Word completion in a handheld electronic device

A method for enabling generation of text on a handheld electronic device which has a plurality of input members, at least some of which have a number of linguistic elements assigned thereto, and a memory having language objects stored therein. The method comprises enabling detection of a number of input member actuations corresponding with an ambiguous input, making at least one of a determination that the number of actuations exceeds a first threshold and a determination that a quantity of predicted language objects corresponding with the ambiguous input is less than a second threshold, generating prefix objects corresponding with the ambiguous input and predicted language objects corresponding with the ambiguous input, each predicted language object comprising a prefix object portion and a completion portion, and providing at a text input location an output comprising a prefix object and a completion portion of a first predicted language object.
Description

BACKGROUND

Field

[0001] The disclosure relates generally to handheld electronic devices and, more particularly, to an improved method of inputting text on a handheld electronic device.

Background Information

[0002] Numerous types of handheld electronic devices are known. Examples of such handheld electronic devices include, for instance, personal data assistants (PDAs), handheld computers, two-way pagers, cellular telephones, and the like. Although some handheld electronic devices are stand-alone devices, many feature wireless communication capability for communication with other devices.

[0003] Such handheld electronic devices are generally intended to be portable, and thus are of a relatively compact configuration in which keys and other input structures often perform multiple functions under certain circumstances or may otherwise have multiple aspects or features assigned thereto. With advances in technology, handheld electronic devices are built to have progressively smaller form factors yet have progressively greater numbers of applications and features resident thereon. As a practical matter, the keys of a keypad can only be reduced to a certain small size before the keys become relatively unusable. In order to enable text entry, however, a keypad must be capable of entering all twenty-six letters of the Latin alphabet, for instance, as well as appropriate punctuation and other symbols.

[0004] One way of providing numerous letters in a small space has been to provide a "reduced keyboard" in which multiple letters, symbols, and/or digits, and the like, are assigned to any given key. For example, a touch-tone telephone includes a reduced keypad by providing twelve keys, of which ten have digits thereon, and of these ten keys eight have Latin letters assigned thereto. For instance, one of the keys includes the digit "2" as well as the letters "A", "B", and "C". Other known reduced keyboards have included other arrangements of keys, letters, symbols, digits, and the like. Since a single actuation of such a key potentially could be intended by the user to refer to any of the letters "A", "B", and "C", and potentially could also be intended to refer to the digit "2", the input generally is an ambiguous input and is in need of some type of disambiguation in order to be useful for text entry purposes.

[0005] In order to enable a user to make use of the multiple letters, digits, and the like on any given key, numerous keystroke interpretation systems have been provided. For instance, a "multi-tap" system allows a user to substantially unambiguously specify a particular character on a key by pressing the same key a number of times equivalent to the position of the desired character on the key. For example, on the aforementioned telephone key that includes the letters "ABC", and the user desires to specify the letter "C", the user will press the key three times. While such multi-tap systems have been generally effective for their intended purposes, they nevertheless can require a relatively large number of key inputs compared with the number of characters that ultimately are output.

[0006] Another exemplary keystroke interpretation system would include key chording, of which various types exist. For instance, a particular character can be entered by pressing two keys in succession or by pressing and holding first key while pressing a second key. Still another exemplary keystroke interpretation system would be a "press-and-hold / press-and-release" interpretation function in which a given key provides a first result if the key is pressed and immediately released, and provides a second result if the key is pressed and held for a short period of time. While the systems have likewise been generally effective for their intended purposes, such systems also have their own unique drawbacks.

[0007] Another keystroke interpretation system that has been employed is a software-based text disambiguation function. In such a system, a user typically presses keys to which one or more characters have been assigned, generally pressing each key one time for each desired letter, and the disambiguation software attempts to determine the intended input. More specifically, the disambiguation software produces a list of suggested prefix objects that the user may select while typing a message. Typically, after selecting one of the suggested prefix objects, the user must press additional keys to enter the remaining characters needed to complete the desired word.

[0008] It would be desirable to provide an improved handheld electronic device with a reduced keyboard that seeks to mimic a QWERTY keyboard experience or other particular keyboard experience. Such an improved handheld electronic device might also desirably be configured with enough features to enable text entry and other tasks with relative ease. More specifically, it would be desirable for such an improved handheld electronic device to have improved text entry capabilities.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] A full understanding can be gained from the following Description of the Preferred Embodiment when read in conjunction with the accompanying drawings in which:

[0010] Figure 1 is a top plan view of an improved handheld electronic device.

[0011] Figure 2 is a schematic depiction of the handheld electronic device of Figure 1.

[0012] Figure 3 is an exemplary output during a text entry operation.
DESCRIPTION OF THE PREFERRED EMBODIMENT

[0013] Figure 4 is another exemplary output during another part of the text entry operation.

[0014] Figure 5 is another exemplary output during another part of the text entry operation.

[0015] Figure 6 is another exemplary output during another part of the text entry operation.

[0016] Figure 7 is another exemplary output during another part of the text entry operation.

[0017] Figure 8 is another exemplary output during another part of the text entry operation.

[0018] Figure 9 is an exemplary flowchart depicting certain aspects of the disambiguation and predictive text functions that can be executed on the handheld electronic device of Figure 1 according to one embodiment.

[0019] Figure 10 is an exemplary flowchart depicting certain aspects of the disambiguation and predictive text functions that can be executed on the handheld electronic device of Figure 1 according to another embodiment.

[0020] Figure 11 is an exemplary flowchart depicting certain aspects of the disambiguation and predictive text functions that can be executed on the handheld electronic device of Figure 1 according to another embodiment.

[0021] Similar numerals refer to similar parts throughout the specification.

An improved handheld electronic device 4 is indicated generally in Figure 1 and is depicted schematically in Figure 2. The exemplary handheld electronic device 4 includes a housing 6 upon which is disposed a processor unit that includes an input apparatus 8, an output apparatus 12, a processor 16, and a memory 20 for storing at least a first routine 22. The processor 16 may be, for instance, and without limitation, a microprocessor (μP) and is responsive to input signals from the input apparatus 8 and provides output signals to the output apparatus 12. The processor 16 also interfaces with the memory 20 and is capable of executing the at least first routine 22. Examples of handheld electronic devices are included in U.S. Patent No. 6,452,588, U.S. Patent No. 6,873,317, and U.S. Patent No. 6,489,950, which are incorporated by reference herein.

As can be understood from Fig. 1, the output apparatus 12 includes a display 60, an LED 15, and a speaker 14, each of which may be responsive to one or more output signals from the processor 16. The input apparatus 8 includes a keypad 24 and a thumbwheel 32. The keypad 24 is in the exemplary form of a full QWERTY keyboard including a plurality of keys 28 that serve as input members. The keys 28 are disposed on a front face of the housing 6, and the thumbwheel 32 is disposed on a side of the housing 6. The thumbwheel 32 can serve as another input member and is both rotatable, as is indicated by the arrow 34, to provide input to the processor 16, and also can travel in a direction generally toward the housing 6, as is indicated by the arrow 38, to provide other input to the processor 16.

Many of the keys 28 include a number of linguistic elements 48 disposed thereon. As employed herein, the expression "a number of" and variations thereof shall refer broadly to any non-zero quantity, including a quantity of one. As can be seen in Fig. 1, one of the keys 28 of the keypad 24 includes as the linguistic elements 48 thereof the letter "O" and the letter "P". Generally speaking, the handheld electronic device 4 is structured such that the processor 16 recognizes, as an input thereof, one of the number of linguistic elements 48 disposed on an actuated key 28. For example, when a user is composing a message and actuates the key 28 having the linguistic elements 48 "O" and "P" disposed thereon, the processor 16 is structured to recognize that the user is attempting to insert the letter "O" or the letter "P" into the message.

The memory 20 can be any one or more of a variety of types of internal and/or external storage media such as, without limitation, RAM, ROM, EPROM(s), EEPROM(s), and the like that provide a storage register for data storage such as in the fashion of an internal storage area of a computer, and can be volatile memory or non-volatile memory. The memory 20 includes a number of routines depicted generally with the numeral 22 for the processing of data. The routines 22 can be in any of a variety of forms such as, without limitation, software, firmware, and the like. As will be explained in greater detail below, the routines 22 include a disambiguation application and a predictive text application, as well as other routines.

An exemplary input sequence is depicted in Figures 3 - 8. In this example, the user is in the process of entering the message "I am having my carpet cleaned tomorrow" (See Figure 8). Referring briefly to Figure 3, the words "I am having my" have been output as a text component 68 on display 60. Each word (e.g., "I", "am", "having", and "my") represents a delimited input as is generally now. As seen in Figure 3, the user has also actuated the key 28 having the linguistic elements <C> and <V> disposed thereon. As a result, the disambiguation application 22 generates a first prefix object "C" as well as another prefix object "V". Each prefix object is associated with a frequency object. In the current embodiment, the frequency object associated with the prefix object "C" has a frequency value greater than that of the frequency object associated with prefix object "V". Thus, the prefix object "C" is provided at a text input location 69.

Additionally, the disambiguation application generates a variant component 72 comprised of a default portion 76, a variant portion 80, and a functional portion 46. In the current embodiment, the prefix object located at the default portion 76 is the same as the prefix object displayed at the text input location 69 (i.e., the prefix object "C"). In the current embodiment, the functional portion 46 allows, for example, the user to scroll to view additional prefix objects should the number of prefix objects returned by the disambiguation application exceed the display space available in the variant component 72.
In the current embodiment, the number of actuations detected by the processor 16 (e.g., after a delimited input) is compared to a first threshold value. If the number of actuations detected is less than the first threshold, the predictive text application is not executed by the processor 16. However, if the number of actuations detected is greater than or equal to the first threshold, the predictive text application is executed by the processor 16.

In the current embodiment, for example, the first threshold is set at two. As seen in Figure 3, because only one input member actuation has thus far been detected (i.e., the actuation of the key 28 having linguistic elements “<C>” and “<V>” disposed thereon) after the last delimited input (e.g., the keystroke sequence “<m><y><space>”), the predictive text application is not executed by the processor 16.

Referring now to Figure 4, the user has actuated the key 28 having the linguistic elements “<A>” and “<S>” disposed thereon. As a result, the disambiguation application 22 generates the prefix object “CA” at the default portion 76 and the prefix objects “VA”, “CS”, and “VS” at the variant portion 80. The prefix object “CA” is also provided as an output at the text input location 69. Because the number of input member actuations thus far detected is greater than or equal to the first threshold (i.e., two), a determination is made as to whether the number of predicted words corresponding to the detected input member actuations is less than a second threshold. The second threshold prevents the predictive text application from running should a large number of predicted language objects correspond to the detected input. In the current example, the second threshold is selected such that the predictive text application is not executed by the processor 16 for the detected input because the detected input corresponds to a large number of predicted words (i.e., a large number of predicted words begin with the letters “ca”, “va”, “cs”, and “vs”).

Referring now to Figure 5, the user has actuated the key 28 having the linguistic elements “<E>” and “<R>” disposed thereon. As a result, the disambiguation application 22 generates the prefix object “CAR” at the default portion 76 and the prefix object “VAR” at the variant portion 80. The prefix object “CAR” is also provided as an output at the text input location 69. Because the number of input member actuations detected is greater than the first threshold and the number of predicted words is less than the second threshold, the predictive text application is executed by the processor 16. The predictive text application generates a number of predicted language objects. As shown in Figure 6, for example, the predictive text application generates the additional predicted language objects “carpet”, “carpenter”, “carsets”, “carpetbag”, and “carotid”. Each additional predicted language object is also comprised of a prefix object portion and a completion portion.

In the current embodiment, the completion portion of a first predictive language object is provided at the text input location 69. As shown in Figure 5, the completion portion “penter” from the predicted language object “carpenter” is provided at the text input location 69 in a different font type (e.g., backlit). The user is able, among others, to select the prefix object “car”, select the predicted word “carpenter”, select one of the prefix objects or predicted words listed in the variant portion 80, or continue text entry. More specifically, the user can highlight a desired object/word by, among others, positioning a cursor at the desired object/word and select the desired object/word by, among others, actuating the thumwheel, pressing the space key, pressing the return key, and/or dwelling at the word for a certain amount of time.

Referring now to Figure 6, the user has actuated the key 28 having the linguistic elements “<O>” and “<P>” disposed thereon. As a result, the disambiguation application 22 generates the prefix object “CARP” at the default portion 76 and the prefix object “CARO” at the variant portion 80. The prefix object “CARP” is also provided as an output at the text input location 69. Because the number of input member actuations detected is greater than the first threshold and the number of predicted words is less than the second threshold, the predictive text application generates a number of additional predicted language objects. As shown in Figure 6, for example, the predictive text application generates the additional predicted language objects “carpet”, “carpenter”, “carpets”, “carpetbag”, and “carotid”. Each additional predicted language object is also comprised of a prefix object portion and a completion portion.

In the current embodiment, the completion portion of a first predictive language object is provided at the text input location 69 in a different font type (e.g., backlit). As shown in Figure 6, the completion portion “pet” from the predicted language object “carpet” is provided at the text input location 69. The user is able, among others, to select the prefix object “car”, select the predicted word “carpet”, select one of the prefix objects or predicted words listed in the variant portion 80, or continue text entry.

It should be noted that even though the predicted language object “carpenter” has an associated frequency object that is greater than the frequency object associated with the predicted language object “carpet”, the completion portion “pet” for the predicted language object “carpet” is provided as an output at the text input location 69. This is because an assumption is made that the user, who could have selected the predicted language object “carpenter” when the completion object portion and a completion portion. For instance, the predicted language object “carpenter” is comprised of the prefix object portion “car” and the completion portion “penter”; the predicted language object “carpet” is comprised of the prefix object portion “car” and the completion portion “pet”; the predicted language object “various” is comprised of the prefix object portion “var” and the completion portion “ious”; and the predicted language object “variable” is comprised of the prefix object portion “var” and the completion portion “iable”.

In the current embodiment, the completion portion of a first predictive language object is provided at the text input location 69. As shown in Figure 5, the completion portion “penter” from the predicted language object “carpenter” is provided at the text input location 69 in a different font type (e.g., backlit). The user is able, among others, to select the prefix object “car”, select the predicted word “carpenter”, select one of the prefix objects or predicted words listed in the variant portion 80, or continue text entry. More specifically, the user can highlight a desired object/word by, among others, positioning a cursor at the desired object/word and select the desired object/word by, among others, actuating the thumwheel, pressing the space key, pressing the return key, and/or dwelling at the word for a certain amount of time.

Referring now to Figure 6, the user has actuated the key 28 having the linguistic elements “<O>” and “<P>” disposed thereon. As a result, the disambiguation application 22 generates the prefix object “CARP” at the default portion 76 and the prefix object “CARO” at the variant portion 80. The prefix object “CARP” is also provided as an output at the text input location 69. Because the number of input member actuations detected is greater than the first threshold and the number of predicted words is less than the second threshold, the predictive text application generates a number of additional predicted language objects. As shown in Figure 6, for example, the predictive text application generates the additional predicted language objects “carpet”, “carpenter”, “carpets”, “carpetbag”, and “carotid”. Each additional predicted language object is also comprised of a prefix object portion and a completion portion.

In the current embodiment, the completion portion of a first predictive language object is provided at the text input location 69 in a different font type (e.g., backlit). As shown in Figure 6, the completion portion “pet” from the predicted language object “carpet” is provided at the text input location 69. The user is able, among others, to select the prefix object “car”, select the predicted word “carpet”, select one of the prefix objects or predicted words listed in the variant portion 80, or continue text entry.
portion “penter” was provided as an output at the text input location 69 (i.e., Figure 6), does not wish to enter the word “carpenter” in the text input location 69.

[0036] As discussed above, the user desires to enter the word “carpenter” in his message. Accordingly, the user highlights and/or selects the completion portion “et” of the predicted language object “carpenter” in the text input location 69. The word may be highlighted by, among others, positioning a cursor at the desired word and selected by, among others, actuating the thumbwheel, pressing the space key, pressing the return key, and/or dwelling at the word for a certain amount of time. Referring to Figure 7, the word “carpet” (a delimited input) is displayed at the text component 68 and the text input location is blank (e.g., only a cursor is present). Figure 8 illustrates the full message input by the user in the current example.

[0037] Figure 9 illustrates an operational process 30 for generating text on the handheld electronic device 4 shown in Figure 1 according to one embodiment. Operational process 30 is initiated at operation 31 when, for example, processor 16 detects the actuation of a number of input members, such as and without limitation, keys 28 and/or thumbwheel 32.

[0038] A determination is then made at operation 32 as to whether the number of actuations detected is greater than a first threshold. If the number of actuations detected is less than a first threshold, operational control branches “NO” and operation 33 generates a number of prefix objects corresponding with the ambiguous input. After the prefix objects are generated, at least one prefix object is output, for example, to a text input location 69 of the display 60 in operation 34.

[0039] If the number of actuations detected is greater than a first threshold, then operational control branches “YES” and operation 35 generates a number of prefix objects corresponding with the ambiguous input and a number of predicted language objects corresponding to the ambiguous input. Each predicted language object is comprised of a prefix object portion and a completion portion. A determination is then made at operation 32a as to whether the number of corresponding predicted words is less than a second threshold. If the number of corresponding predicted words is not less than the second threshold, operational control branches “NO” and operation 33 generates a number of prefix objects corresponding with the ambiguous input. After the prefix objects are generated, at least one prefix object is output, for example, to a text input location 69 of the display 60 in operation 34.

[0040] Figure 10 illustrates an operational process 30’ for generating text on the handheld electronic device 4 shown in Figure 1 according to another embodiment. Operational process 30’ is initiated at operation 31 when, for example, processor 16 detects the actuation of a number of input members, such as and without limitation, keys 28 and/or thumbwheel 32.

[0041] A determination is then made at operation 32a as to whether the number of corresponding predicted words is less than a second threshold. If the number of corresponding predicted words is not less than the second threshold, operational control branches “NO” and operation 33 generates a number of prefix objects corresponding with the ambiguous input. After the prefix objects are generated, at least one prefix object is output, for example, to a text input location 69 of the display 60 in operation 34.

[0042] If the number of corresponding predicted words is less than the second threshold, then operational control branches “YES” and operation 35 generates a number of prefix objects corresponding with the ambiguous input and a number of predicted language objects corresponding to the ambiguous input. Each predicted language object is comprised of a prefix object portion and a completion portion. If the number of actuations detected is greater than a second threshold, operational control branches “NO” and operation 33 generates a number of prefix objects corresponding with the ambiguous input. After the prefix objects are generated, at least one prefix object and a portion of one of the predicted language objects is output to the text input location 69 of the display 60. If the number of actuations detected is less than the second threshold, operational control branches “YES” and operation 35 generates a number of prefix objects corresponding with the ambiguous input. Each predicted language object is comprised of a prefix object portion and a completion portion. After the prefix objects and predicted language objects are generated, at least one prefix object and the completion portion of one predicted language object is output to the text input location 69 of the display 60. It should be noted that, in the current embodiment, the processor 16 only provides at the text input location 69 the completion portion of a predicted language object which has a prefix object portion that is the same as the prefix object being output at the text input location.

[0043] Figure 11 illustrates an operational process 30” for generating text on the handheld electronic device 4 shown in Figure 1 according to another embodiment. Operational process 30” is initiated at operation 31 when, for example, processor 16 detects the actuation of a number of input members, such as and without limitation, keys 28 and/or thumbwheel 32.

[0044] A determination is then made at operation 32 as to whether the number of actuations detected is greater than a first threshold. If the number of actuations detected is less than a first threshold, operational control branches “YES” and a determination is made at operation 32a as to whether the number of corresponding predicted words is less than a second threshold. If the number of corresponding predicted words is not less than the second threshold, operational control branches “NO” and operation 33 generates a number of prefix objects corresponding with the ambiguous input. As discussed above, after the prefix objects are generated, at least one prefix object is output, for example, to a text input location 69 of the display 60 in operation 34.

[0045] If the number of actuations detected is greater than a first threshold, then operational control branches “YES” and a determination is made at operation 32a as to whether the number of corresponding predicted words is less than a second threshold. If the number of corresponding predicted words is not less than the second threshold, operational control branches “NO” and operation 33 generates a number of prefix objects corresponding with the ambiguous input. As discussed above, after the prefix objects are generated, at least one prefix object is output, for example, to a text input location 69 of the display 60 in operation 34.

[0046] If the number of corresponding predicted words
is less than the second threshold, then operational control branches "YES" and operation 35 generates a number of prefix objects corresponding with the ambiguous input and a number of predicted language objects corresponding to the ambiguous input. Each predicted language object is comprised of a prefix object portion and a completion portion. After the prefix objects and predicted language objects are generated, at least one prefix object and a portion of one of the predicted language objects is output in operation 36. In the current embodiment, for example, at least one prefix object and the completion portion of one predicted language object is output to the text input location 69 of the display 60. It should be noted that, in the current embodiment, the processor 16 only provides at the text input location 69 the completion portion of a predicted language object which has a prefix object portion that is the same as the prefix object being output at the text input location.

While specific embodiments have been described in detail, it will be appreciated by those skilled in the art that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure. Accordingly, the particular arrangements disclosed are meant to be illustrative only and not limiting as to the scope of the disclosed and claimed concept which is to be given the full breadth of the claims appended and any and all equivalents thereof.

Claims

1. A method for enabling generation of text on a handheld electronic device, said handheld electronic device comprising a plurality of input members and a memory, at least some of the input members each having a number of linguistic elements assigned thereto and the memory having a plurality of language objects stored therein, the method comprising:

 - enabling detection of a number of input member actuations corresponding with an ambiguous input;
 - making at least one of a determination that said number of input member actuations exceeds a first threshold, and a determination that a quantity of predicted language objects corresponding with said ambiguous input is less than a second threshold;
 - generating a number of prefix objects corresponding with said ambiguous input and a number of predicted language objects corresponding with said ambiguous input, each predicted language object comprising a prefix object portion and a completion portion; and
 - providing at a text input location an output comprising a prefix object and a completion portion of a first predicted language object.

2. The method of Claim 1, further comprising:

 - providing at a variant component location an output comprising at least some of said prefix objects;
 - enabling detection of a selection of one of said at least some of said prefix objects; and
 - responsive to said selection, removing from said text input location the completion portion of said first predicted language object.

3. The method of Claim 1, further comprising:

 - enabling detection of a selection of at least one of said prefix object portion of said first predicted language object, said completion portion of said first predicted language object, and said first predicted language object; and
 - responsive to said selection, at least one of inserting said first predicted language object into said text input location, and inserting said prefix object and said completion portion of said first predicted language object into said text output location.

4. The method of Claim 1, further comprising:

 - providing at a variant component location an output comprising at least some of prefix objects and at least some of said predicted language objects.

5. The method of Claim 4, further comprising:

 - enabling selection of at least one of a particular prefix object and a particular predicted language object provided at said variant component location; and
 - providing at said text input location an output comprising said one of a particular prefix object and said particular predicted language object.

6. The method of Claim 1, further comprising:

 - detecting an additional input member actuation as a further ambiguous input;
 - generating a number of additional prefix objects corresponding with said ambiguous input and said further ambiguous input;
 - generating a number of additional predicted language objects corresponding with said ambiguous input and said further ambiguous input; and
 - providing at the text input location an output comprising an additional prefix object and an additional completion portion of a second predicted language object, said second predicted language object being different than said first predicted language object.
7. The method of Claim 1, wherein said making comprises only making one of a determination that said number of input member actuations exceeds a first threshold, and a determination that a quantity of predicted language objects corresponding with said ambiguous input is less than a second threshold.

8. The method of Claim 1, wherein said making comprises both making a determination that said number of input member actuations exceeds a first threshold and making a determination that a quantity of predicted language objects corresponding with said ambiguous input is less than a second threshold.

9. A handheld electronic device comprising:
 a processor unit comprising a processor, an input apparatus, an output apparatus, and a memory having a routine stored therein, the processor unit being structured to:
 - detect of a number of input member actuations corresponding with an ambiguous input;
 - make at least one of a determination that said number of input member actuations exceeds a first threshold, and a determination that a quantity of predicted language objects corresponding with said ambiguous input is less than a second threshold;
 - generate a number of prefix objects corresponding with said ambiguous input and a number of predicted language objects corresponding with said ambiguous input, each predicted language object comprising a prefix object portion and a completion portion; and
 - provide at a text input location an output comprising a prefix object and a completion portion of a first predicted language object.

10. The handheld electronic device of Claim 9 wherein said processor unit is further structured to provide at a variant component location, an output comprising at least some of prefix objects and at least some of said predicted language objects.

11. The handheld electronic device of Claim 9 wherein said processor unit is further structured to:
 - enable selection of at least one of a particular prefix object and a particular predicted language object provided at said variant component location; and
 - provide at said text input location an output comprising said one of a particular prefix object and said particular predicted language object.

12. The handheld electronic device of Claim 9 wherein said processor unit is further structured to:
 - detect an additional input member actuation as a further ambiguous input;
 - generate a number of additional prefix objects corresponding with said ambiguous input and said further ambiguous input;
 - generate a number of additional predicted language objects corresponding with said ambiguous input and said further ambiguous input; and
 - provide at the text input location an output comprising an additional prefix object and an additional completion portion of a second predicted language object, said second predicted language object being different than said first predicted language object.

13. The handheld electronic device of Claim 12 wherein said processor unit is further structured to:
 - make as said at least one determination, only a determination that said number of input member actuations exceeds a first threshold.

14. The handheld electronic device of Claim 9 wherein said processor unit is further structured to:
 - detect an additional input member actuation as a further ambiguous input;
 - generate a number of additional prefix objects corresponding with said ambiguous input and said further ambiguous input;
 - generate a number of additional predicted language objects corresponding with said ambiguous input and said further ambiguous input; and
 - provide at the text input location an output comprising an additional prefix object and an additional completion portion of a second predicted language object, said second predicted language object being different than said first predicted language object.

15. The handheld electronic device of Claim 9 wherein said processor unit is further structured to:
 - enable selection of at least one of a particular prefix object and a particular predicted language object provided at said variant component location; and
 - provide at said text input location an output comprising said one of a particular prefix object and said particular predicted language object.

16. The handheld electronic device of Claim 9 wherein said processor unit is further structured to:
 - detect an additional input member actuation as a further ambiguous input;
 - generate a number of additional prefix objects corresponding with said ambiguous input and said further ambiguous input;
 - generate a number of additional predicted language objects corresponding with said ambiguous input and said further ambiguous input; and
 - provide at the text input location an output comprising an additional prefix object and an additional completion portion of a second predicted language object, said second predicted language object being different than said first predicted language object.

17. The handheld electronic device of Claim 9 wherein said processor unit is further structured to:
 - make as said at least one determination, only a determination that a quantity of predicted language objects corresponding with said ambiguous input is less than a second threshold.
said at least one determination, both a determination that said number of input member actuations exceeds a first threshold, and a determination that a quantity of predicted language objects corresponding with said ambiguous input is less than a second threshold.

18. A method for enabling generation of text on a handheld electronic device, the method comprising:

- enabling detection of an input representing a number of linguistic elements; making at least one of
 - a determination that a number of linguistic elements exceeds a first predetermined threshold,
 - a determination that a quantity of predicted language objects associated with said input is less than a second predetermined threshold;
- generating a number of predicted language objects associated with said input, each of said predicted language objects including a prefix portion and a completion portion, wherein said prefix portion corresponds with said detected number of linguistic elements; and
- providing at a text input location an output having both said number of linguistic elements represented by said input and the completion portion of one of said predicted language objects.

19. The method of Claim 18, further comprising:

- enabling selection of the completion portion of said one of said predicted language objects; and
- responsive to said selection, inserting said one of said predicted language objects into said text output location.

20. The method of Claim 18, further comprising:

- detecting a further input of at least one other linguistic element;
- generating a second number of predicted language objects associated with said input and said further input; and
- providing at a text input location an output having both the completion portion of one of said second number of predicted language objects and said number of linguistic elements represented by said input and said further input.
DETECT INPUT MEMBER ACTUATIONS CORRESPONDING WITH AN AMBIGUOUS INPUT

NUMBER OF ACTUATIONS DETECTED GREATER THAN OR EQUAL TO A FIRST THRESHOLD?

YES

GENERATE A NUMBER OF PREFIX OBJECTS CORRESPONDING WITH THE AMBIGUOUS INPUT AND A NUMBER OF PREDICTED LANGUAGE OBJECTS CORRESPONDING WITH THE AMBIGUOUS INPUT

NO

GENERATE A NUMBER OF PREFIX OBJECTS CORRESPONDING WITH THE AMBIGUOUS INPUT

PROVIDE AT LEAST ONE OF THE NUMBER OF PREFIX OBJECTS AT A TEXT INPUT LOCATION

PROVIDE AT LEAST ONE OF THE NUMBER OF PREFIX OBJECTS AND AT LEAST A PORTION OF ONE OF THE PREDICTED LANGUAGE OBJECTS AT THE TEXT INPUT LOCATION

FIG. 9
DETECT INPUT MEMBER ACTUATIONS CORRESPONDING WITH AN AMBIGUOUS INPUT

NUMBER OF CORRESPONDING PREDICTED WORDS LESS THAN OR EQUAL TO A SECOND THRESHOLD?

YES

GENERATE A NUMBER OF PREFIX OBJECTS CORRESPONDING WITH THE AMBIGUOUS INPUT AND A NUMBER OF PREDICTED LANGUAGE OBJECTS CORRESPONDING WITH THE AMBIGUOUS INPUT

NO

GENERATE A NUMBER OF PREFIX OBJECTS CORRESPONDING WITH THE AMBIGUOUS INPUT

PROVIDE AT LEAST ONE OF THE NUMBER OF PREFIX OBJECTS AT A TEXT INPUT LOCATION

PROVIDE AT LEAST ONE OF THE NUMBER OF PREFIX OBJECTS AND AT LEAST A PORTION OF ONE OF THE PREDICTED LANGUAGE OBJECTS AT THE TEXT INPUT LOCATION

FIG. 10
DETECT INPUT MEMBER ACTUATIONS CORRESPONDING WITH AN AMBIGUOUS INPUT

NUMBER OF ACTUATIONS DETECTED GREATER THAN OR EQUAL TO A FIRST THRESHOLD?

NO

NUMBER OF CORRESPONDING PREDICTED WORDS LESS THAN OR EQUAL TO A SECOND THRESHOLD?

NO

YES

YES

GENERATE A NUMBER OF PREFIX OBJECTS CORRESPONDING WITH THE AMBIGUOUS INPUT AND A NUMBER OF PREDICTED LANGUAGE OBJECTS CORRESPONDING WITH THE AMBIGUOUS INPUT

Gives the number of prefix objects corresponding with the ambiguous input

PROVIDE AT LEAST ONE OF THE NUMBER OF PREFIX OBJECTS AND AT LEAST A PORTION OF ONE OF THE PREDICTED LANGUAGE OBJECTS AT THE TEXT INPUT LOCATION

FIG. 11
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 00/62150 A (MOTOROLA INC) 19 October 2000 (2000-10-19)</td>
<td>1-20</td>
<td>INV. G06F3/023</td>
</tr>
<tr>
<td></td>
<td>* page 3, line 1 - line 24 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* page 20, line 4 - page 21, line 2 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* figures 1,2,9 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>EP 1 603 014 A (2012244 ONTARIO INC) 7 December 2005 (2005-12-07)</td>
<td>1-20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* figures 7-12 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* paragraph [0013] *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* paragraph [0015] *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* paragraph [0055] *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* paragraph [0057] *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* paragraph [0060] *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* paragraph [0064] - paragraph [0067] *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* paragraph [0078] - paragraph [0087] *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* paragraph [0103] *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* paragraph [0080] *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* paragraph [0086] - paragraph [0087] *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* paragraph [0107] - paragraph [0113] *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* figures 1-3,7,8 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* page 12, line 20 - line 24 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* page 13, line 12 - page 14, line 11 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>WO 02/091160 A (BADARNEH, ZIAD) 14 November 2002 (2002-11-14)</td>
<td>1-20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* figure 2 *</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims

<table>
<thead>
<tr>
<th>Place of search</th>
<th>Date of completion of the search</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berlin</td>
<td>12 June 2006</td>
<td>Schofield, C</td>
</tr>
</tbody>
</table>

CATEGORY OF CITED DOCUMENTS

- T: theory or principle underlying the invention
- E: earlier patent document, but published on, or after the filing date
- D: document cited in the application
- L: document cited for other reasons
- A: technological background
- O: non-written disclosure
- P: intermediate document

&: member of the same patent family, corresponding document
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
</table>

The present search report has been drawn up for all claims

<table>
<thead>
<tr>
<th>Phase of search</th>
<th>Date of completion of the search</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berlin</td>
<td>12 June 2006</td>
<td>Schofield, C</td>
</tr>
</tbody>
</table>

CATEGORY OF CITED DOCUMENTS

X: particularly relevant if taken alone
Y: particularly relevant if combined with another document of the same category
A: technological background
O: non-written disclosure
P: intermediate document
T: theory or principle underlying the invention
E: earlier patent document, but published on, or after the filing date
D: document cited in the application
L: document cited for other reasons
&: member of the same patent family, corresponding document

EP 06 25 1961
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EPO file on 12-06-2006.

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>EP 1181637 A1</td>
<td>27-02-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 470906 B</td>
<td>01-01-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6204848 B1</td>
<td>20-03-2001</td>
</tr>
<tr>
<td>EP 1603014 A</td>
<td>07-12-2005</td>
<td>CA 2509010 A1</td>
<td>02-12-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2005119511 A1</td>
<td>15-12-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1466150 A1</td>
<td>13-10-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004201607 A1</td>
<td>14-10-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004156562 A1</td>
<td>12-08-2004</td>
</tr>
<tr>
<td>WO 02091160 A</td>
<td>14-11-2002</td>
<td>NO 20015349 A</td>
<td>11-11-2002</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 6452588 B [0022]
- US 6873317 B [0022]
- US 6489950 B [0022]