Capsule for preparation of a beverage with a sealing member attached thereto and method of producing the same

Kapsel zur Getränkezubereitung mit Dichtungselement und Verfahren zu dessen Herstellung

Cartouche pour la préparation d’une boisson avec élément d’étanchéité et son procédé de fabrication

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

Designated Extension States:
AL BA HR MK YU

Date of publication and mention of the grant of the patent: 01.07.2009 Bulletin 2009/27

Application number: 06112976.3

Date of filing: 24.04.2006

Date of publication of application: 31.10.2007 Bulletin 2007/44

Proprietor: Nestec S.A.
1800 Vevey (CH)

Inventors:
• Kollep, Alexandre
  1095 Lutry (CH)
• Abegglen, Daniel
  1439 Rances (CH)
• Kaeser, Thomas
  1817 Brent VD (CH)
• Leuthold, Heinz
  8840 Einsiedeln (CH)

Representative: Borne, Patrice Daniel et al
Avenue Nestlé 55
1800 Vevey (CH)

References cited:
EP-A- 0 554 469
AU-B2- 515 875


Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

[0001] The present invention generally relates to capsules for containing beverage ingredients to a beverage producing system for use in connection with such capsules as well as to methods for producing such capsules.

[0002] The background of the present invention is the field of capsules which contain beverage ingredients (e.g., coffee ground, milk powder) or other comestible ingredients (e.g. dehydrated soup). By means of an interaction of these ingredients with a liquid, a beverage or other comestibles can be produced. The interaction can be for example an extraction, brewing or dissolution process. Such a capsule is particularly adapted to contain ground coffee in order to produce a coffee beverage by having hot water under pressure enter the capsule and draining a coffee beverage from the capsule.

[0003] AU 515 875 relates to a beverage capsule containing a substance for making up a drink using an apparatus for injecting a fluid under pressure in the capsule. The capsule comprises a sealed impervious body containing a substance and a membrane defining a base closure member provided with a line of weakness and adapted to rupture under the influence of water pressure in the capsule.

[0004] EP 0554 469A1 relates to a same capsule wherein the rim is formed of a crimping on the membrane which is distant from the inside filter.

[0005] US 2003/0217643 relates to a closed cartridge for preparing a beverage for extraction under pressure and comprising a cover or membrane which is welded or crimped to the edge of the dish. The dish has a solids retention member attached thereto.

[0006] The ingredients in the capsule constitute the "bottleneck" of the flow path of the water and will therefore cause a pressure drop between the upstream and the downstream side of the liquid flow through the capsule, which pressure drop will even increase during the interaction between the liquid and the ingredients for example due to a swelling of the ingredients. Correspondingly it has to be assured that the only water flow is actually taking place through the interior of the capsule and that no water can flow from the water injector. In other words, any water flow exterior to the capsule has to be stopped by a sealing engagement being positioned between the annular enclosing member of the holder means and the capsule and in the flow path between the water injector and the beverage-draining bore.

[0007] Such sealing engagement can be achieved at least to a certain degree by the pinching engagement between the capsule holder means (i.e., annular enclosing member and capsule holder) and the flange-like rim of the body inbetween.

[0008] In case the sealing engagement is not working properly and water is flowing outside the capsule, no pressure sufficient to cause the tearing of the tear face will be built up inside the capsule or, alternatively, the pressure will be causing no complete tearing of the tear face and therefore a poor extraction of the substance. In such a scenario water will be drained from the beverage production device without having interacted or fully interacted under sufficient pressure conditions, with the ingredients contained in the capsule.

[0009] An improvement could be thought of according to which this sealing engagement is further improved by lining the inner wall of the annular member with a rubber-elastic material. In other words, according to said approach the sealing engagement is assured by structures fixed to or attached with the beverage-producing device. This has disadvantages in that after the use of a substantial number of capsules a wearing off of the fixed sealing means can take place such that the quality of the produced beverage is increasingly deteriorated by water passing the no longer properly efficient sealing. Furthermore, the sealing means can become dirty with organic residues sticking to it which is not very hygienic and may affect the sealing and pressure conditions as well during extraction.

[0010] Any "leak" at the exterior of the capsule reduces the pressure build-up inside the capsule. On the other hand, it is well known that a sufficient extraction pressure is a key factor for the quality of espresso-style coffee.

[0011] EP 1 654 966 aims at an improvement of the sealing engagement positioned between the liquid inlet and the beverage draining side of such a beverage production system. The invention aims at transferring a resilient part of the sealing engagement from the beverage production device to the capsule. The advantage is that any resilient sealing member is only used once (i.e. only with the associated capsule) such that a proper functioning of the sealing can be assured and no hygienic problems can occur at the sealing member.

[0012] The present invention aims at another improvement of EP 1 654 966 in order to improve the sealing conditions between the capsule and the sealing member so to ensure watertightness during brewing. Indeed, it is of importance to avoid any potential liquid leakage between the sealing member and the rest of the capsule in particular by creating a good bond between the two.

[0013] Furthermore, it is also of importance that the sealing member is integrated to the capsule using a process that can be implemented on a large industrial scale, be highly reliable with minimal defective products and be also cost effective.

[0014] The object is achieved by means of the features of the independent claims. The depending claims further develop the central idea of the present invention.

[0015] For this, the method of the invention is for producing a capsule containing beverage ingredients designed for insertion in a beverage production device in which a liquid under pressure enters the capsule in order to interact with the ingredients in the capsule and to drain a beverage from the capsule. The capsule comprises a body extending by a flange-like rim with a sealing member attached thereto.

[0016] The method comprises:
- preforming the capsule body and at least a portion of said flange-like rim,
- placing a ring-shaped premade sealing member on the flange-like rim,
- crimping a portion of the flange-like rim on a portion to the sealing member so resulting in the sealing member becoming attached to the flange-like rim.

[0017] In other words, the method aims at an application process of the sealing member which uses crimping of the flange-like rim of the capsule’s body to create a tight application of the sealing member on the capsule, in particular, on the flange-like rim of the capsule.

[0018] More particularly, the crimping operation comprises forming a curled end at the flange-like rim arranged to pinch a portion of said sealing member. Due to the resulting curled configuration of the attachment and pinching of a portion of the sealing member, liquid leakage can be prevented between the sealing member and the capsule’s body and the conditions of extractions can be better guaranteed and maintained from capsule to capsule (i.e., Better repeatability of the brewing conditions).

[0019] The sealing member can have a general ring-shaped form. The sealing member can so be placed about the body of the capsule and at the flange-like rim using a guiding mandrel, for instance, that pushes the sealing member and applies it in contact with the flange-like rim.

[0020] In particular, the sealing member can comprise a sealing portion and a connection portion extending outwardly from the sealing portion; wherein the connection portion is pinched by crimping a portion of the curled end of the flange-like rim. The sealing portion is the portion which is intended to be deformed or compressed by a pressing surface of the production device and/or by the pressurized fluid against a surface of the production device to create a fluid tight sealing arrangement downstream of the capsule enclosure of the device during brewing.

[0021] According to a mode of the method of the invention, during preforming of the capsule’s body, an open curled end or, alternatively, a substantially closed curled end is already preformed. A substantially closed curled end provides the advantage of facilitating handling of the capsules’ bodies, transporting from the preforming station to the seal application station and storing. An open curled end of the body’s rim can provide the advantage of a stronger connection with the sealing member by rolling up a portion of it as well as pinch it tight.

[0022] Therefore, in the crimping operation, the curled end can be finally further curled or at least be pressed sufficiently to pinch the sealing member tight.

[0023] In a possible mode, the sealing member is pinched by the outer surface of the folded or curled end of the flange-like rim. As a result, a good bond is created along a large surface while not cutting or damaging the sealing member.

[0024] Furthermore, during forming of the curled end, a portion of said pre-curved end is pressed to at least partially close the annular opening and so to pinch the connection portion of the sealing member.

[0025] In a possible aspect, the section of the connection portion of the sealing member is made relatively thinner than the larger section of the sealing portion of the sealing member. The thinner section enables to create a relatively small crimped curled end with the sealing member being properly affixed thereto. The comparatively thicker portion of the sealing member ensures a sufficient thickness of sealing material to be able to compensate for or to correctly fill in the clearance, gap or irregularities by closing of the production device and/or by effect of the fluid pressure acting on the sealing member. In particular, a sufficient volume of sealing material may be needed to be deformed under the pressure exerted by the pressurized fluid and be compressed or otherwise deformed against surfaces of both the enclosing member of the device and the capsule’s surface to form a liquid tight seal arrangement.

[0026] In a possible mode, the sealing member is pre-made with a sealing portion and a connection portion being relatively aligned one another and during crimping the curled end is further curled or at least flattened to crimp the connection portion along an external surface of the curled end.

[0027] In another mode, the sealing member is pre-made with a connection portion being inclined downwardly relative to the sealing portion and during crimping, a curled end is further curled to straighten the connection portion out, eventually roll it up, and pinch it.

[0028] Furthermore, the sealing member can comprise an annular extension portion that extends beyond the flange-like rim along the side of the capsule’s body. The body can have a trunconical or cylindrical shape, for instance. The extension portion ensures a higher surface of contact between the sealing member and the surface of the capsule’s body and higher volume of sealing material thereby it improves the fluid-tight arrangement but also ensures a closer fitting of the sealing member with the capsule.

[0029] The method of the invention also contemplates preforming the capsule’s body by deep-drawing of a metallic or metal-plastic sheet. The capsule body can be deep drawn during one step or sequential steps to form a final main open cavity enabling filling of the food ingredients. During this deep-drawing step(s), the pre-curved portion can be formed. The pre-curved portion may also be formed after the deep-drawing of the cavity of the body in a subsequent step.

[0030] In another subsequent step, the body is filled with the food ingredient such as roast and ground coffee.

[0031] The capsule body can comprise aluminium. It can be a single ply of aluminium or a multi-ply of plastic and aluminium such as polypropylene and aluminium,
polyethylene-aluminium or polyactic acid-aluminium.

[0032] Of course, the sealing member can be attached to the capsule's body by additional connection means in order to improve even more the contact with the sealing member and prevent any risk of leakage, as well as improve the visual appearance and reduce the risk of defective capsules. For instance, it comprises an additional step of gluing or welding the sealing member at the flange-like rim. The sealing member can be attached to the capsule using an adhesive or by (thermal or ultrasonic) welding.

[0033] In another subsequent step following the food ingredient filling step, welding a membrane is carried out along a portion of the external face of the flange-like rim to close the capsule and maintain longer freshness of the food ingredients.

[0034] The sealing member can be of a resilient material. Preferably, the sealing member is of rubber- elastomer, plastic-elastomer, plastic or silicone material.

[0035] The present invention can also relate to a capsule for containing beverage ingredients, the capsule being designed for insertion in a beverage production device in which a liquid under pressure enters the capsule in order to interact with the ingredients in the capsule and to drain a beverage from the capsule. For this, the capsule comprises a sealing member with the form of a ring on its outer surface. The sealing member is geometrically arranged to be in sealing engagement with at least a matching pressing surface of the beverage production device. The capsule member comprises a body extending by a flange-like rim with the sealing member attached thereto. According to an aspect of the invention, the sealing member is pinched by the curled end of the flange-like rim of the capsule. Other aspects of the capsule can be found in relation to the method of the invention either as aforementioned or as will appear in greater detail in the following description of the embodiment.

Fig. 1 shows a first embodiment of the capsule system of the present invention in which a capsule is placed on the capsule holder but has not yet reached its closing position in the beverage production device,

Fig. 2 shows an enlarged view of Fig. 1.

Fig. 3 the first embodiment in a state, in which a capsule has reached its closing position between the capsule enclosing parts, i.e., a bell member and the capsule holder,

Figs 4 to 11 show different steps for applying the sealing member on the body of the capsule according to the method of the invention,

Fig. 12 is a chart illustrating steps of a mode of the invention,

Fig. 13 shows a side view of the pre-formed capsule's body of the invention,

Fig. 14 is an enlarged view of Fig. 13 showing a detail of the configuration of the sealing member as positioned before final crimping,

Fig. 15 shows a side view of the pre-formed capsule's body before insertion of the sealing member according to another variant of the invention,

Fig. 16 is an enlarged view of Fig. 15 showing a detail of the configuration of the sealing member as positioned before final crimping,

Fig. 17 is the enlarged view of Fig. 15 but after final crimping.

[0036] Note that in the following the invention will be explained referring to a certain design of a capsule, i.e. a design according to which the capsule comprises a cup-like base body and a closing foil member. However, it is to be understood that other designs of the capsule are viable, such as e.g. capsules having a lenticular form with two essentially matching and opposing walls (e.g. foils) being sealed at the e.g. ring-shaped edge. Generally a capsule according to the present invention comprises at least two opposing wall members (faces) which are connected to each other at their respective peripheral edges to form a sealed flange-like rim area, thus enclosing a sealed interior.

[0037] The embodiment shows a capsule holder 13 having relief elements 12 which are designed to tear and perforate a foil member 5 closing off a cup-like base body 4 of the capsule 1. This tearing of the foil member 5 can occur as soon as the pressure inside the capsule exceeds a threshold value. Note that the relief elements can have any protruding shape able to cause a controlled tearing of the foil member. As an example only pyramids, needles, bumps, cylinders, elongated ribs are cited. The relief element can also be a single needle or perforator. Fig. 1 shows a state in which such a capsule has been placed on a capsule holder 13, the foil member 5 resting on the relief elements 12 of the capsule holder 13 and the cup-like base body 4 of the capsule 1 being already partly surrounded by the circumferential wall 25 of an enclosing member 9 of the beverage production device. The shown enclosing member can have the shape of a bell. Other shapes are viable, wherein the design of the interior contours (recess) of the enclosing member is generally adapted to substantially match the contours of the capsule 1.

[0038] The capsule holder 13 (also representing an enclosing member) and the enclosing member 9 thus can selectively enclose a capsule enclosure space 22 when transferred from an opened position into a capsule-enclosing position.

[0039] Note that the foil member 5 as shown is not
necessarily exactly flat due to a defined over pressure inside the capsule, which over pressure is generated by introducing e.g. a protective gas when producing the filled capsule and by gas desorbing from the food ingredients after sealing, for instance, carbon dioxide from coffee. The enclosing (bell) member 9 furthermore comprises an annular pressing surface 18 and a water inlet opening 20 for feeding a liquid such as for example hot water under pressure to a water injection system 14 which is releasable mounted (e.g., screwed) to the bell member 9.

The water injection system can comprise one or more perforation elements (blades, pins, etc.) 24 designed to produce one or more openings in the top wall 17 of the capsule 1 when the capsule holder 13 and the bell member 9 are moved close together e.g. by a manually operated or an automatic closing mechanism. A channel 19 traverses the injection system and leads to the enclosure 22 of the enclosing member 9 such that water can be fed to the interior of the capsule 1 once the perforation elements 24 protrude into the interior of the capsule 1.

The capsule 1 comprises said top wall 17, a side wall 7 and a flange-like rim 6, wherein the foil member 5 is sealed to said flange-like rim 6 to close-off hermetically the cup-like base body 4 of the capsule 1. Again, other designs for the capsule are possible as long as the capsule can be sealed and contains the mentioned ingredients.

According to the present invention the outer surface of the capsule 1 presents a dedicated watertightness sealing member (made of sealing material) 8 thereafter called "sealing member". The sealing member 8 can be compressible, more preferably even resilient.

If a resilient material is used for the sealing member 8, preferably rubber-elastic materials are used. The term "rubber-elastic" means any suitable material having rubber elasticity when compressed, including but not limited to elastomers, silicones, plastics, latex, balata or others. Preferred materials for the sealing member are: Thermoplastic elastomer (TPE) such as Santoprene™ commercialised by the company Exxon Mobil Chemical, silicone or EPDM (Ethylene Propylene Diene Monomer).

As more apparent in Fig. 2, the capsule of the invention comprises a flange-like rim with a support portion 60 for the sealing member and a curled end portion 61 for being cramped and for pinching a part of the sealing member. The support portion 60 merges with the body 4 at a certain angle (i.e., slightly more than 90 degrees when the body has a truncated form). The flange like rim as well as the base surface 40 of the body receives the annular sealing member 8. In order for the sealing member to be affixed to the flange-like rim in a reliable manner, the sealing member extends toward the curled portion 61 by a connection portion 80 which is inserted and cramped by the crimping curved portion 61 of the rim. More particularly, in the illustrated example, the curled portion 61 terminates by a crimping end 62 which compresses and pinches the connection portion along an annular line or surface. Outside the curled portion 61, the sealing member extends along the support portion 60 of the flange-like rim by a sealing portion 81 that can extend upwards by a collar portion 82 applied against the base surface 40 of the body 4. The sealing portion 81 and collar portion 82 can form surfaces of different slopes or can merge in a single continuous concave or flat inclined surface. The form of the sealing member 8 into a wedge shape is chosen to provide a sufficient mass of material for compensating for the irregularities, gaps or other interstices between the capsule and the enclosing or bell member. As the watertight sealing may also be obtained dynamically, i.e., by effect of the water under pressure forcing on the sealing member, the shape, dimensions of the overall mass of the sealing member should be sufficient to deform, thus resiliably "flow" and fill correctly the left openings when the pressure builds up during brewing.

At the surfaces of contact between the sealing member 8 and the rim and/or base surface of the body could be applied an adhesive or welding. The adhesive or welding zone can cover partially or wholly the surfaces of contacts between the body and sealing member.

For instance, the crimping may have an effect to slightly pull outwardly on the sealing member which could result in leaving a gap at the junction between the collar portion 82 and the base surface 40. Although this gap can only affect appearance of the capsule, it does not affect the fluid-tight effect at the interface between the seal and the rest of the rim since such fluid-tightness is efficiently maintained at the crimping zone. An additional gluing or welding may thus serve to further improve these contact surfaces and eliminate or at least fill this gap.

Fig. 3 shows the state in which the enclosing member 9 and the capsule holder 13 are brought in closing pressure engagement and due to the water entering the interior of the capsule and building up a pressure there the pyramidal relief members 12 of the capsule holder 13 produce openings in the foil member 5 of the capsule 1. Upon insertion of the capsule the blade elements 24 of the water injector 14 have created perforations 16 in the top wall 17 of the capsule 1. When a sufficient pressure of fluid has been built inside the capsule, the beverage produced from the ingredients contained in the capsule can be drained in small interstices or perforations created by tearing of the foil member 5 by the relief elements 12.

Steps of the method of the invention will now be described in connection with Figs. 4 to 12. In a first step (not illustrated), the body 4 of the capsule is produced. The body is produced with a preform of the flange-like rim 6 which is not yet cramped but remains open for insertion and connection of the sealing member in a subsequent production step. The body 4 can be preformed
by deep drawing of a metal sheet or an assembly of multiple plies including metal, e.g., aluminium and plastic, e.g., polypropylene, polyethylene or polylactic acid and eventually binders and/or lacquers. Depending on the complexity of the shape of the body and the depth of the cavity, the sheet can be deep drawn in more than a single step. Also, the main cavity of the body and the flange-like rim can be deep drawn in a same operation or, alternatively, in separate operations.

The preformed body can then be placed in a die 30 comprising an annular support surface 31 onto which the flange-like rim can be fixedly supported. Fig. 5 shows in detail the preform of the flange-like rim being held on the support surface 31 of the die 30. For instance, the flange-like rim as preformed can comprise a pre-curved end 63, i.e., a portion which is not entirely curled into a closed substantially toroidal form. The pre-curved is open upwardly and terminates by an upright formable flange portion 64 intended to be formed into the curled configuration. The flange portion 64 may be preformed straight or slightly curved.

Fig. 5 also shows the sealing member which is inserted about the body of the capsule by a guiding mandrel 32 that slides downwardly along the inner surface 33 of the die. The sealing member can be pushed by the guiding mandrel 32 in a top-down effort until it comes in abutment against the support surface 60 of the flange-like rim as shown in Fig. 6. The guiding mandrel is shaped with sufficiently large surfaces which complement the sealing member to prevent the sealing member from twisting and for ensuring that the sealing member comes flat against the flange-like rim.

The contact surfaces of the sealing member and body may have been partially or wholly coated with an adhesive before insertion of the sealing member. In particular, an adhesive may be added at the interface between the upright portion 82 of seal and the base surface of the body 40 which is the critical part of the member that can be stretched after pinching the other end of the sealing member.

Fig. 7 shows in detail the arrangement of the sealing member and pre-curved flange-like rim after insertion of the sealing member in position on the rim. As clearly apparent, the sealing member extends radially by a connection portion 80 which is critical part of the member that can be stretched after pinching the other end of the sealing member. The connection portion 80 is supposed to be the pinched portion by the flange-like rim. This connection portion 80 of the sealing member while pinching it sufficiently tight to create a fluid tight sealing arrangement. While the crimping mandrel is acting on the terminal portion of the flange-like rim, a counterforce (e.g., a static support surface of die) can be applied on the top surface of the sealing member to enable a proper crimping effect. In the final crimped configuration, the body of the capsule is as in the embodiment of Figs 1-3, with the most outward end part of the sealing member being slightly rolled up within the curled end of the rim.

Figs. 13 and 14 show a possible mode in which, at rest, (i.e., after insertion but before crimping) the sealing member 8 is premade (i.e., moulded) with a connection portion 80 which is not aligned with the sealing portion 81 of the sealing member but inclined downwardly. The flange-like rim is similarly configured in its preform with a downwardly bent pre-curved portion 69 with an upwardly oriented opening 70. The portion 69 can make a folding angle of about 90 degrees (+/- 15 degrees) with respect to the support portion 60 of the rim. The connection portion 80 of the sealing member is such that it substantially runs along the precurved portion 69 in the direction of opening 70. In this case, crimping is carried out by a crimping mandrel (not illustrated) acting in a bottom-up direction to straighten the curled portion up and close it around the connection portion 80 of the sealing member while pinching it sufficiently tight to create a fluid tight sealing arrangement.
the sealing member 8 has a shortened reduced thickness connection portion 80. The capsule's body is preformed with a curled end portion 66 while leaving or not an annular opening 67 oriented inwardly in direction of the end of the portion 80, e.g., abutting against its end. The form of the curled end portion 66 before the final crimping operation can be an elongated and closed or substantially closed torus. Such a shape provides once crimped on the sealing member a larger crimping surface. Fig. 16 shows the arrangement after the sealing member insertion but before final crimping operation. Crimping in Fig. 17 is carried out by pressing and so flattening the curled portion of flange 66 resulting in a flattened pinching portion of flange 67 that pinches with its external surface 68 the reduced thickness terminal portion 80 of the sealing member 8. Due to the closed end portion of the preformed body, i.e., of elongated toroidal shape, one advantage is that transport of the bodies from the deep drawing station to the crimping station is facilitated. In particular, transport of the bodies can be carried out pneumatically through guiding rails and therefore, the smoother rounded edges of the capsules are less prone to blocking or jamming the capsules in the pneumatic transport device. Another advantage is also linked to the ability to pile the bodies up for transport, storage or for doing buffer stocks in the factory.

Claims

1. A method for producing a capsule (1) containing beverage ingredients designed for insertion in a beverage production device in which a liquid under pressure enters the capsule in order to interact with the ingredients in the capsule and to drain a beverage from the capsule, wherein the capsule comprises a body (4) extending by a flange-like rim (6) with a sealing member (8) attached thereto; wherein it comprises:
   - preforming the capsule body (4) and at least a portion of said flange-like rim (6),
   - placing a premade sealing member (8) on the flange-like rim (6),
   - crimping a portion of the flange-like rim (6) on a portion of the sealing member (8) so resulting in the sealing member becoming attached to the flange-like rim (6), characterised in that the sealing member (8) is ring-shaped.

2. Method according to claim 1, characterised in that the crimping operation comprises forming a curled end (61) at the flange-like rim arranged to pinch a portion (80) of said sealing member.

3. Method according to claim 2, characterised in that the sealing member (8) comprises a sealing portion (81) and a connection portion (80) extending outwardly from the connection portion; wherein the connection portion (80) is pinched by the curled end (61) of the flange-like rim.

4. Method according to claim 3, characterised in that during preforming of the capsule's body, an open curled end (61, 69) or substantially closed curled end (66) is already preformed.

5. Method according to claim 4, characterised in that during crimping, the curled end (61, 69, 66) is further curled or at least pressed to at least partially enclose the connection portion (80) and pinch it tight.

6. Method according to claims 3 or 4, characterised in that the section of the connection portion (80) is made relatively thinner than the largest section of the sealing portion (81) of the sealing member (8).

7. Method according to any one of claims 3 to 6, characterised in that the sealing member is premade with a sealing portion (81) and a connection portion (80) being relatively aligned one another and during crimping the curled end (66) is further curled or at least flattened to crimp the connection portion (80) along an external surface (68) of the curled end.

8. Method according to any one of claims 3 to 7, characterised in that the sealing member (8) is premade with a connection portion (80) being inclined downwardly relative to the sealing portion (81) and during crimping, a curled end (69) is further curled to straighten the connection portion (80) out, eventually roll it up, and pinch it tight.

9. Method according to any one of claims 3 to 8, characterised in that the sealing member (8) further comprises an annular collar portion (82) that extends beyond the rim (6) along the base surface (40) of the capsule's body.

10. Method according to any one of the preceding claims characterised in that the sealing member (8) is pinched by the outer surface (68) of the folded end (66) of the flange-like rim.

11. Method according to any one of the preceding claims, characterised in that the capsule body (4) is preformed by deep drawing of a metal sheet or metal-plastic laminate.

12. Method according to claim 11, characterised in that the capsule body (4) comprises aluminium.

13. Method according to any one of the preceding claims, characterised in that it comprises an additional step of gluing or welding the sealing member.
14. Method according to any one of the preceding claims, characterized in that it comprises a subsequent step of filling the body (4) with the food ingredient.

15. Method according to claim 14, characterized in that it comprises a subsequent step of welding a membrane (5) along a portion of the external face of the flange-like rim (6) to close the capsule.

16. Method according to any one of the preceding claims, characterized in that the sealing member (8) is of resilient material.

17. Method according to any one of the preceding claims, characterized in that the sealing member (8) is of rubber, plastic or silicone material.

18. A capsule for containing beverage ingredients, the capsule (1) being designed for insertion in a beverage production device in which a liquid under pressure enters the capsule in order to interact with the ingredients in the capsule and to drain a beverage from the capsule, the capsule comprising a body (4) extending by a flange-like rim (6) with the sealing member (8) attached thereto, characterised in that the sealing member (8) has the form of a ring and is pinched by the flange-like rim (6) of the capsule.

19. Capsule according to claim 18, characterized in that the sealing member (8) comprises a connection portion (80) which is pinched by a curled end (61) of the flange-like rim.

20. Capsule according to claims 18 or 19, characterized in that the sealing member (8) is resilient material.

21. Capsule according to claim 18, 19 or 20, characterized in that the sealing member (8) is made of rubber-elastic material.

22. Capsule according to any one of claims 18 to 21, characterized in that the capsule has an aluminium or plastic-aluminium deep-drawn body (4) hermetically closed by a membrane (5) sealed on the outer surface of the rim.

Patentansprüche

1. Verfahren zum Herstellen einer Getränkebestandteile enthaltenden Kapsel (1), die dafür konzipiert ist, in eine Getränkeerzeugungsvorrichtung eingesetzt zu werden, in der eine unter Druck stehende Flüssigkeit in die Kapsel eintritt, um mit den Bestandteilen in der Kapsel in Wechselwirkung zu treten und ein Getränk aus der Kapsel abzuziehen, wobei die Kapsel ein Gehäuse (4) aufweist, um das sich ein flanschähnlicher Rand (6) mit einem daran befestigten Dichtungsteil (8) erstreckt; wobei sie aufweist:
   - Vorformen des Kapselgehäuses (4) und mindestens eines Teiles des flanschähnlichen Randes (6),
   - Plazieren eines vorgefertigten Dichtungsteiles (8) auf dem flanschähnlichen Rand (6),
   - Umbiegen eines Teiles des flanschähnlichen Randes (6) auf einen Teil des Dichtungsteiles (8) mit dem Ergebnis, dass das Dichtungsteil an dem flanschähnlichen Rand (6) befestigt wird, dadurch gekennzeichnet, dass das Dichtungsteil (8) ringförmig ist.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Umbiegevorgang das Bilden eines eingerollten Endes (61) an dem flanschähnlichen Rand umfasst, das ausgeführt ist, um einen Teil (80) des Dichtungsteiles einzuklemmen.

3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das Dichtungsteil (8) einen Dichtungsabschnitt (81) und einen Verbindungsabschnitt (80) aufweist, der sich nach außen von dem Dichtungsabschnitt erstreckt; wobei der Verbindungsabschnitt (80) von dem eingerollten Ende (61) des flanschähnlichen Randes eingeklemmt wird.


5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass während des Umbiegens das eingerollte Ende (61, 69, 66) weiter eingerollt wird oder mindestens zusammengedrückt wird, um mindestens teilweise den Verbindungsabschnitt (80) einzuschließen und ihn fest einzuklemmen.

6. Verfahren nach den Ansprüchen 3 oder 4, dadurch gekennzeichnet, dass der Querschnitt des Verbindungsabschnittes (80) beträchtlich dünner als der größte Querschnitt des Dichtungsabschnittes (81) des Dichtungsteiles (8) gemacht wird.
7. Verfahren nach irgend einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass das Dichtungs teil so vorgefertigt wird, dass ein Dichtungsabschnitt (81) und ein Verbindungsabschnitt (80) ziemlich ausgerichtet zueinander sind und während des Umbiegens das eingerollte Ende (66) weiter eingerollt wird oder mindestens abgeflacht wird, um den Verbindungsabschnitt (80) entlang einer Außenfläche (68) des eingerollten Endes umzubiegen.

8. Verfahren nach irgend einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, dass das Dichtungs teil (8) so vorgefertigt wird, dass ein Verbindungsabschnitt (80) relativ zu dem Dichtungsabschnitt (81) nach unten geneigt wird, und während des Umbiegens ein eingerolltes Ende (69) weiter eingerollt wird, um den Verbindungsabschnitt (80) gerade zu richten oder eventuell aufzurollen und ihn fest einzuklemmen.

9. Verfahren nach irgend einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, dass das Dichtungs teil (8) außerdem einen ringförmigen Bundabschnitt (82) aufweist, der sich über den Rand (6) hinaus entlang der Basisoberfläche (40) des Kapselgehäuses erstreckt.


15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass es einen nachfolgenden Schritt aufweist, dass eine Memran (5) entlang eines Ab schnittes der Außenfläche des flanschähnlichen Randes angeschweißt wird, um die Kapsel zu verschließen.


17. Verfahren nach irgend einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Dichtungs teil (8) aus Gummi, Kunststoff oder Silikonmaterial ist.

18. Kapsel zum Aufnehmen von Getränkebestandtei len, wobei die Kapsel (1) dafür konzipiert ist, in eine Getränkeerzeugungsvorrichtung eingesetzt zu wer den, in der eine unter Druck stehende Flüssigkeit in die Kapsel eintritt, um mit den Bestandteilen in der Kapsel in Wechselwirkung zu treten und ein Getränk aus der Kapsel abzuziehen, wobei die Kapsel ein Dichtungs teil (8) auf der äußeren Oberfläche der Kapsel aufweist, wobei das Dichtungs teil geome trisch so ausgeführt ist, dass es in Dichtungseingriff mit mindestens einer damit zusammenpassenden Druckfläche (18) der Getränkeherstellungsvorrich tung während der Getränkezubereitung während der Getränkezubereitung ist, wobei die Kapsel ein Gehäuse (4) aufweist, das um einen flanschähnlichen Rand (6) verlängert ist, wobei das Dichtungs teil (8) daran befestigt ist, dadurch gekennzeichnet, dass das Dichtungs teil (8) die Form eines Ringes hat und von dem flanschähnlichen Rand (6) der Kapsel eingeklemmt ist.

19. Kapsel nach Anspruch 18, dadurch gekennzeichnet, dass das Dichtungs teil (8) einen Verbindungsabschnitt (80) aufweist, der von einem eingerollten Ende (61) des flanschähnlichen Randes eingeklemmt ist.


22. Kapsel nach irgend einem der Ansprüche 18 bis 21, dadurch gekennzeichnet, dass die Kapsel ein tiefgezogenes Gehäuse (4) aus Aluminium oder Kunststoff-Aluminium hat, das durch eine Membran (5) hermetisch verschlossen, die an der äußeren Oberfläche des Randes dichtend angebracht ist.

Revendications

1. Procédé pour produire une capsule (1) contenant
des ingrédients de boisson conçue pour insertion dans un dispositif de production de boisson dans lequel un liquide sous pression pénètre dans la capsule afin d’entrer en interaction avec les ingrédients dans la capsule et faire s’écouler une boisson depuis la capsule, dans lequel la capsule comprend un corps (4) s’étendant par une bordure de type rebord (6) avec un élément d’étanchéité (8) qui lui est fixé ; le procédé comprenant les étapes consistant à :

- préformer le corps de capsule (4) et au moins une partie de ladite bordure de type rebord (6),
- placer un élément d’étanchéité préfabriqué (8) sur la bordure de type rebord (6),
- sertir une partie de la bordure de type rebord (6) sur une partie de l’élément d’étanchéité (8) ce qui a pour conséquence que l’élément d’étanchéité est fixé à la bordure de type rebord (6), caractérisé en ce que l’élément d’étanchéité (8) est en forme d’anneau.

2. Procédé selon la revendication 1, caractérisé en ce que l’opération de sertissage comprend la formation d’une extrémité roulée (61) au niveau de la bordure de type rebord (6) agencée pour pincer une partie (80) dudit élément d’étanchéité.

3. Procédé selon la revendication 2, caractérisé en ce que l’élément d’étanchéité (8) comprend une partie d’étanchéité (81) et une partie de connexion (80) s’étendant vers l’extérieur depuis la partie de connexion ; dans lequel la partie de connexion (80) est pincée par l’extrimité roulée (61) de la bordure de type rebord.

4. Procédé selon la revendication 3, caractérisé en ce que, durant le préformage du corps de capsule, une extrémité roulée ouverte (61, 69) ou une extrémité roulée sensiblement fermée (66) est déjà préformée.

5. Procédé selon la revendication 4, caractérisé en ce que, durant le sertissage, l’extrémité roulée (61, 69, 66) est davantage roulée ou au moins pressée pour au moins en partie, enfermer la partie de connexion (80) et la pincer serré.

6. Procédé selon la revendication 3 ou 4, caractérisé en ce que la section de la partie de connexion (80) est fabriquée relativement plus mince que la section la plus grande de la partie d’étanchéité (81) de l’élément d’étanchéité (8).

7. Procédé selon l’une quelconque des revendications 3 à 6, caractérisé en ce que l’élément d’étanchéité est préfabriqué avec une partie d’étanchéité (81) et une partie de connexion (80) étant relativement alignées l’une avec l’autre et, durant le sertissage, l’extrémité roulée (66) est davantage roulée ou au moins aplatie pour sertir la partie de connexion (80) le long d’une surface externe (68) de l’extrémité roulée.

8. Procédé selon l’une quelconque des revendications 3 à 7, caractérisé en ce que l’élément d’étanchéité (8) est préfabriqué avec une partie de connexion (80) étant inclinée vers le bas par rapport à la partie d’étanchéité (81) et, durant le sertissage, une extrémité roulée (69) est davantage roulée pour redresser la partie de connexion (80), finalement la retrousser, et la pincer serré.

9. Procédé selon l’une quelconque des revendications 3 à 8, caractérisé en ce que l’élément d’étanchéité (8) comprend, en outre, une partie de collerette annulaire (82) qui s’étend au-delà de la bordure (6) le long de la surface de base (40) du corps de capsule.

10. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que l’élément d’étanchéité (8) est pincé par la surface externe (68) de l’extrémité pliée (66) de la bordure de type rebord.

11. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que le corps de capsule (4) est préformé par emboutissage profond d’un métal en feuille ou d’un laminé métal-plastique.

12. Procédé selon la revendication 11, caractérisé en ce que le corps de capsule (4) comprend de l’aluminium.

13. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce qu’il comprend une étape supplémentaire de collage ou soudage de l’élément d’étanchéité (8) au niveau de la bordure de type rebord (6).

14. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce qu’il comprend une étape ultérieure consistant à remplir le corps (4) de l’ingrédient alimentaire.

15. Procédé selon la revendication 14, caractérisé en ce qu’il comprend une étape ultérieure de soudage d’une membrane (5) le long d’une partie de la face externe de la bordure de type rebord (6) pour fermer la capsule.

16. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que l’élément d’étanchéité (8) est fait d’un matériau élastique.

17. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que l’élément d’étanchéité (8) est en caoutchouc, plastique ou silicone.
18. Capsule pour contenir des ingrédients de boisson, la capsule (1) étant conçue pour insertion dans un dispositif de production de boisson dans lequel un liquide sous pression pénètre dans la capsule afin d’entrer en interaction avec les ingrédients dans la capsule et faire s’écouler une boisson depuis la capsule, la capsule comprenant un élément d’étanchéité (8) sur la surface externe de la capsule, l’élément d’étanchéité étant agencé symétriquement pour être en engagement d’étanchéité avec au moins une surface pressante appariée (18) du dispositif de production de boisson durant la préparation de boisson, la capsule comprenant un corps (4) s’étendant par une bordure de type rebord (6) avec l’élément d’étanchéité (8) qui lui est fixé, caractérisée en ce que l’élément d’étanchéité (8) a la forme d’un anneau et est pincé par la bordure de type rebord (6) de la capsule.

19. Capsule selon la revendication 18, caractérisée en ce que l’élément d’étanchéité (8) comprend une partie de connexion (80) qui est pincée par une extrémité roulée (61) de la bordure de type rebord.

20. Capsule selon la revendication 18 ou 19, caractérisée en ce que l’élément d’étanchéité (8) est fait d’un matériau élastique.

21. Capsule selon la revendication 18, 19 ou 20, caractérisée en ce que l’élément d’étanchéité (8) est fait d’un matériau caoutchouc-élastique.

22. Capsule selon l’une quelconque des revendications 18 à 21, la capsule étant caractérisée en ce qu’elle comporte un corps (4) embouti profond d’aluminium ou de plastique-aluminium hermétiquement fermé par une membrane (5) scellée sur la surface externe de la bordure.
FIG. 12
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- AU 515875 [0003]
- EP 0554469 A1 [0004]
- US 20030217643 A [0005]