R₁, R₂, R₃ and R₄ are independently selected from the group consisting of H, OH, CH₃, OCH₃, CF₃, F, and Cl; and/or
and/or a salt or ester thereof

[0026] Within this group of embodiments, it is even more preferred if all the groups A; X; Y; R₁ and R₂; and R₃, R₄, R₅ and R₆ have the meanings defined beforehand.

[0027] In an even more preferred embodiment, the invention relates to compounds selected from the group consisting of
2-((5-(4-fluorophenoxo))-4′-trifluoromethyl-biphenyl-3-yl)-pentanoic acid (I)
2-((5-(phenoxy))-4′-trifluoromethyl-biphenyl-3-yl)-pentanoic acid (II)

[0028] Some of the compounds of the inventions and/or salts or esters thereof will exist in different stereoisomeric forms. All of these forms are subjects of the invention.

[0029] Described below are exemplary salts of the compounds according to the invention which are included herein. The list of the different salts stated below is not meant to be complete and limiting.

[0030] Compounds according to the invention which contain one or more acidic groups can be used according to the invention, e.g. as their alkali metal salts, alkaline earth metal salts or ammonium salts. More precise examples of such salts include sodium salts, potassium salts, calcium salts, magnesium salts or salts with ammonia or organic amines such as, e.g. ethylamine, ethanolamine, triethanolamine or amino acids.

[0031] Compounds according to the invention which contain one or more basic groups, i.e. groups which can be protonated, can be used according to the invention in the form of their addition salts with inorganic or organic acids.

[0032] Examples for suitable acids include hydrogen chloride, hydrogen bromide, phosphoric acid, sulfuric acid, nitric acid, methanesulfonic acid, p-toluenesulfonic acid, naphthalenedisulfonic acid, oxalic acid, acetic acid, tartaric acid, lactic acid, salicylic acid, benzoic acid, formic acid, propionic acid, pivalic acid, diethylacetic acid, malonic acid, succinic acid, pimelic acid, fumaric acid, maleic acid, malic acid, sulfamic acid, phenylpropionic acid, gluconic acid, ascorbic acid, isonicotinic acid, citric acid, adipic acid and other acids known to a person skilled in the art.

[0033] The term “pharmaceutically acceptable” means approved by a regulatory agency such as the EMEA (Europe) and/or the FDA (US) and/or any other national regulatory agency for use in animals, preferably in humans.

[0034] Compounds according to the invention which contain several basic groups can simultaneously form different salts.

[0035] If a compound according to the invention simultaneously contains acidic and basic groups in the molecule, the invention also includes, in addition to the salt forms mentioned, inner salts or betaines.

[0036] The respective salts of the compounds according to the invention can be obtained by customary methods which are known to the person skilled in the art, for example by contacting these with an organic or inorganic acid or base in a solvent or dispersant, or by anion exchange or cation exchange with other salts.

[0037] Furthermore, the invention includes all salts of the compounds according to the invention which, owing to low physiological compatibility, are not directly suitable for use in pharmaceuticals but which can be used, for example, as intermediates for chemical reactions or for the preparation of pharmaceutically acceptable salts or which might be suitable for studying γ-secretase modulating activity of a compound according to the invention in any suitable manner, such as any suitable in vitro assay.

[0038] The present invention furthermore includes all solvates of the compounds according to the invention.

[0039] The compounds according to general formula (I) can be prepared according to methods published in the literature or by analogous methods.

[0040] Depending on the circumstances of the individual case, in order to avoid side reactions during the synthesis of a compound of the general formula (I), it can be necessary or advantageous to temporarily block functional groups by introducing protective groups and to deprotect them in a later stage of the synthesis, or to introduce functional groups in the form of precursor groups and at a later stage to convert them into the desired functional groups. Suitable synthetic strategies, protective groups and precursor groups are known to the person skilled in the art.

[0041] If desired, the compounds of the formula (I) can be purified by customary purification procedures, for example by recrystallization or chromatography. The starting materials for the preparation of the compounds of the formula (1) are commercially available or can be prepared according to or analogously to literature procedures

[0042] These can serve as a basis for the preparation of the other compounds according to the invention by several methods well known to the person skilled in the art.

[0043] The invention also relates to a compound of the invention for use as a medicament. The compounds are as defined above, furthermore with respect to the medicament the embodiments as described below with respect to the use of the invention, e.g. formulation, application and combination, also apply to this aspect of the invention.

[0044] In particular the compounds according to the invention are suitable for the treatment of Alzheimer’s disease.

[0045] Details relating to said use are further disclosed below.

[0046] The compounds can be used for modulation of γ-secretase activity.

[0047] As used herein, the term "modulation of γ-secretase activity" refers to an effect on the processing of APP by
Gamma secretase activity can e.g. be measured by determining APP processing, e.g. by determining the levels of Abeta peptide species produced, most importantly levels of Abeta-42 (see Example section, infra).

It has been previously shown that the γ-secretase complex is also involved in the processing of the Notch-protein. Notch is a signaling protein which plays a crucial role in developmental processes (e.g. reviewed in Schweisguth F (2004) Curr. Biol. 14, R129).

With respect to the use of said compounds for the modulation of γ-secretase activity in therapy, it seems particularly advantageous not to interfere with the Notch-processing activity of the γ-secretase activity in order to avoid putative undesired side-effects.

Thus, compounds are preferred which do not show an effect on the Notch-processing activity of the γ-secretase-complex.

Within the meaning of the invention, "effect on the Notch processing activity" includes both an inhibition or an activation of the Notch-processing activity by a certain factor. A compound is defined as not having an effect on the Notch processing activity, if said factor is smaller than 20, preferably smaller than 10, more preferably smaller than 5, most preferably smaller than 2 in the respective assay as described in Shimizu et al (2000) Mol. Cell. Biol, 20: 6913 at a concentration of 30 μM.

In a particular embodiment of the invention, said modulation is performed in vitro or in cell culture. As known to the person skilled in the art, several in vitro and cell culture assays are available.

Example assays useful for measuring the production of C-terminal APP fragments in cell lines or transgenic animals by Western blot analysis include but are not limited to those described in Yan et al., 1999, Nature 402, 533-537.

An example of an in vitro γ-secretase assay is described in WO-03/008635. In this assay a suitable peptide substrate is contacted with a γ-secretase preparation and the ability to cleave the substrate is measured.

Concentrations of the various products of the γ-secretase cleavage (the Aβ-peptides) can be determined by various methods known to a person skilled in the art. Examples for such methods include determination of the peptides by mass-spectrometry or detection by antibodies.

Example assays useful for the characterization of the profile of soluble Abeta peptides in cultured cell media and biological fluids include but are not limited to those described by Wang et al., 1996, J. Biol. Chem. 271, 31894-31902. In this assay a combination of immunoprecipitation of Abeta-peptides with specific antibodies and detection and quantification of the peptide species with matrix-assisted laser desorption ionization time-of-flight mass spectrometry is used.

Example assays useful for measuring the production of Abeta-40 and Abeta-42 peptides by ELISA include but are not limited to those described in Vassar et al, 1999, Science 286, 735-741. Further information is disclosed for example in N. Ida et al. (1996) J. Biol. Chem. 271, 22908, and M. Jensen et al. (2000) Mol. Med. 6, 291. Suitable antibodies are available for example from The Genetics Company, Inc., Switzerland. Antibody-based kits are also available from Innogenetics, Belgium.

Cells which can be employed in such assays include cells which endogenously express the γ-secretase complex and transfected cells which transiently or stably express some or all interactors of the γ-secretase complex. Numerous available cell lines suitable for such assays are known to the skilled person. Cells and cell lines of neuronal or glial origin are particularly suitable. Furthermore, cells and tissues of the brain as well as homogenates and membrane preparations thereof may be used (Xia et al., 1998, Biochemistry 37, 16465-16471).

Such assays might be carried out for example to study the effect of the compounds according to the invention in different experimental conditions and configurations.

Furthermore, such assays might be carried out as part of functional studies on the γ-secretase complex. For example, either one or more interactors (either in their wild-type form or carrying certain mutations and/or modifications) of the γ-secretase complex of an animal, preferably a mammal, more preferably humans, might be expressed in certain cell lines and the effect of the compounds according to the invention might be studied.

Mutated forms of the interactors used can either be mutated forms which have been described in certain animals, preferably mammals, more preferably humans or mutated forms which have not previously been described in said animals.

Modifications of the interactors of the γ-secretase complex include both any physiological modification of said interactors and other modifications which have been described as modifications of proteins in a biological system.

Examples of such modifications include, but are not limited to, glycosylation, phosphorylation, prenylation, myristylation and farnesylation.

Furthermore, the compounds according to the invention can be used for the preparation of a medicament for the modulation of γ-secretase activity.
The invention further relates to the use of said compounds for the preparation of a medicament for the modulation of γ-secretase activity.

The activity of the γ-secretase can be modulated in different ways, i.e. resulting in different profiles of the various Ab peptides.

Uses of a compound for the modulation of γ-secretase activity resulting in a decrease in the relative amount of Ab42 peptides produced are preferred.

Respective dosages, routes of administration, formulations etc are disclosed further below.

The invention further relates to the compounds according to the invention for use in treating a disease associated with an elevated level of Ab42-production. The disease with elevated levels of Abeta peptide production and deposition in the brain is typically Alzheimer’s disease (AD), cerebral amyloid angiopathy, multi-infarct dementia, dementia pugilistica or Down syndrome, preferably AD.

As used herein, the term "treatment" is intended to refer to all processes, wherein there may be a slowing, interrupting, arresting, or stopping of the progression of a disease, but does not necessarily indicate a total elimination of all symptoms.

As used herein, the term "elevated level of Ab42-production" refers to a condition in which the rate of production of Ab42-peptide is increased due to an overall increase in the processing of APP or, preferably, it refers to a condition in which the production of the Ab42 peptide is increased due to a modification of the APP-processing profile in comparison to the wild-type APP and non-pathological situation.

As outlined above, such an elevated Ab42-level is a hallmark of patients developing or suffering from Alzheimer’s disease.

One advantage of the compounds or a part of the compounds of the present invention may lie in their enhanced CNS-penetration.

Furthermore the invention relates to a pharmaceutical composition comprising a compound according to the invention in a mixture with an inert carrier.

In a preferred embodiment, the invention relates to a pharmaceutical composition comprising a compound according to the invention in a mixture with an inert carrier, where said inert carrier is a pharmaceutical carrier.

The term "carrier" refers to a diluent, adjuvant, excipient, or vehicle with which the compound is administered. Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, including but not limited to peanut oil, soybean oil, mineral oil, sesame oil and the like. Water is a preferred carrier when the pharmaceutical composition is administered orally. Saline and aqueous dextrose are preferred carriers when the pharmaceutical composition is administered intravenously. Saline solutions and aqueous dextrose and glycerol solutions are preferably employed as liquid carriers for injectable solutions. Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol. The composition, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents. These compositions can take the form of solutions, suspensions, emulsions, tablets, pills, capsules, powders, sustained-release formulations and the like. The composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides. Oral formulation can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, etc. Examples of suitable pharmaceutical carriers are described in “Remington’s Pharmaceutical Sciences” by E.W. Martin. Such compositions will contain a therapeutically effective amount of the compound, preferably in purified form, together with a suitable amount of carrier so as to provide the form for proper administration to the patient. The formulation should suit the mode of administration.

Furthermore the invention relates to methods for the preparation of a compound according to the invention. In one embodiment for the preparation of a compound according to the present invention, a dibromofluorobenzene can be treated with a benzyl alcohol in the presence of an alkali metal hydride, typically sodium hydride, in a suitable aprotic solvent such as tetrahydrofuran. The product can be treated with a suitable malonic acid derivative, such as malonic acid tert-butyl ester ethyl ester in the presence of an alkali metal hydride, typically sodium hydride and a metal halide, typically a copper halide, preferably copper bromide. Further treatment in an acidic solvent such as acetic acid at elevated temperature provides a benzoxyl-bromophenylacetic acid ester. This can be coupled to a boronic acid under the variety of conditions known to those skilled in the art for such Suzuki coupling, typically using solvents such as 1,2-dimethoxyethane and water, an alkali metal carbonate such as potassium carbonate, and a palladium compound such as tetrakis (triphenylphosphine) palladium (0).

If required the compound can be alkylated by treatment in a suitable aprotic solvent such as tetrahydrofuran with a suitable base such as a metal dialkylamide, typically LDA, and the appropriate halide at a suitable temperature, typically -78°C.

Removal of the benzyl protecting group can be achieved under the variety of conditions known to those skilled in the art for such deprotections, typically using a palladium catalyst such as 10% palladium on charcoal in a suitable solvent, such as ethanol, and under an atmosphere of hydrogen.
The phenol can be converted to a biphenyl ether by a variety of methods known to those skilled in the art, e.g., D. A. Evans et al., Tetrahedron Lett. (1998), 39, 2937, Hosseinzadeh R et al., Synlett (2005), 7, 1101. Typically, the phenol is treated with a tertiary amine, such as triethylamine, a metal acetate, such as copper acetate, an aryl boronic acid and a suitable solvent such as dichloromethane in the presence of a palladium such as 4A molecular sieves.

Conversion of the ester to the acid can be done using a base such as an alkali metal hydroxide, typically potassium hydroxide in the presence of water and other suitable solvents such as methanol.

In another embodiment, compounds where A is S can be prepared by the treatment of a dibromofluorobenzene with an aryl thiol in the presence of a suitable base such as potassium carbonate, in a suitable aprotic solvent such as N,N-dimethylformamide. The product can be treated with a suitable malonic acid derivative, such as malonic acid tert-butyl ester ethyl ester in the presence of an alkali metal hydride, typically sodium hydride and a metal halide, typically a copper halide, preferably copper bromide. Further treatment in an acidic solvent such as acetic acid at elevated temperature provides an arylthio-bromophenylacetic acid ester. This can be coupled to a boronic acid under the variety of conditions known to those skilled in the art for such Suzuki coupling, typically using solvents such as 1,2-dimethoxyethane and water, an alkali metal carbonate such as potassium carbonate, and a palladium compound such as tetrakis(triphenylphosphine)palladium (0).

If required the compound can be alkylated by treatment in a suitable aprotic solvent such as tetrahydrofuran with a suitable base such as a metal dialkylamide, typically LDA, and the appropriate halide at a suitable temperature, typically -78°C.

Conversion of the ester to the acid can be done using a base such as an alkali metal hydroxide, typically potassium hydroxide in the presence of water and other suitable solvents such as methanol.

In another embodiment for the preparation of a compound according to the present invention where A is NH, a dibromofluorobenzene can be treated with a benzyl alcohol in the presence of an alkali metal hydride, typically sodium hydride, in a suitable aprotic solvent such as tetrahydrofuran. The product can be treated with a suitable malonic acid derivative, such as malonic acid tert-butyl ester ethyl ester in the presence of an alkali metal hydride, typically sodium hydride and a metal halide, typically a copper halide, preferably copper bromide. Further treatment in an acidic solvent such as acetic acid at elevated temperature provides a benzoxyl-bromophenylacetic acid ester. This can be coupled to an aniline under the variety of conditions known to those skilled in the art for such Suzuki coupling, typically using solvents such as described by Hartwig JF in Modern Arene Chemistry, (2002) pp107-168.

Removal of the benzyl ether protecting group can be achieved under the variety of conditions known to those skilled in the art for such deprotections, typically using a palladium catalyst such as 10% palladium on charcoal in a suitable solvent, such as ethanol, and under an atmosphere of hydrogen.

The resultant hydroxycoumpound can be converted to a triflate using e.g., trifluoromethanesulphonic anhydride, an organic base such as pyridine and in a suitable solvent such as dichloromethane. This triflate can then be coupled to a boronic acid under the variety of conditions known to those skilled in the art for such Suzuki coupling, typically using solvents such as 1,2-dimethoxyethane and water, an alkali metal carbonate such as potassium carbonate, and a palladium compound such as bis(tri-tert-butylphosphine)palladium (0).

If required the product can be alkylated by treatment in a suitable aprotic solvent such as tetrahydrofuran with a suitable base such as a metal dialkylamide, typically LDA, and the appropriate halide at a suitable temperature, typically -78°C.

Conversion of the ester to the acid can be done using a base such as an alkali metal hydroxide, typically potassium hydroxide in the presence of water and other suitable solvents such as ethanol.

When compounds of the invention are produced as racemates, these can be separated into their enantiomers by methods known to those skilled in the art, typically by using a chiral HPLC column.

Furthermore, the invention relates to a method for the preparation of a medicament comprising the steps of:

- preapring a compound according to the invention
- formulation of a medicament containing said compound.

The compounds according to the invention and their pharmaceutically acceptable salts, optionally in combination with other pharmaceutically active compounds are suitable to treat or prevent Alzheimer’s disease or the symptoms thereof. Such additional compounds include cognition-enhancing drugs such as acetylcholinesterase inhibitors (e.g., Donepezil, Tacrine, Galantamine, Rivastigmin), NMDA antagonists (e.g., Memantine) PDE4 inhibitors (e.g., Ariflo) or any other drug known to a person skilled in the art suitable to treat or prevent Alzheimer’s disease. Such compounds also include cholesterol-lowering drugs such as statins (e.g., simvastatin). These compounds can be administered to animals, preferably to mammals, and in particular humans, as pharmaceuticals by themselves, in mixtures with one another or in the form of pharmaceutical preparations.

Various delivery systems are known and can be used to administer a compound of the invention for the treatment of Alzheimer’s disease or for the modulation of the γ-secretase activity, e.g., encapsulation in liposomes, microparticles,
and microcapsules:

If not delivered directly to the central nervous system, preferably the brain, it is advantageous to select and/or modify methods of administration in such a way as to allow the pharmaceutical compound to cross the blood-brain barrier.

Methods of introduction include, but are not limited to, intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, and oral routes.

The compounds may be administered by any convenient route, for example by infusion, by bolus injection, by absorption through epithelial or mucocutaneous linings and may be administered together with other biologically active agents.

Administration can be systemic or local. In addition, it may be desirable to introduce the pharmaceutical compositions of the invention into the central nervous system by any suitable route, including intraventricular and intrathecal injection; intraventricular injection may be facilitated by an intraventricular catheter, for example, attached to a reservoir, such as an Ommaya reservoir. Pulmonary administration can also be employed, e.g. by use of an inhaler or nebulizer, and formulation with an aerosolizing agent.

In another embodiment, the compound can be delivered in a vesicle, in particular a liposome (Langer (1990) Science 249, 1527).

In order to select an appropriate way of administration, the person skilled in the art will also consider routes of administration which have been selected for other known Anti-Alzheimer-drugs.

For example, Arixent/Donepezil and Cognex/Tacrine (all acetylcholinesterase-inhibitors) are being taken orally, Axura/Memantine (an NMDA-receptor antagonist) has been launched both as tablets/liquid and as an i.v.-solution.

Furthermore, the skilled person in the art will take into account the available data with respect to routes of administration of members of the NSAID-family in clinical trials and other studies investigating their effect on Alzheimer’s disease.

In order to select the appropriate dosage, the person skilled in the art will choose a dosage which has been shown to be not toxic in preclinical and/or clinical studies and which can be in accordance with the values given beforehand, or which may deviate from these.

The precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the disease or disorder, and should be decided according to the judgment of the practitioner and each patient’s circumstances. However, suitable dosage ranges for intravenous administration are generally about 20-500 micrograms of active compound per kilogram body weight. Suitable dosage ranges for intranasal administration are generally about 0.01 mg/kg body weight to 1 mg/kg body weight. Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems.

Substantial data from several studies are available to the skilled person in the art which are instructive to the skilled person to select the appropriate dosage for the chosen therapeutic regimen.

Method	Flow Rate	Solvent
A	1ml/min	0-1.5-95%MeCN
	1.5-6min 95%	
	4.5-5 min 95%-5%MeCN	

Abbreviations

<table>
<thead>
<tr>
<th>Ac</th>
<th>Acetyl</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>Doublet</td>
</tr>
<tr>
<td>DCM</td>
<td>Dichloromethane</td>
</tr>
<tr>
<td>DME</td>
<td>1,2-dimethoxyethane</td>
</tr>
<tr>
<td>DMF</td>
<td>N,N-dimethylformamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>e.e.</td>
<td>enantiomeric excess</td>
</tr>
<tr>
<td>Eq</td>
<td>Equivalents</td>
</tr>
<tr>
<td>Et</td>
<td>Ethyl</td>
</tr>
<tr>
<td>EtOAc</td>
<td>ethyl acetate</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>HPLC</td>
<td>high pressure liquid chromatography</td>
</tr>
<tr>
<td>K₂CO₃</td>
<td>Potassium carbonate</td>
</tr>
<tr>
<td>l</td>
<td>Litre</td>
</tr>
<tr>
<td>LCMS</td>
<td>liquid chromatography - mass spectrometry</td>
</tr>
<tr>
<td>LDA</td>
<td>lithium disopropylamide</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>m</td>
<td>Multiplet</td>
</tr>
<tr>
<td>Me</td>
<td>Methyl</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>mol</td>
<td>Mole</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>q</td>
<td>Quartet</td>
</tr>
<tr>
<td>RT</td>
<td>Retention time</td>
</tr>
<tr>
<td>s</td>
<td>Singlet</td>
</tr>
<tr>
<td>sat</td>
<td>Saturated</td>
</tr>
<tr>
<td>t</td>
<td>Triplet</td>
</tr>
<tr>
<td>TFA</td>
<td>Trifluoroacetic acid</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
</tbody>
</table>
EXAMPLES:

Example 1: Preparation of 2-(5-(4-fluorophenoxy)-4'-trifluoromethylbiphenyl-3-yl)-pentanoic acid (I)

Preparation of 1-Benzyloxy-3,5-dibromobenzene

[0094] Benzyl alcohol (9.7 mL, 94 mmol) was added dropwise to a suspension of NaH (4.0 g of a 60 % suspension in mineral oil, 100 mmol) in THF (150 mL) at room temperature and the mixture was stirred at room temperature for 1 hour before 1,3-dibromo-5-fluorobenzene (15.9 g, 62.5 mmol) was added. The reaction was stirred at room temperature for 12 hours. Water was added carefully and the THF was evaporated under reduced pressure. The residue was extracted with iso-hexane (x3) and the combined organic extracts were washed with NaOH solution (1 M aq.), water, brine, dried (MgSO 4), filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (EtOAc : petroleum ether) to give 1-benzyloxy-3,5-dibromobenzene (14.7 g, 65 mmol) as a colourless liquid in 69 % yield. 1H NMR (CDCl 3) δ 7.45-7.33 (m, 5H), 7.30-7.28 (m, 1H), 7.10-7.08 (m, 2H), 5.02 (s, 2H).

Preparation of (3-Benzoxyl-5-bromo-phenyl)-acetic acid ethyl ester

[0095] Malonic acid tert-butyl ester ethyl ester (10.2 mL, 53.8 mmol) was added dropwise to a suspension of NaH (2.2 g of a 60 % suspension in mineral oil, 53.8 mmol) in dioxane (200 mL) at room temperature and the mixture was stirred at this temperature for 1 hour before CuBr (7.7 g, 53.8 mmol) and 1-benzyloxy-3,5-dibromobenzene (9.2 g, 26.9 mmol) were added. The reaction mixture was heated to reflux for 5h. The solution (1 M aq, 100 mL) was carefully added and the mixture was extracted with iso-hexane (x3). The combined organic extracts were washed with HCl solution (1 M aq), water, brine, dried (MgSO 4), filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (EtOAc : petroleum ether) to give, in order of elution, recovered 1-benzyloxy-3,5-dibromobenzene (3.2 g, 9.4 mmol) in 35 % yield and 2-(3-benzyloxy-5-bromo-phenyl)-malonic acid tert-butyl ester ethyl ester (7.2 g, contains 1.4 equivalent malonic acid tert-butyl ester ethyl ester, 10 mmol) as a colourless liquid in 37 % yield. 2-(3-Benzoxyl-5-bromophenyl)malonic acid tert-butyl ester ethyl ester (7.2 g, contains 1.4 equivalent malonic acid tert-butyl ester ethyl ester, 10 mmol) was dissolved in glacial AcOH (50 mL) and heated to reflux for 12 hours. The AcOH was removed under reduced pressure. The residue was poured into Na 2 CO 3 solution (sat. aq.) and the mixture was extracted with EtOAc (x3). The combined organic extracts were washed with water, brine, dried (MgSO 4), filtered and concentrated under reduced pressure to give (3-benzyloxy-5-bromo-phenyl)-acetic acid ethyl ester (6.8 g, 9.7 mmol) as a yellow liquid in 97 % yield. 1H NMR (CDCl 3) δ 7.44-7.30 (m, 5H), 7.07-7.03 (m, 2H), 6.87-6.84 (m, 1H), 5.03 (s, 2H), 4.15 (q, 2H), 3.54 (s, 2H), 2.0 (t, 3H).

Preparation of (5-Benzoxyl-4'-trifluoromethylbiphenyl-3-yl)-acetic acid ethyl ester

[0096] (3-Benzoxyl-5-bromo-phenyl)-acetic acid ethyl ester (2.50 g, 7.2 mmol) was added to a solution of 4-(trifluoromethyl)phenyl boronic acid (1.5 g, 8.0 mmol) and K 2 CO 3 (14.4 mmol, 2 M aq.) in DME (25 mL). Nitrogen was bubbled through the reaction mixture for 10 minutes before addition of trietakis(triphenylphosphine)palladium (0) (10 % wt) and the resultant mixture was heated to 80 °C for 4 hours under inert atmosphere. The reaction mixture was diluted with water and extracted with EtOAc (x3). The combined organic extracts were washed with sat. Na 2 CO 3 , brine, dried (MgSO 4), filtered and concentrated under reduced pressure to give (5-benzyloxy-4'-trifluoromethylbiphenyl-3-yl)-acetic acid ethyl ester (2.2 g) as a colourless gum in 74% yield. 1H NMR (CDCl 3) δ 7.59-7.54 (m, 2H), 7.48-7.30 (m, 8H), 7.13-7.11 (m, 2H), 6.94-6.91 (m, 1H), 5.12 (s, 2H), 4.16 (q, 2H), 3.64 (s, 2H), 1.27 (t, 3H).

Preparation of 2-(5-Benzoxyl-4'-trifluoromethylbiphenyl-3-yl)-pentanoic acid ethyl ester

[0097] A solution of LDA (4.5 mL of 1.8 M in THF, 8 mmol) was added dropwise to a stirred solution of (5-Benzoxyl-4'-trifluoromethylbiphenyl-3-yl)-acetic acid ethyl ester (3 g, 7.3 mmol) in THF (50 mL) at -78 °C. The reaction mixture was stirred for 30 minutes at -78 °C before iodopropane (0.85 mL, 8.7 mmol) was added dropwise. The reaction mixture was allowed to warm to room temperature overnight. A saturated aqueous solution of ammonium chloride (10 mL) was carefully added and the residue was partitioned between EtOAc and water. The aqueous layers were extracted with EtOAc (x3). The combined organic layers were washed with water, brine, dried (MgSO 4), filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (EtOAc : petroleum ether) to give 2-(5-Benzoxyl-4'-trifluoromethylbiphenyl-3-yl)-pentanoic acid ethyl ester (2.2 g) as an oil in 66 % yield.
Example 3: Determination of the effect of the compounds according to the invention on cyclooxygenase-1 and cyclooxygenase-2 (Cox-1, Cox-2)

[0102] Inhibition of Cox-1 and Cox-2 was determined using the Colorimetric Cox inhibitor screening assay provided by Cayman Chemical Company, Ann Arbor, MI, USA. (Cat. No. 760111) according to manufacturer’s instructions.

Example 4: Screening of the compounds of the invention for γ-secretase-modulating activity

[0104] Screening was carried out using SKN neuroblastoma cells carrying the APP 695 - wild type, grown in DMEM/NUT-mix F12 (HAM) provided by Gibco (cat no. 31330-38) containing 5% Serum/Fe supplemented with 1% non-essential amino acids.

[0105] Cells were grown to near confluency.

IC50-values of selected compounds of the invention on the γ-secretase activity.

[0107] Activity range: 10-100uM

2-(5-(4-fluorophenoxy)-4′-trifluoromethyl-biphenyl-3-yl)-pentanoic acid; 2-(5-(phenoxy)-4′-trifluoromethyl-biphenyl-3-yl)-pentanoic acid

Example 5: Demonstration of in vivo efficacy

[0108] Aβ42 lowering agents of the invention can be used to treat AD in mammals such as humans or alternatively in a validated animal model such as the mouse, rat, or guinea pig. The mammal may not be diagnosed with AD, or may not have a genetic predisposition for AD, but may be transgenic such that it overproduces and eventually deposits Aβ in a manner similar to that seen in humans afflicted with AD.

[0109] Aβ42 lowering agents can be administered in any standard form using any standard method. For example, but not limited to, Aβ42 lowering agents can be in the form of liquid, tablets or capsules that are taken orally or by injection. Aβ42 lowering agents can be administered at any dose that is sufficient to significantly reduce levels of Aβ42 in the blood, blood plasma, serum, cerebrospinal fluid (CSF), or brain.

[0110] To determine whether acute administration of an Aβ42 lowering agent would reduce Aβ42 levels in vivo, two to three month old Tg2576 mice expressing APP695 containing the "Swedish" variant can be used or alternatively a transgenic mouse model developed by Dr. Fred Van Leuven (K.U.Leuven, Belgium) and co-workers, with neuron-specific expression of a clinical mutant of the human amyloid precursor protein [V717I] (Moechars et al., 1999 J. Biol. Chem. 274, 6483). The single transgenic mouse displays spontaneous, progressive accumulation of β-amyloid (Aβ) in the brain,
eventually resulting in amyloid plaques within subiculum, hippocampus and cortex. Animals of this age have high levels of
Aβ in the brain but no detectable Aβ deposition. Mice treated with the Aβ42 lowering agent will be examined and
compared to those untreated or treated with vehicle and brain levels of soluble Aβ42 and total Aβ would be quantitated
by standard techniques, for example, using ELISA. Treatment periods may vary from hours to days and will be adjusted
based on the results of the Aβ42 lowering once a time course of onset of effect can be established.

[0111] A typical protocol for measuring Aβ42 lowering in vivo is shown but it is only one of many variations that could
be used to optimize the levels of detectable Aβ. For example, aliquots of compounds can be dissolved in DMSO (volume
equal to 1/10th of the final formulation volume), vortexed and further diluted (1:10) with a 10 % (w/v) hydroxypropyl β
cyclodextrin (HBC, Aldrich, Ref N° 33,260-7) solution in PBS, where after they are sonicated for 20 seconds.

[0112] Aβ42 lowering agents may be administered as a single oral dose given three to four hours before sacrifice and
analysis or alternatively could be given over a course of days and the animals sacrificed three to four hours after the
final dose is given.

[0113] Blood is collected at sacrifice. The blood collection is performed via a heart puncture during anesthesia with a
mixture of Ketalar (Ketamin), Rompun (Xylazin 2%) and Atropin (2:1:1) and collected in EDTA treated collection tubes.
Blood is centrifuged at 4000 g for 5 minutes at 4°C and the plasma recovered for analysis.

[0114] The mice are anaesthetized with a mixture of Ketalar (Ketamin), Rompun (Xylazin 2%) and Atropin (2:1:1) and
flushed trans-cardially with physiological serum at 4°C.

[0115] The brain is removed from the cranium and hindbrain and forebrain are separated with a cut in the coronal/
sagittal cut.

[0116] One hemisphere is immediately immersed in liquid nitrogen and stored at -70°C until homogenization for
biochemical assays.

[0117] Brains are homogenized using a Potter, a glass tube (detergent free, 2 cm³) and a mechanical homogenizer
(650 rpm). A volume of 6.5 x ½ brain weight of freshly prepared 20 mM Tris/HCl buffer (pH 8.5) with Proteinase Inhibitors
(1 tablet per 50 ml Tris/HCl buffer, CompleteTM, Roche, Mannheim, Germany) is used as homogenization buffer.

[0118] Samples are transferred from -70°C into a sample holder with liquid nitrogen and each individual sample is
pre-warmed by incubation on the bench for a few seconds prior to homogenization. The homogenates are collected in
Beckman centrifuge tubes TLX and collected on ice prior to centrifugation. Between two samples, the Potter and the
glass tube are rinsed carefully with distilled water without detergents and dried with absorption paper.

[0119] Samples are centrifuged in a pre-cooled ultracentrifuge (Beckman, Mannheim, Germany) for 1 hour and 20
minutes at 48000 rpm (135,000 x g) at 4°C. The supernatant (soluble fraction containing secreted APP and amyloid
peptides) is separated from the pellet (membrane fraction containing membrane-associated amyloid peptides in case of aged mice).

[0120] Small reversed phase columns (C18-Sep-Pack Vac 3cc cartridges, Waters, Massachusetts, MA) are mounted
on a vacuum system and washed with 80% acetonitrile in 0, 1 % Trifluoroacetic acid (A-TFA) followed with 0, 1 % TFA
twice. Then the samples are applied and the columns are washed successively with 5% and 25% A-TFA. Amyloid
peptides are eluted with 75% A-TFA and the eluates are collected in 2 ml tubes on ice. Eluates are freeze-dried in a
speedvac concentrator (Savant, Farmingdale, NY) overnight and resolved in 240 μl of the sample diluent furnished with
the ELISA kits.

[0121] To quantify the amount of human Aβ42 in the soluble fraction of the brain homogenates, commercially available
Enzyme-Linked-Immunosorbert-Assay (ELISA) kits are used (h Amyloid β42 ELISA high sensitive, The Genetics Com-
pany, Zurich, Switzerland). The ELISA is performed according to the manufacturer’s protocol. Briefly, the standard (a
dilution of synthetic Aβ1-42) and samples are prepared in a 96-well polystyrol plate without protein binding capacity
(Greiner bio-one, Frickenhausen, Germany). The standard dilutions with final concentrations of 1000, 500, 250, 125,
62.5, 31.3 and 15.6 pg/ml and the samples are prepared in the sample diluent, furnished with the ELISA kit, to a final
volume of 60 μl. Samples, standards and blanks (50 μl) are added to the anti-Aβ-coated polystyrol plate (capture antibody
selectively recognizes the C-terminal end of the antigen) in addition with a selective anti-Aβ-antibody conjugate (biot-
inylated detection antibody) and incubated overnight at 4°C in order to allow formation of the antibody-Amyloid-antibody-
complex. The following day, a Streptavidine-Peroxidase-Conjugate is added, followed 30 minutes later by an addition of
TMB/peroxide mixture, resulting in the conversion of the substrate into a colored product. This reaction is stopped by
the addition of sulfuric acid (1M) and the color intensity is measured by means of photometry with an ELISA-reader with
a 450 nm filter. Quantification of the Aβeta content of the samples is obtained by comparing absorbance to a standard
curve made with synthetic Aβ1-42.

[0122] In such a model at least 20% Aβ42 lowering compared to untreated animals would be advantageous.
Claims

1. A compound having the general formula (I)

![Chemical Structure](image)

wherein

- A is O, NH, S;
- X is a bond or a group -CR₅R₆ wherein R₅ and R₆ are, independently of each other, selected from the group consisting of H; alkyl selected from the group CH₃, C₂H₅, i-C₃H₇, n-C₃H₇, i-C₄H₉, n-C₄H₉, sec-C₄H₉, tert-C₄H₉; alkenyl selected from C₂H₃, i-C₃H₅, n-C₃H₅, i-C₄H₇, i-C₄H₇, sec-C₄H₇; wherein in the all named alkyl and alkenyl groups one or more H atom is optionally substituted with one or more substituents independently selected from the group consisting of F, Cl, Br, I, and CF₃; or R₅ and R₆ being part of a ring, either saturated or unsaturated, optionally substituted by C₁-C₄-alkyl or F, Cl, Br, I and CF₃, having 3 to 6 C-atoms, and which may contain in the ring one or more heteroatoms from the group N, S or O, and which heteroatom may be identical or different if more than one heteroatom is present;
- R₁, R₂, R₃ and R₄ are independently selected from the group consisting of H; F; Cl; Br; I; CN; OH; C(O)N(R₇R₈); S(O)₂N(R₇R₈); S(O)N(R₇R₈); N(R₇)S(O)₂N(R₈); S(O)₂R₂; N(R₂)S(O)₂N(R₈); SR₂; N(R₂)C(O)R₈; N(R₂)C(O)N(R₈); N(R₂)C(O)OR₈; OC(O)N(R₇R₈); C(O)R₇; substituted and unsubstituted C₁-C₄-alkyl and substituted and unsubstituted C₁-C₄-alkoxy, and wherein the substituents of both groups C₁-C₄-alkyl and C₁-C₄-alkoxy are selected from F, Cl, Br, I, CF₃;
- R₇, R₈, R₈a are independently selected from the group consisting of H; C₁-C₄-alkyl; heterocyclyl; and C₃-7 cycloalkyl, wherein C₁-C₄-alkyl; heterocyclyl; and C₃-7 cycloalkyl are optionally substituted with one or more substituents independently selected from the group consisting of F, Cl, Br, I and CF₃;
- Y is a carboxy group -C(O)OH or a tetrazole group;

and/or a salt or ester thereof.

2. The compound according to claim 1, wherein A; X; Y; R₁ and R₂; and R₃, R₄, independently of each other have the following meanings:

- A is O;
- X is group CR₅R₆ wherein R₅ and R₆ are, independently of each other, selected from the group consisting of H; alkyl selected from the group CH₃, C₂H₅, i-C₃H₇, n-C₃H₇, i-C₄H₉, n-C₄H₉, sec-C₄H₉, tert-C₄H₉; wherein in the all named alkyl groups one or more H atom is optionally substituted with one or more substituents independently selected from the group consisting of F, Cl, Br and I; and/or
- R₁, R₂, R₃ and R₄ are independently selected from the group consisting of H; OH; C₁-C₄-alkyl or C₁-C₄-alkoxy, substituted partly or fully by F, Cl, Br, I; and/or
- Y is a carboxy group

and/or a salt or ester thereof.

3. The compound according to claim 1 or 2; wherein A; X; Y; R₅ and R₆; and R₃, R₄, R₅ and R₆, independently of each other have the following meanings:

- A is O;
X is a group \(-\text{CR}_5\text{R}_6\) with \(\text{R}_5\) and \(\text{R}_6\) being \(\text{H}\); or \(\text{R}_5\) being \(\text{H}\) and \(\text{R}_6\) being \(\text{CH}_3\), \(\text{C}_2\text{H}_5\), \(\text{C}_3\text{H}_7\) or \(\text{C}_4\text{H}_9\) or isomers thereof; or \(\text{R}_5\) and \(\text{R}_6\) being \(\text{CH}_3\) or \(\text{R}_5\) and \(\text{R}_6\) jointly form together with the carbon atom to which they are attached a cyclopropyl ring; and/or
\(\text{R}_1\), \(\text{R}_2\), \(\text{R}_3\) and \(\text{R}_4\) are independently selected from the group consisting of \(\text{H}\); \(\text{OH}\); \(\text{C}_1\)-\(\text{C}_4\)-alkyl or \(\text{C}_1\)-\(\text{C}_4\)-alkoxy, substituted partly or fully by \(\text{F}\), \(\text{Cl}\), \(\text{Br}\), \(\text{I}\); and/or
\(\text{Y}\) is a carboxy group

and/or a salt or ester thereof.

4. The compound according to any of claims 1 to 3, wherein \(\text{A}\); \(\text{X}\); \(\text{R}_1\) and \(\text{R}_2\); and \(\text{R}_3\), \(\text{R}_4\), \(\text{R}_5\) and \(\text{R}_6\) independently of each other have the following meanings:

\(\text{A}\) is \(\text{O}\);
\(\text{X}\) is a group \(-\text{CR}_5\text{R}_6\) with \(\text{R}_5\) and \(\text{R}_6\) being \(\text{H}\); or \(\text{R}_5\) being \(\text{H}\) and \(\text{R}_6\) being \(\text{CH}_3\), \(\text{C}_2\text{H}_5\), \(\text{C}_3\text{H}_7\) or \(\text{C}_4\text{H}_9\) or isomers thereof and/or
\(\text{Y}\) is a carboxy group
\(\text{R}_1\), \(\text{R}_2\), \(\text{R}_3\) and \(\text{R}_4\) are independently selected from the group consisting of \(\text{H}\), \(\text{OH}\), \(\text{CH}_3\); \(\text{OCH}_3\), \(\text{CF}_3\), \(\text{F}\), and \(\text{Cl}\); and/or

and/or a salt or ester thereof.

5. A compound according to claim 1 selected from the group consisting of \(2-(5-(4\text{-fluorophenoxy})-4'\text{-trifluoromethyl}\text{-biphenyl-3-yl})\)-pentanoic acid (I) \(2-(5-(\text{phenoxy})-4'\text{-trifluoromethyl}\text{-biphenyl-3-yl})\)-pentanoic acid (II) and/or a salt or ester thereof.

6. A compound according to any of claims 1 to 5 for use as a medicament.

7. Use of a compound according to any of claims 1 to 5 for the preparation of a medicament for the modulation of \(\gamma\)-secretase.

8. Use of a compound according to any of claims 1 to 5 for the preparation of a medicament for the treatment of a disease associated with an elevated level of \(\text{A}\beta_42\)-production.

9. Use according to claim 7, wherein the disease is Alzheimer’s disease (AD), cerebrovascular angioopathy, multi-infarctdementia, dementia pagilistica or Down syndrom.

10. Use according to claim 8, wherein the disease is Alzheimer’s disease.

11. A pharmaceutical composition comprising a compound according to any of claims 1 to 5 in admixture with an inert carrier.

12. A process for the preparation of a compound according to any of claims 1 to 5 with \(\text{A}\) being \(\text{O}\), comprising the following steps:

- treating a dihalidefluorobenzene compound with a benzyl alcohol in the presence of an alkali metal hydride;
- treating the product with a suitable malonic ester derivative in the presence of an alkali metal hydride and a metal halide;
- treatment in an acidic solvent;
- coupling to a boronic acid derivative;
- optionally alkylating the resulting compound;
- removal of the benzyl protecting group;
- converting the phenol to a biphenyl ether;
- conversion of the ester to the acid.

13. A process for the preparation of a compound according to any of claims 1 to 5 with \(\text{A}\) being \(\text{O}\), comprising the following steps:
- treating a dibromofluorobenzene with a benzyl alcohol in the presence of an alkali metal hydride;
- treating the product with a suitable malonic ester derivative in the presence of an alkali metal hydride and a metal halide;
- treatment in an acidic solvent;
- coupling to a boronic acid derivative;
- optionally alkylation the resulting compound;
- removal of the benzyl protecting group;
- converting the phenol to a biphenyl ether;
- conversion of the ester to the acid.

14. A process for the preparation of a compound according to any of claims 1 to 5 with A being S, comprising the steps as laid out in claims 12 or 13, with the exception that the alkali metal hydride is replaced by a suitable base and the benzyl alcohol is replaced by an aryl thiol.

15. A process for the preparation of a compound according to any of claims 1 to 5 with A being NH, comprising the following steps:
 - treating a dihalidefluorobenzene compound with a benzyl alcohol in the presence of an alkali metal hydride;
 - treating the product with a suitable malonic ester derivative in the presence of an alkali metal hydride and a metal halide;
 - treatment in an acidic solvent;
 - coupling to an aniline
 - removal of the benzyl ether protecting group;
 - converting the resulting hydroxycompound to a triflate and coupling to a boronic acid;
 - optionally alkylation the resulting product;
 - conversion of the ester to the acid.

16. A process for the preparation of a compound according to any of claims 1 to 5 with A being NH, comprising the following steps:
 - treating a dibromofluorobenzene with a benzyl alcohol in the presence of an alkali metal hydride;
 - treating the product with a suitable malonic ester derivative in the presence of an alkali metal hydride and a metal halide;
 - treatment in an acidic solvent;
 - coupling to an aniline
 - removal of the benzyl ether protecting group;
 - converting the resulting hydroxy compound to a triflate and coupling to a boronic acid;
 - optionally alkylation the resulting product;
 - conversion of the ester to the acid.

17. Method for the preparation of a medicament comprising the steps of
 a) preparing a compound according to any of claims 1 to 5; and
 b) formulation of a medicament containing said compound.

Patentansprüche

1. Verbindung mit der allgemeinen Formel (I)
wobei

A für O, NH, S steht;

X eine Bindung oder eine Gruppe -CR₅R₆ ist, wobei R₅ und R₆, unabhängig von einander gewählt sind aus der Gruppe, bestehend aus H; Alkyl, gewählt aus der Gruppe CH₃, C₂H₅, i-C₃H₇, n-C₃H₇, i-C₄H₉, sec-C₄H₉, tert-C₄H₉; Alkenyl, gewählt aus C₂H₅, i-C₃H₇, n-C₃H₇, n-C₄H₉, i-C₄H₉, sec-C₄H₉; wobei bei allen genannten Alkyl- und Alkenylgruppen eines oder mehrere H-Atome wahlweise mit einem oder mehreren Substituentsen substituiert sind, unabhängig gewählt aus der Gruppe, bestehend aus F, Cl, Br, I und CF₃; oder R₂ und R₆; oder R₂ und R₆ und R₇ Teil eines entweder gesättigten oder ungesättigten Rings mit 3 bis 6 C-Atomen sind, wahlweise substituiert mit C₁-C₄-Alkyl oder F, Cl, Br, I, und CF₃ und welche im Ring eines oder mehrere Heteroatome aus der Gruppe N, S oder O enthalten und das Heteroatom identisch oder unterschiedlich sein kann, wenn mehr als ein Heteroatom anwesend ist;

R₁, R₂, R₃ und R₄ unabhängig gewählt sind aus der Gruppe, bestehend aus H, F, Cl, Br, I, CN, OH, C(O)N (R₇R₈), S(O)₂R₇, SO₂N(R₇R₈), S(O)N(R₇R₈), N(R₇)S(O)₂R₈, N(R₇)S(O)R₈, S(O)₂R₇, N(R₇)S(O)₂N(R₈R₉), N(R₇)S(O)₂N(R₈R₉), N(R₇)C(O)R₈, N(R₇)C(O)N(R₈R₉), N(R₇)C(O)N(R₈R₉), OC(O)N(R₇R₈), C(O)N(R₇), substituiertes und unsubstituiertes C₁-C₄-Alkyl und substituiertes und unsubstituiertes C₁-C₄-Alkoxy, und wobei die Substituenten der beiden C₁-C₄-Alkyl- und C₁-C₄-Alkoxygruppen gewählt sind aus F, Cl, Br, I, CF₃;

R₇, R₈, R₉ unabhängig gewählt sind aus der Gruppe, bestehend aus H, C₁-C₄-Alkyl, Heterocycl und C₃-C₇-Cycloalkyl, wobei C₁-C₄-Alkyl, Heterocycl und C₃-C₇-Cycloalkyl wahlweise mit einem oder mehreren Substituenten substituiert sind, unabhängig gewählt aus der Gruppe, bestehend aus F, Cl, Br, I und CF₃;

Y eine Carboxygruppe -C(O)OH oder eine Tetrazolgruppe ist;

und/oder ein Salz oder Ester davon.

2. Verbindung nach Anspruch 1, wobei A, X, Y, R₁ und R₂, und R₃, R₄ unabhängig voneinander die folgenden Bedeutungen haben:

A ist O;

X ist eine -CR₅R₆-Gruppe, wobei R₅ und R₆, unabhängig von einander gewählt sind aus der Gruppe, bestehend aus H; Alkyl gewählt aus der Gruppe CH₃, C₂H₅, i-C₃H₇, n-C₃H₇, i-C₄H₉, n-C₄H₉, sec-C₄H₉, tert-C₄H₉; wobei bei allen genannten Alkylgruppen eines oder mehrere H-Atome wahlweise mit einem oder mehreren Substituenten substituiert sind, gewählt aus der Gruppe, bestehend aus F, Cl, Br und I; und/oder

R₁, R₂, R₃ und R₄ unabhängig gewählt sind aus der Gruppe, bestehend aus H, OH, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy, teilweise oder vollständig durch F, Cl, Br, I substituiert; und/oder

Y eine Carboxygruppe ist

und/oder ein Salz oder Ester davon ist.

3. Verbindung nach Anspruch 1 oder 2, wobei A, X, Y, R₁ und R₂, und R₃, R₄, R₅ und R₆ unabhängig von einander die folgenden Bedeutungen haben:

A ist O;
X ist eine -CR₅R₆-Gruppe, wobei R₅ und R₆ H ist; oder R₅ H und R₆ CH₃, C₂H₅, C₃H₇ oder C₄H₉ oder Isomere davon sind; oder R₅ und R₆ CH₃ sind, oder R₅, R₆ gemeinsam mit dem Kohlenstoffatom an das sie gebunden sind, einen Cyclopropytring bilden; und/oder

R₁, R₂, R₃ und R₄ unabhängig gewählt sind aus der Gruppe, bestehend aus H, OH, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy, teilweise oder vollständig durch F, Cl, Br, I substituiert; und/oder

Y eine Carboxylgruppe ist

und/oder ein Salz oder Ester davon ist.

4. Verbindung nach einem der Ansprüche 1 bis 3, wobei A, X, R₁, R₂, und R₃, R₄, R₅ und R₆ unabhängig von einander die folgenden Bedeutungen haben:

A ist O;
X ist eine -CR₅R₆-Gruppe, wobei R₅ und R₆ H ist, oder R₅ H ist und R₆ CH₃, C₂H₅, C₃H₇ oder C₄H₉ oder Isomere davon sind, und/oder

Y eine Carboxylgruppe ist,
R₁, R₂, R₃ und R₄ unabhängig gewählt sind aus der Gruppe, bestehend aus H, OH, CH₃, OCH₃, CF₃, F und Cl; und/oder

Ein Salz oder Ester davon.

5. Verbindung nach Anspruch 1, gewählt aus der Gruppe, bestehend aus 2-(5-(4-Fluorphenoxy)-4'-trifluormethyl-biphenyl-3-yl)-pentansäure (I) 2-(5-Phenoxy)-4'-trifluormethyl-biphenyl-3-yl)-pentansäure (II) und/oder ein Salz oder Ester davon.

6. Verbindung nach einem der Ansprüche 1 bis 5 zur Verwendung als Arzneimittel.

7. Verwendung einer Verbindung nach einem der Ansprüche 1 bis 5 zur Herstellung eines Arzneimittels für die Modulation von γ-Secretase.

8. Verwendung einer Verbindung nach einem der Ansprüche 1 bis 5 zur Herstellung eines Arzneimittels für die Behandlung einer Krankheit, die mit einem erhöhten Spiegel der Aβ42-Produktion verbunden ist.

9. Verwendung nach Anspruch 7, wobei die Krankheit die Alzheimer'sche Krankheit (AD), cerebralamyloide Angiopathie, Multinfarktdemenz, Dementia pugilistica oder das Down'sche Syndrom ist.

10. Verwendung nach Anspruch 8, wobei die Krankheit die Alzheimer'sche Krankheit ist.

11. Pharmazeutische Zusammensetzung, umfassend eine Verbindung nach einem der Ansprüche 1 bis 5 im Gemisch mit einem inerten Träger.

12. Verfahren zur Herstellung einer Verbindung nach einem der Ansprüche 1 bis 5, wobei A für O steht, umfassend die folgenden Schritte:

- Behandeln einer Dihalogenidfluorbenzolverbindung mit einem Benzylalkohol in Gegenwart eines Alkalimetallhydrids;
- Behandeln des Produkts mit einem geeigneten Malonesterderivat in Gegenwart eines Alkalimetallhydrids und eines Metallhalogenids;
- Behandeln in einem sauren Lösungsmittel;
- Koppeln an ein Borsäurederivat;
- Wahlweise Alkylieren der resultierenden Verbindung
- Entfernen der Benzylschutzgruppe;
- Umwandeln des Phenols in einen Biphenylether;
- Umwandlung des Esters in die Säure.

13. Verfahren zur Herstellung einer Verbindung nach einem der Ansprüche 1 bis 5, wobei A für O steht, umfassend die folgenden Schritte:
Verfahren zur Herstellung einer Verbindung nach einem der Ansprüche 1 bis 5, wobei A für S steht, umfassend die in den Ansprüchen 12 oder 13 dargelegten Schritte, mit der Ausnahme, dass das Alkalimetallhydrid durch eine geeignete Base und der Benzylalkohol durch ein Arylthiol ersetzt wird.

Verfahren zur Herstellung einer Verbindung nach einem der Ansprüche 1 bis 5, wobei A für NH steht, umfassend die folgenden Schritte:

- Behandeln einer Dihalogenidfluorbenzolverbindung mit einem Benzylalkohol in Gegenwart eines Alkalimetallhydrids;
- Behandeln des Produkts mit einem geeigneten Malonesterderivat in Gegenwart eines Alkalimetallhydrids und eines Metallhalogenids;
- Behandeln in einem sauren Lösungsmittel;
- Koppeln an Anilin;
- Entfernen der Benzyletherschutzgruppe;
- Umwandeln der resultierenden Hydroxyverbindung in ein Triflat und Koppeln an eine Borsäure;
- Wahlweise Alkylieren des resultierenden Produkts;
- Umwandlung des Esters in die Säure.

Verfahren zur Herstellung einer Verbindung nach einem der Ansprüche 1 bis 5, wobei A für NH steht, umfassend die folgenden Schritte:

- Behandeln eines Dibromfluorbenzols mit einem Benzylalkohol in Gegenwart eines Alkalimetallhydrids;
- Behandeln des Produkts mit einem geeigneten Malonesterderivat in Gegenwart eines Alkalimetallhydrids und eines Metallhalogenids;
- Behandeln in einem sauren Lösungsmittel;
- Koppeln an Anilin;
- Entfernen der Benzyletherschutzgruppe;
- Umwandeln der resultierenden Hydroxyverbindung in ein Triflat und Koppeln an eine Borsäure;
- Wahlweise Alkylieren des resultierenden Produkts;
- Umwandlung des Esters in die Säure.

Verfahren zur Herstellung eines Arzneimittels, umfassend die Schritte:

a) Herstellen einer Verbindung nach einem der Ansprüche 1 bis 5; und
b) Formulierung eines die Verbindung enthaltenden Arzneimittels.

Revendications

1. Composé répondant à la formule générale (I)
Composé selon la revendication 1, dans lequel A ; X ; Y ; R et R5 sont, indépendamment l’un de l’autre, choisis dans le groupe consistant en H ; un groupe alkylique choisi dans le groupe CH3, C2H5, i-C3H7, n-C3H7, i-C4H9, n-C4H9, sec-C4H9, tert-C4H9 ; un groupe alcénylique choisi parmi C2H3, i-C3H7, n-C3H7, i-C4H9, n-C4H9, sec-C4H9, tert-C4H9 ; ou bien R1, R2, R3, R4 indépendamment choisis dans le groupe consistant en F, Cl, Br, I et CF3 ; ou bien R5 et R6 sont, indépendamment l’un de l’autre, choisis dans le groupe consistant en CH3, C2H5, i-C3H7, n-C3H7, i-C4H9, n-C4H9, sec-C4H9, tert-C4H9 ; dans lequel A est O ; X est un groupe -CR5R6 où R5 et R6 sont, indépendamment l’un de l’autre, choisis dans le groupe consistant en H ; un groupe alkylique choisi dans le groupe CH3, C2H5, i-C3H7, n-C3H7, i-C4H9, n-C4H9, sec-C4H9, tert-C4H9 ; ou bien R1, R2, R3, R4 indépendamment choisis dans le groupe consistant en H ; OH ; un groupe alkylique en C1 à C4 ; et/ou un ou plusieurs substituants indépendamment choisis dans le groupe consistant en F, Cl, Br, I et CF3 ; ou bien R5 et R6 sont, indépendamment l’un de l’autre, choisis dans le groupe consistant en H ; un groupe alkylique en C1 à C4 ; un substituant indépendamment choisi parmi F, Cl, Br, I ; et/ou un ou plusieurs substituants indépendamment choisis dans le groupe consistant en F, Cl, Br, I et CF3 ; A est O ; X est un groupe -CR5R6 où R5 et R6 sont, indépendamment l’un de l’autre, choisis dans le groupe consistant en H ; un groupe alkylique choisi dans le groupe constitué par CH3, C2H5, i-C3H7, n-C3H7, i-C4H9, n-C4H9, sec-C4H9, tert-C4H9 ; dans lequel A est O ; X est un groupe -CR5R6 où R5 et R6 sont, indépendamment l’un de l’autre, choisis dans le groupe consistant en H ; un groupe alkylique en C1 à C4 ; et/ou un ou plusieurs substituants indépendamment choisis dans le groupe consistant en F, Cl, Br, I ; et/ou un ou plusieurs substituants indépendamment choisis dans le groupe consistant en F, Cl, Br, I et CF3 ;
sont attachés un cycle cyclopropyle ; et/ou
R₁, R₂, R₃ et R₄ sont indépendamment choisis dans le groupe consistant en H ; OH ; un groupe alkyle en C₁ à C₄ ou alcoxy en C₁ à C₄, partiellement ou totalement substitué par F, Cl, Br, I ; et/ou
Y est un groupe carboxy
et/ou sel ou ester de celui-ci.

4. Composé selon l’une quelconque des revendications 1 à 3, dans lequel A ; X ; R₁ et R₂ ; et R₃, R₄, R₅ et R₆ indépendamment les uns des autres ont les significations suivantes :

A est O ;
X est un groupe -CR₅R₆, R₅ et R₆ étant H ; ou bien R₅ étant H et R₆ étant CH₃, C₂H₅, C₃H₇ ou C₄H₉ ou leurs isomères ; et/ou
Y est un groupe carboxy
R₁, R₂, R₃ et R₄ sont indépendamment choisis dans le groupe consistant en H, OH, CH₃, OCH₃, CF₃, F et Cl ;
et/ou un sel ou un ester de celui-ci.

5. Composé selon la revendication 1, choisi dans le groupe consistant en
l’acide 2-(5-(4-fluorophénoxy)-4’-trifluorométhyl-biphényl-3-yl)-pentanoïque (I)
l’acide 2-(5-(phénoxy)-4’-trifluorométhyl-biphényl-3-yl)-pentanoïque (II)
et/ou un sel ou un ester de celui-ci.

6. Composition selon l’une quelconque des revendications 1 à 5, à utiliser comme médicament.

7. Utilisation d’un composé selon l’une quelconque des revendications 1 à 5, pour la préparation d’un médicament destiné à la modulation de la γ-sécrétase.

8. Utilisation d’un composé selon l’une quelconque des revendications 1 à 5, pour la préparation d’un médicament destiné au traitement d’une maladie associée à un taux élevé de production de Aβ42.

9. Utilisation selon la revendication 7, dans laquelle la maladie est la maladie d’Alzheimer (MA), une angiopathie amyloïde cérébrale, la démence à infarctus multiples, la démence pugilistique ou le syndrome de Down.

10. Utilisation selon la revendication 8, dans laquelle la maladie est la maladie d’Alzheimer.

11. Composition pharmaceutique comprenant un composé selon l’une quelconque des revendications 1 à 5, en mélange avec un support inerte.

12. Procédé de préparation d’un composé selon l’une quelconque des revendications 1 à 5, A étant O, comprenant les étapes suivantes consistant à :

- traiter un composé dihalogénofluorobenzène avec un alcool benzylique en présence d’un hydrure de métal alcalin ;
- traiter le produit avec un dérivé d’ester malonique approprié en présence d’un hydrure de métal alcalin et d’un halogénure de métal ;
- traiter dans un solvant acide ;
- coupler pour l’obtention d’un dérivé d’acide boronique ;
- alkylérer facultativement le composé résultant ;
- éliminer le groupe protecteur de benzyle ;
- convertir le phénol en biphényl éther ;
- convertir l’ester en l’acide.

13. Procédé de préparation d’un composé selon l’une quelconque des revendications 1 à 5, A étant O, comprenant les étapes suivantes consistant à :

- traiter un dibromofluorobenzène avec un alcool benzylique en présence d’un hydrure de métal alcalin ;
- traiter le produit avec un dérivé d’ester malonique approprié en présence d’un hydrure de métal alcalin et d’un
halogénure de métal ;
- traiter dans un solvant acide ;
- coupler pour l’obtention d’un dérivé d’acide boronique ;
- alkyler facultativement le composé résultant ;
- éliminer le groupe protecteur de benzyle ;
- convertir le phénol en biphényl éther ;
- convertir l’estér en l’acide.

14. Procédé de préparation d’un composé selon l’une quelconque des revendications 1 à 5, A étant S, comprenant les étapes indiquées dans la revendication 12 ou 13, à l’exception que l’hydrure de métal alcalin est remplacé par une base appropriée et que l’alcool benzyle est remplacé par un arylthiol.

15. Procédé de préparation d’un composé selon l’une quelconque des revendications 1 à 5, A étant NH, comprenant les étapes suivantes consistant à :
- traiter un composé dihalogénofluorobenzène avec un alcool benzylque en présence d’un hydrure de métal alcalin ;
- traiter le produit avec un dérivé d’estér malonique approprié en présence d’un hydrure de métal alcalin et d’un halogénure de métal ;
- alkyler facultativement le produit résultant ;
- convertir l’estér en l’acide.

16. Procédé de préparation d’un composé selon l’une quelconque des revendications 1 à 5, A étant NH, comprenant les étapes suivantes consistant à :
- traiter un dibromofluorobenzène avec un alcool benzylque en présence d’un hydrure de métal alcalin ;
- traiter le produit avec un dérivé d’estér malonique approprié en présence d’un hydrure de métal alcalin et d’un halogénure de métal ;
- alkyler facultativement le produit résultant ;
- convertir l’estér en l’acide.

17. Procédé de préparation d’un médicament comprenant les étapes consistant à :

a) préparer un composé selon l’une quelconque des revendications 1 à 5 ; et
b) formuler un médicament contenant ledit composé.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 2004080376 A [0006]
- WO 2005110963 A [0006]
- WO 0178721 A [0009]
- US 20020128319 A [0009]
- WO 03008635 A [0052]
- US 5877399 A [0089]

Non-patent literature cited in the description

- HOSSEINZADEH R et al. Syntett, 2005, vol. 7, 1101 [0073]
- LEVY et al. Science, 1985, vol. 228, 190 [0083]