The present invention relates to methods and compositions for the detection and treatment of melanoma and skin cancers. More particularly, the invention discloses that BCSC-1 expression is altered in melanoma and skin cancer cells, allowing the design of effective detection methods and kits for such conditions. The invention also shows that restoring or increasing expression of BCSC-1 in melanoma and skin cancer cells suppresses tumorigenicity and represents a novel and effective approach for the treatment of melanoma and skin cancers. The invention may be used to detect the presence, stage or type of melanoma and skin cancers, as well as any predisposition thereto. The invention may be used in any mammalian subject, particularly human subjects.
The present invention relates to methods and compositions for the detection and treatment of melanoma and skin cancers. More particularly, the invention discloses that BCSC-1 expression is altered in melanoma and skin cancer cells, allowing the design of effective detection methods and kits for such conditions. The invention also shows that restoring or increasing expression of BCSC-1 in melanoma and skin cancer cells suppresses tumorigenicity and represents a novel and effective approach for the treatment of melanoma and skin cancers. The invention may be used to detect the presence, stage or type of melanoma and skin cancers, as well as any predisposition thereto. The invention may be used in any mammalian subject, particularly human subjects.

Melanoma is an aggressive cancer with a propensity to cause widespread metastatic disease. Diagnosis is essential at an early stage since to this day the only successful treatment is the excision of the tumor when still confined to the skin. Unfortunately, melanoma is largely resistant to conventional chemotherapies and new treatments are urgently needed for metastatic melanoma.

In order to study the gene expression profiling of pigmented skin lesions and melanoma, global analysis of alternative splicing of benign nevus and metastatic melanomas was studied using the DATAS technology. A DATAS library for benign naevus-metastatic melanoma including 217 differentially expressed clones between benign nevus and metastatic melanomas was generated with this method. Several clones were screened by Real-Time PCR, that could be implicated in melanoma progression based on their implication in apoptosis, cell cycle, metabolism, etc. Among these genes, we identified that BCSC-1 (Martin et al. PNAS 2003) was consistently down-regulated in patients with metastatic melanoma.

We further investigated the expression of BCSC-1 by Real-Time PCR in a cohort of 70 skin biopsies from patients with benign nevus, atypical nevus, primary melanoma or metastatic melanoma. The results showed that BCSC-1 expression was decreased in all melanoma patients in comparison with healthy donors. These results were confirmed in melanoma cell lines and in all the melanoma patients analyzed.

Importantly, when BCSC-1 gene was expressed ectopically in melanoma cell lines, melanoma cells stopped proliferating and underwent apoptosis. The expression of the BCSC protein in these cells was confirmed by Western Blot.

In conclusion, the present invention shows that BCSC-1 is down-regulated in a skin cancer and that induction of BCSC-1 expression in said cancer cells resulted in an inhibition of tumor progression. This data show that BCSC-1 plays a crucial role in the pathogenesis of melanoma and skin cancer, and represents a novel prognosis marker as well as a valuable target for drug development for melanoma and skin cancers.

A first object of this invention resides in methods for detecting the presence, stage or type of a melanoma or skin cancer in a subject, the method comprising detecting in vitro or ex vivo the presence of an altered BCSC-1 gene expression in a sample from the subject, the presence of such an altered BCSC-1 gene expression being indicative of the presence, stage or type of a melanoma or skin cancer in said subject.

According to specific embodiments of the method, the altered expression is a reduced expression of a BCSC-1 gene in said sample, even more preferably a reduced expression of (a) long isoform(s) of a BCSC-1 gene in said sample.

An other object of this invention resides in methods for detecting the presence, stage or type of a cancer in a subject, the method comprising determining in vitro or ex vivo the (relative) amount of (a) long isoform(s) of BCSC-1 gene or protein in a sample from the subject, such amount being indicative of the presence, stage or type of a cancer in said subject. In a particular embodiment, the amount determined is compared to a control or mean value, or to that measured in a control sample. In an other embodiment, the ratio BCSC-1 long isoform(s) / BCSC-1 short isoform(s) is determined, and any decrease in such ratio is indicative of the presence of such a cancer. Such a method may be used to detect any cancer particularly solid cancers.

In this regard, an other object of this invention resides in methods for detecting the presence, stage or type of a cancer in a subject, the method comprising determining in vitro or ex vivo the ratio BCSC-1 long isoform(s) / BCSC-1 short isoform(s), a decrease in such ratio as compared to control condition or reference or mean value is indicative of the presence of such a cancer. Such a method may be used to detect any cancer particularly solid cancers.

An other object of this invention resides in methods for detecting the presence, stage or type of a cancer in a subject, the method comprising determining in vitro or ex vivo the (relative) amount of BCSC-1 protein in a fluid sample derived from the subject, such amount being indicative of the presence, stage or type of a cancer in said subject. Typically, (relative) amount of long isoform(s) of the BCSC-1 protein are determined, a decrease in such amounts as compared to control or reference value being indicative of the presence of a cancer. In a typical embodiment, the fluid sample derives (e.g., by dilution, concentration, purification, separation, etc.) from total blood, serum, plasma, urine, etc. Such a method maybe used to detect any cancer particularly solid cancers.

A further object of this invention is a method of assessing the efficacy of a treatment of melanoma and skin cancer in a subject, the method comprising comparing (in vitro or ex vivo) BCSC-1 gene expression in a sample from the subject prior to and after said treatment, an increased expression being indicative of a positive response to treatment.

The invention also relates to the use of a BCSC-1 protein or of a nucleic acid encoding a BCSC-1 protein for...
the manufacture of a medicament for treating melanoma or a skin cancer, as well as to a corresponding method of treatment.

[0014] The invention also concerns the use of a BCSC-1 agonist for the manufacture of a pharmaceutical composition for treating melanoma or skin cancer, as well as corresponding method of treatment.

[0015] A further aspect of this invention resides in the use of a compound that stimulates BCSC-1 gene expression for the manufacture of a pharmaceutical composition for treating melanoma or skin cancer, as well as in a corresponding method of treatment.

[0016] The invention also resides in methods of treating melanoma or skin cancer in a subject in need thereof, comprising administering to said subject an effective amount of a compound as defined above. In a preferred embodiment, the subject has an altered BCSC-1 gene expression.

[0017] The invention further relates to methods of selecting biologically active compounds on melanoma or skin cancer, the method comprising a step of selecting compounds that mimic or stimulate BCSC-1 expression or activity.

[0018] In a specific embodiment, the method comprises contacting a test compound with a recombinant host cell comprising a reporter construct, said reporter construct comprising a reporter gene under the control of a BCSC-1 gene promoter, and selecting the test compounds that stimulate expression of the reporter gene.

[0019] The skin cancer may be selected from basal cell carcinoma, squamous cell carcinoma, Merkel carcinoma, primary cutaneous lymphoma, as well as from any other cell proliferative disease of the skin or related surface tissues.

[0020] BCSC-1 gene expression may be detected by any technique known per se in the art, such as by sequencing, selective hybridization, selective amplification and/or specific ligand binding. In a particular embodiment, the invention uses reagents and/or techniques allowing the detection of long isoforms of BCSC-1, or the discrimination between long and short isoforms, or the measure of the ratio long isoform(s) / short isoform(s).

[0021] A further aspect of this invention resides in a nucleic acid primer that allows (specific) amplification of (a) long isoform(s) of BCSC-1, or allows to discriminate between long and short isoforms.

[0022] A further aspect of this invention resides in a nucleic acid probe that (specifically) hybridizes to a long isoform of BCSC-1, or allows to discriminate between long and short isoforms.

[0023] A further aspect of this invention resides in an antibody (including derivatives thereof and producing hybridomas), that (specifically) binds a long isoform of a BCSC-1 protein or allows to discriminate between long and short isoforms.

[0024] The invention further relates to kits comprising a primer, probe or antibody as defined above. Such kits may comprise a container or support, and/or reagents to perform an amplification, hybridization or binding reaction.

[0025] A particular aspect of this invention resides in compositions of matter comprising primers, probes, and/or antibodies, which are designed to specifically detect at least one long isoform of BCSC-1.

LEGEND TO THE FIGURES

Figure 1: Progression model of pigmented skin lesions

Figure 2: BCSC-1 expression is down-regulated in melanoma patients. RNA expression by Real-time PCR of BCSC-1 gene in skin biopsies from patients with benign nevus or melanoma skin lesions. The zero value represents the mean expression for this gene in the patients with benign nevus (healthy donors). All patients with metastatic melanoma show a lower expression (up to 20 fold lower) in comparison with mean expression values in healthy donors.

Figure 3: Long isoforms of BCSC-1 are selectively down-regulated in melanoma patients. Several isoforms for BCSC-1 gene have been described. Real-Time PCR analysis of different exons shows that exons present exclusively in long isoforms (Exons 13-18) are the exons decreased in melanoma patients.

Figure 4: BCSC-1 expression is down-regulated in melanoma patients and melanoma cell lines. The results were confirmed in a larger cohort of patients and also in melanoma cell lines. The expression of longer isoforms of the BCSC-1 gene is markedly decreased in melanoma patients and melanoma cell lines.

Figure 5: Ectopic Expression of BCSC-1 decreases melanoma cells proliferation. Melanoma cell lines were transduced with a lentivector encoding BCSC-1. Melanoma cells expressing BCSC-1 stop or decrease markedly their proliferation in comparison with negative controls. This effect is not observed in non-melanoma cell lines (Hela) also transduced with the BCSC vector.

Figure 6: Ectopic Expression of BCSC-1 is confirmed by Western Blot and Real-time PCR. (Left) The production
of the BCSC-1 protein is confirmed by Western Blot using an anti-HA antibody in SK-Mel23 cells transduced with increasing doses (2 and 20 μL) of BCSC-1 encoding lentiviral vector at day 12, but not in the cells transduced with an empty vector (C). Transfected 293T cells with both vector of long and short isoforms of BCSC-1 were used as positive controls also detecting BCSC-1 with an anti-HA antibody. (Right) Real-time PCR showed that SK-Mel23 cells do not express detectable levels of BCSC-1 prior to the transduction, and at day 8 when they are transduced with the empty vector. However, SK-Mel23 cells transduced with the BCSC-1 vector express high levels of BCSC-1 mRNA.

DETAILED DESCRIPTION OF THE INVENTION

[0027] The incidence of melanoma is on the increase. It is an aggressive cancer with a propensity to cause widespread disease. New methods based on the study of global gene expression are needed in order to understand the events underlying melanoma carcinogenesis. **[0028]** As disclosed on Figure 1, the transitions between benign naevus (left), dysplastic naevus (center) and malignant melanoma (right) can be analyzed using morphology techniques. There is however only a partial understanding of the molecular events that govern these transitions. **[0029]** In order to identify the molecular events governing the transition between benign nevus and melanoma we have chosen to study alternative splicings in pigmented melanoma using a gene profiling technology called DATAS (Differential Analysis of Transcripts with Alternative Splicing). Through this global gene expression analysis, we have derived novel sequences resulting from tumor-associated splicing events. Using real-time semi-quantitative RT-PCR of RNA extracted from biopsies of a total of 70 patients, including biopsies of benign naevus (negative control) and different stages of pigmented skin lesions we could demonstrate that BCSC-1 is selectively down-regulated from patients with metastatic disease. **[0030]** Furthermore, we could identify that the long isoforms of BCSC-1 are selectively down-regulated in melanoma, while the short isoforms are not substantially affected. **[0031]** Moreover, ectopic expression from lentiviral vectors encoding BCSC-1 tagged with HA in melanoma cell lines induced a strong decrease in the proliferation of these cells. **[0032]** Together, our results identify a novel gene (BCSC-1) selectively down-regulated in melanoma and skin cancers. Only selected "long" isoforms of this gene (c,f) were down-regulated in metastatic melanoma, while "short" isoforms appeared not affected; opening the possibility to develop more specific diagnostic tools to detect the missing isoforms in metastatic tumors. Finally ectopic expression slowed down cell proliferation of metastatic melanoma cell lines suggesting that BCSC-1 has a functional role in metastatic disease progression. **[0033]** The present invention thus proposes to use BCSC-1 gene and corresponding expression products for the diagnosis and treatment of melanoma and skin cancers, as well as for the screening of therapeutically active drugs. The invention may be used in various subjects, particularly human, including adults and children.

DEFINITIONS

[0034] Within the context of this invention, the term "BCSC-1 gene" designates all BCSC-1 nucleotide sequences in a cell or organism, including coding sequences, non-coding sequences, regulatory sequences controlling transcription and/or translation (e.g., promoter, enhancer, terminator, etc.), as well as all corresponding expression products, such as RNAs (e.g., mRNAs). The term "gene" shall be construed to include any type of coding nucleic acid, including genomic DNA (gDNA), complementary DNA (cDNA), synthetic or semisynthetic DNA, as well as any form of corresponding RNA. The term gene particularly includes recombinant nucleic acids, i.e., any non naturally occurring nucleic acid molecule created artificially, e.g., by assembling, cutting, ligating or amplifying sequences. A gene is typically double-stranded, although other forms may be contemplated, such as single-stranded. Genes may be obtained from various sources and according to various techniques known in the art, such as by screening DNA libraries or by amplification from various natural sources. Recombinant nucleic acids may be prepared by conventional techniques, including chemical synthesis, genetic engineering, enzymatic techniques, or a combination thereof. **[0035]** BCSC-1 gene sequences may be found on gene banks, such as NM_014622 and NM_198315. See also SEQ ID NO: 14, where exon boundaries are in bold character, and the start and stop codons are underlined. **[0036]** The term "BCSC-1 gene" includes any variant, fragment or analog of any coding sequence as identified above. Such variants include, for instance, naturally-occurring variants due to allelic variations between individuals (e.g., polymorphisms), mutated alleles, alternative splicing forms, etc. The term variant also includes BCSC-1 gene sequences from other sources or organisms. Variants are preferably substantially homologous to with coding sequences as identified above, i.e., exhibit a nucleotide sequence identity of at least about 65%, typically at least about 75%, preferably at least about 85%, more preferably at least about 95% with coding sequence as identified above. Variants and analogs of a BCSC-1 gene typically include nucleic acid sequences which hybridize to a sequence as defined above (or a comple-
Typical stringent hybridization conditions include temperatures above 30°C, preferably above 35°C, more preferably in excess of 42°C, and/or salinity of less than about 500 mM, preferably less than 200 mM. Hybridization conditions may be adjusted by the skilled person by modifying the temperature, salinity and/or the concentration of other reagents such as SDS, SSC, etc.

A fragment of a BCSC-1 gene designates any portion of at least about 8 consecutive nucleotides of a sequence as disclosed above, preferably at least about 15, more preferably at least about 20 nucleotides, further preferably of at least 30 nucleotides. Fragments include all possible nucleotide lengths between 8 and 100 nucleotides, preferably between 15 and 100, more preferably between 20 and 100.

Several isoforms of the BCSC-1 gene exist, which result from alternative splicings. In this regard, long isoforms and short isoforms of BCSC-1 may be defined, depending on the (number of) exons they retain. More specifically, BCSC-1 genomic DNA comprises 18 exons, which may be alternatively spliced. The position of each exons is indicated on SEQ ID NO: 14, and is summarized in the following table, where positions are given by reference to the cDNA sequence of SEQ ID NO: 14.

<table>
<thead>
<tr>
<th>Exon</th>
<th>Nucleotide position</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-79</td>
</tr>
<tr>
<td>2</td>
<td>80-137</td>
</tr>
<tr>
<td>3</td>
<td>138-340</td>
</tr>
<tr>
<td>4</td>
<td>341-563</td>
</tr>
<tr>
<td>5</td>
<td>564-739</td>
</tr>
<tr>
<td>6</td>
<td>740-854</td>
</tr>
<tr>
<td>7</td>
<td>855-1024</td>
</tr>
<tr>
<td>8</td>
<td>1025-1113</td>
</tr>
<tr>
<td>9</td>
<td>1114-1258</td>
</tr>
<tr>
<td>10</td>
<td>1259-1338</td>
</tr>
<tr>
<td>11</td>
<td>1339-1453</td>
</tr>
<tr>
<td>12</td>
<td>1454-1618</td>
</tr>
<tr>
<td>13</td>
<td>1619-1719</td>
</tr>
<tr>
<td>14</td>
<td>1720-1973</td>
</tr>
<tr>
<td>15</td>
<td>1974-2117</td>
</tr>
<tr>
<td>16</td>
<td>2118-2248</td>
</tr>
<tr>
<td>17</td>
<td>2249-2375</td>
</tr>
<tr>
<td>18</td>
<td>2376-3419</td>
</tr>
</tbody>
</table>

Within the context of the present invention, a long BCSC-1 isoform is an isoform comprising the nucleotide sequence or corresponding amino acid sequence of at least one of exons 13-18. A short BCSC-1 isoform is an isoform which does not comprise the nucleotide sequence or corresponding amino acid sequence of any one of exons 13-18. Examples of long BCSC-1 isoforms comprise the nucleotide sequence or corresponding amino acid sequence of exons 1-13, 1-14, 1-15, 1-16, 1-17 or 1-18. In this regard, a long isoform is depicted in NM_014622, which contains all of exons 11-18. Similarly, isoforms depicted in AY366504 and AY366507, which contain a deletion of exons 8-16 but contains exon 18, are long isoforms within the context of this invention. An other example of a long isoform is disclosed in AY366508.

A BCSC-1 protein designates any protein or polypeptide encoded by a BCSC-1 gene as disclosed above. The term "polypeptide" refers to any molecule comprising a stretch of amino acids. This term includes molecules of various lengths, such as peptides and proteins. The polypeptide may be modified, such as by glycosylations and/or acetylations and/or chemical reaction or coupling, and may contain one or several non-natural or synthetic amino acids. A specific example of a BCSC-1 polypeptide comprises all or part of the sequence depicted in NM_014622 or NM 198315 (see also SEQ ID NO: 13).
DETECTION / DIAGNOSIS

[0042] The invention now provides diagnostic methods based on a monitoring of the BCSC-1 gene isoforms in a subject. Within the context of the present invention, the term "diagnosis" includes the detection, monitoring, dosing, comparison, etc., at various stages, including early, pre-symptomatic stages, and late stages, in adults or children. Diagnosis typically includes the prognosis, the assessment of a predisposition or risk of development, the characterization of a subject to define most appropriate treatment (pharmacogenetics), etc.

[0043] A general object of this invention resides in a method for detecting the presence, stage or type of a cancer in a subject, the method comprising detecting in vitro or ex vivo the presence of an altered long isoform BCSC-1 gene expression in a sample from the subject, the presence of such an altered long isoform BCSC-1 gene expression being indicative of the presence, stage or type of a cancer in said subject.

[0044] A further general aspect of this invention is a method of detecting cancer, particularly solid cancer, in a subject, comprising detecting BCSC-1 long isoform(s) in a sample from the subject, a reduced expression thereof being indicative of the presence, stage or type of cancer.

[0045] A particular object of this invention resides in a method for detecting the presence, stage or type of melanoma or a skin cancer in a subject, the method comprising detecting in vitro or ex vivo the presence of an altered BCSC-1 gene expression in a sample from the subject, the presence of such an altered BCSC-1 gene expression being indicative of the presence, stage or type of a melanoma or skin cancer in said subject.

[0046] A further object of this invention is a method as described above comprising a first step of providing a sample from the subject.

[0047] Diagnostics, which analyse and predict response to a treatment or drug, or side effects to a treatment or drug, may be used to determine whether an individual should be treated with a particular treatment drug. For example, if the diagnostic indicates a likelihood that an individual will respond positively to treatment with a particular drug, the drug may be administered to the individual. Conversely, if the diagnostic indicates that an individual is likely to respond negatively to treatment with a particular drug, an alternative course of treatment may be prescribed. A negative response may be defined as either the absence of an efficacious response or the presence of toxic side effects.

[0048] The altered BCSC-1 expression may be determined by any technique known per se in the art, e.g., at the level of the RNA or polypeptide.

[0049] As disclosed in the present invention, BCSC-1 expression is altered in melanoma or skin cancer cells. More particularly, the expression level of BCSC-1 is reduced in melanoma or skin cancer cells, as compared to non-cancerous skin cells, or to mean values. Even more specifically, the expression level of long BCSC-1 isoform(s) is reduced in cancer cells, as compared to non-cancerous cells, or to mean values. Accordingly, in a preferred embodiment, the methods of the present invention comprise a step of detecting a decrease in the expression level of the BCSC-1 gene, particularly of long isoform(s) thereof. In a typical embodiment, the methods comprise a step of determining the (relative) amounts of BCSC-1 RNA or polypeptide species in the sample, particularly of BCSC-1 RNA or polypeptide long isoform(s) in the sample, and comparing said amount to a reference or mean value, or to that measured in a control tissue (e.g., non-cancerous cell), wherein a lower value is indicative of cancer. In a further particular embodiment, the method comprises determining the ratio of a long BCSC-1 RNA or protein isoform / a short BCSC-1 RNA or protein isoform, respectively, any variation in such ratio as compared to control/reference values or samples being indicative of the presence of cancer. Although the (relative) amount of several long isoforms may be determined, it is sufficient to measure that of only one long isoform, or to determine the ratio of one long isoform / one short isoform. Such a measure may be based, for instance, on a detection of exon 13, 14, 15, 16, 17 or 18 using corresponding probes or primers, or of the encoded amino acid residues using specific ligands thereof, as will be disclosed below.

[0050] Furthermore, the invention also encompasses the detection of cancer-related structural alterations within the BCSC-1 gene or polypeptide. Such alterations in the BCSC-1 gene or polypeptide may be any form of mutation(s), deletion(s), rearrangement(s) and/or insertions in the coding and/or non-coding region, alone or in various combination(s). Mutations more specifically include point mutations. Deletions may encompass any region of two or more residues in a coding or non-coding portion of the gene, such as from two residues up to the entire gene. Typical deletions affect smaller regions, such as domains (introns) or repeated sequences or fragments of less than about 50 consecutive base pairs, although larger deletions may occur as well. Insertions may encompass the addition of one or several residues in a coding or non-coding portion of the gene. Insertions may typically comprise an addition of between 1 and 50 base pairs in the gene. Rearrangement includes inversion of sequences. Structural alteration(s) of BCSC-1 may result in the creation of stop codons, frameshift mutations, amino acid substitutions, particular RNA splicing or processing, product instability, truncated polypeptide production, etc. The alteration may result in the production of a BCSC-1 polypeptide with altered function, stability, targeting or structure.

[0051] Various techniques known in the art may be used to detect or quantify altered BCSC-1 expression, including sequencing, hybridisation, amplification and/or binding to specific ligands (such as antibodies). Other suitable methods include allele-specific oligonucleotide (ASO), allele-specific amplification, Southern blot (for DNAs), Northern blot (for
As indicated above, alteration in the BCSC-1 gene or RNA are complementary to and specifically hybridize with a portion of the BCSC-1 gene or RNA. Primers that can be used to all or a portion of the BCSC-1 gene or RNA may be designed based on the sequence of BCSC-1 itself.

The invention also relates to a nucleic acid primer, said primer being complementary to and hybridizing specifically to a sequence located within any one of exons 13-18 of the BCSC-1 gene or RNA. The use of such primers allows the detection of long isoforms of the BCSC-1 gene or RNA in a sample.

Typical primers of this invention are single-stranded nucleic acid molecules of about 5 to 60 nucleotides in length, more preferably of about 8 to about 25 nucleotides in length. The sequence can be derived directly from the sequence of the BCSC-1 gene. Perfect complementarity is preferred, to ensure high specificity. However, certain mismatch may be tolerated.

Specific examples of such primers are disclosed in Table 1 in the experimental section (SEQ ID NO: 1-12).

The invention also concerns the use of a nucleic acid primer or a pair of nucleic acid primers as described above in a method of detecting the presence of or predisposition to cancer in a subject or in a method of assessing the response of a subject to a treatment of cancer.

A particular detection technique involves the use of a nucleic acid probe specific for BCSC-1 gene or RNA, followed by the detection of the presence and/or (relative) amount of a hybrid. The probe may be in suspension or immobilized on a substrate or support (as in nucleic acid array or chips technologies). The probe is typically labeled to facilitate detection of hybrids.

In this regard, a particular embodiment of this invention comprises contacting the sample from the subject with a nucleic acid probe specific for (a) long isoform(s) of BCSC-1, i.e., contain a sequence that is complementary and specifically hybridizes to a sequence located within any one of exons 13-18 of the BCSC-1 gene or RNA.

Within the context of this invention, a probe refers to a polynucleotide sequence which is complementary to and capable of specific hybridisation with a (target portion of a) BCSC-1 gene or RNA, and which is suitable for detecting the presence or (relative) amount thereof in a sample. Probes are preferably perfectly complementary to a sequence of the BCSC-1 gene or RNA. Probes typically comprise single-stranded nucleic acids of between 8 to 1000 nucleotides in length, for instance of between 10 and 800, more preferably of between 15 and 700, typically of between 20 and 500. It should be understood that longer probes may be used as well. A preferred probe of this invention is a single stranded nucleic acid molecule of between 8 to 500 nucleotides in length, more preferably of about 8 to about 25 nucleotides in length. The sequence can be derived directly from the sequence of the BCSC-1 gene. Perfect complementarity is preferred, to ensure high specificity. However, certain mismatch may be tolerated.

Specific examples of such primers are disclosed in Table 1 in the experimental section (SEQ ID NO: 1-12).

The invention also concerns the use of a nucleic acid primer or a pair of nucleic acid primers as described above in a method of detecting the presence of or predisposition to cancer in a subject or in a method of assessing the response of a subject to a treatment of cancer.

A particular detection technique involves the use of a nucleic acid probe specific for BCSC-1 gene or RNA, followed by the detection of the presence and/or (relative) amount of a hybrid. The probe may be in suspension or immobilized on a substrate or support (as in nucleic acid array or chips technologies). The probe is typically labeled to facilitate detection of hybrids.

In this regard, a particular embodiment of this invention comprises contacting the sample from the subject with a nucleic acid probe specific for (a) long isoform(s) of BCSC-1, i.e., contain a sequence that is complementary and specifically hybridizes to a sequence located within any one of exons 13-18 of the BCSC-1 gene or RNA.

Within the context of this invention, a probe refers to a polynucleotide sequence which is complementary to and capable of specific hybridisation with a (target portion of a) BCSC-1 gene or RNA, and which is suitable for detecting the presence or (relative) amount thereof in a sample. Probes are preferably perfectly complementary to a sequence of the BCSC-1 gene or RNA. Probes typically comprise single-stranded nucleic acids of between 8 to 1000 nucleotides in length, for instance of between 10 and 800, more preferably of between 15 and 700, typically of between 20 and 500. It should be understood that longer probes may be used as well. A preferred probe of this invention is a single stranded nucleic acid molecule of between 8 to 500 nucleotides in length, which can specifically hybridize to a region contained within any one of exons 13-18 of the BCSC-1 gene or RNA.

Specificity indicates that hybridisation to the target sequence generates a specific signal which can be distinguished from the signal generated through non-specific hybridisation. Perfectly complementary sequences are preferred to design probes according to this invention. It should be understood, however, that certain a certain degree of mismatch may be tolerated, as long as the specific signal may be distinguished from non-specific hybridisation.

The sequence of the probes can be derived from the sequences of the BCSC-1 gene and RNA as provided in the present application. Nucleotide substitutions may be performed, as well as chemical modifications of the probe. Such chemical modifications may be accomplished to increase the stability of hybrids (e.g., intercalating groups) or to label the probe. Typical examples of labels include, without limitation, radioactivity, fluorescence, luminescence, enzymatic labeling, etc.

The invention also concerns the use of a nucleic acid probe as described above in a method of detecting the presence, type or stage of progression of a cancer in a subject, or in a method of assessing the response of the subject to a cancer treatment.

The invention also relates to a nucleic acid chip comprising a probe as defined above. Such chips may be produced in situ or by depositing clones, by technique known in the art, and typically comprise an array of nucleic acids displayed on a matrix, such as a (glass, polymer, metal, etc.) slide.

As indicated above, alteration in the BCSC-1 gene expression may also be detected by detecting the presence
or (relative) amount of a BCSC-1 polypeptide. In this regard, a specific embodiment of this invention comprises contacting the sample (which may comprise biological fluids such as blood, plasma, serum, etc.) with a ligand specific for a BCSC-1 polypeptide, and determining the formation of a complex.

[0068] Different types of ligands may be used, such as specific antibodies. In a specific embodiment, the sample is contacted with an antibody specific for a BCSC-1 polypeptide, and the formation of an immune complex is determined. Various methods for detecting an immune complex can be used, such as ELISA, radioimmunoassays (RIA) and immuno-enzymatic assays (IEIA).

[0069] Within the context of this invention, an antibody designates a polyclonal antibody, a monoclonal antibody, as well as any fragments or derivatives thereof having substantially the same antigen specificity. Fragments include Fab, Fab′2, CDR regions, etc. Derivatives include single-chain antibodies, humanized antibodies, poly-functional antibodies, etc.

[0070] Most preferred ligands are specific for (a) long isoform(s) of BCSC-1, i.e., bind an epitope contained within amino acid sequence encodes by any one of exons 13-18.

[0071] An antibody specific for a BCSC-1 polypeptide designates an antibody that selectively binds a BCSC-1 polypeptide. More particularly, it designates an antibody raised against a BCSC-1 polypeptide or an epitope-containing fragment thereof. Although non-specific binding towards other antigens may occur, binding to the target BCSC-1 polypeptide occurs with a higher affinity and can be reliably discriminated from non-specific binding.

[0072] In a specific embodiment, the method comprises contacting a sample from the subject with a support coated with an antibody specific for a BCSC-1 polypeptide, and determining the presence of an immune complex. In a particular embodiment, the sample may be contacted simultaneously, or in parallel, or sequentially, with various (supports coated with) antibodies specific for different BCSC-1 isoforms.

[0073] In another specific embodiment, the invention relates to a method of detecting the presence of or predisposition to cancer in a subject, comprising contacting in vitro or ex vivo a sample (which may comprise biological fluids such as blood, plasma, serum, etc.) from the subject with a ligand specific for a long isoform of a BCSC-1 polypeptide, and determining the (relative) amount of complexes formed, such amount being indicative of the presence of or predisposition to cancer.

[0074] The invention also concerns the use of a ligand, preferably an antibody, a fragment or a derivative thereof as described above, in a method of detecting the presence, stage or type of a cancer in a subject, or in a method of assessing the response of a subject to a cancer treatment.

[0075] The invention also relates to a diagnostic kit comprising products and reagents for detecting in a sample from a subject the presence or (relative) amount of a BCSC-1 gene, RNA or polypeptide. Said diagnostic kit according to the present invention comprises any primer, any pair of primers, any nucleic acid probe and/or any ligand, preferably antibody, described in the present invention. Said diagnostic kit according to the present invention can further comprise reagents and/or protocols for performing a hybridization, amplification or antigen-antibody immune reaction.

[0076] The diagnostic methods of the present invention can be performed in vitro, ex vivo or in vivo, preferably in vitro or ex vivo. They use a sample from the subject, to assess any alteration in BCSC-1 gene expression. The sample may be any biological sample derived from a subject, which contains nucleic acids or polypeptides. Examples of such samples include fluids, tissues, cell samples, organs, biopsies, etc. Most preferred samples are tissue biopsies, e.g., skin cancer cells, tissues or samples. The sample may be collected according to conventional techniques and used directly for diagnosis or stored. The sample may be treated prior to performing the method, in order to ensure or improve availability of nucleic acids or polypeptides for testing. Treatments include, for instance, lysis (e.g., mechanical, physical, chemical, etc.), centrifugation, etc. Also, the nucleic acids and/or polypeptides may be pre-purified or enriched by conventional techniques, and/or reduced in complexity. Nucleic acids and polypeptides may also be treated with enzymes or other chemical or physical treatments to produce fragments thereof. Considering the high sensitivity of the claimed methods, very few amounts of sample are sufficient to perform the assay.

[0077] As indicated, the sample is preferably contacted with reagents such as probes, primers or ligands in order to assess the presence and/or (relative) amount of a BCSC-1 gene or RNA or polypeptide. Contacting may be performed in any suitable device, such as a plate, tube, well, glass, etc. In specific embodiments, the contacting is performed on a substrate coated with the reagent, such as a nucleic acid array or a specific ligand array. The substrate may be a solid or semi-solid substrate such as any support comprising glass, plastic, nylon, paper, metal, polymers and the like. The substrate may be of various forms and sizes, such as a slide, a membrane, a bead, a column, a gel, etc. The contacting may be made under any condition suitable for a complex to be formed between the reagent and the nucleic acids or polypeptides of the sample.

[0078] The finding of an altered BCSC-1 expression in the sample is indicative of the presence, type or stage of progression of melanoma or skin cancer. The determination of the presence of an altered BCSC-1 expression also allows the design of appropriate therapeutic intervention, which is more effective and customized. Also, this determination at the pre-symptomatic level allows a preventive regimen to be applied.
The present invention also provides novel targets and methods for the screening of drug candidates or leads. The methods include binding assays and/or functional assays, and may be performed in vitro, in cell systems, in animals, etc.

In this regard, an object of this invention resides in a method of selecting biologically active compounds on melanoma or skin cancer, the method comprising a step of selecting compounds that mimic or stimulate BCSC-1 expression or activity.

A further object of this invention is a method of selecting biologically active compounds on melanoma or skin cancer, said method comprising contacting a test compound with a recombinant host cell comprising a reporter construct, said reporter construct comprising a reporter gene under the control of a BCSC-1 gene promoter, and selecting the test compounds that stimulate expression of the reporter gene.

A particular object of this invention resides in a method of selecting compounds active on melanoma or skin cancer, said method comprising contacting in vitro a test compound with a BCSC-1 gene or polypeptide and determining the ability of said test compound to bind said BCSC-1 gene or polypeptide, respectively. Binding to said gene or polypeptide provides an indication as to the ability of the compound to modulate the activity of said target, and thus to affect a pathway leading to melanoma or skin cancer. Preferably, the BCSC-1 polypeptide is a long isoform.

The determination of binding may be performed by various techniques, such as by labeling of the test compound, by competition with a labeled reference ligand, etc.

A further object of this invention resides in a method of selecting compounds active on melanoma or skin cancer, said method comprising contacting in vitro a test compound with a BCSC-1 gene and determining the ability of said test compound to modulate the expression of long isoform(s) of said gene.

In a particular embodiment of the methods of screening, the modulation is an activation.

The above screening assays may be performed in any suitable device, such as plates, tubes, dishes, flasks, etc. Typically, the assay is performed in multi-wells plates. Several test compounds can be assayed in parallel. Furthermore, the test compound may be of various origin, nature and composition. It may be any organic or inorganic substance, such as a lipid, peptide, polypeptide, nucleic acid, small molecule, etc., in isolated or in mixture with other substances. The compounds may be all or part of a combinatorial library of products, for instance.

A further object of this invention resides in a method of selecting biologically active compounds, said method comprising contacting in vitro a test compound with a BCSC-1 gene and determining the ability of said test compound to modulate the expression of long isoform of a BCSC-1 gene.

In a particular embodiment of the methods of screening, the modulation is an activation.

A further object of this invention resides in a method of selecting biologically active compounds, said method comprising contacting in vitro a test compound with a BCSC-1 gene and determining the ability of said test compound to modulate the expression of long isoform of a BCSC-1 gene.

The above screening assays may be performed in any suitable device, such as plates, tubes, dishes, flasks, etc. Typically, the assay is performed in multi-wells plates. Several test compounds can be assayed in parallel. Furthermore, the test compound may be of various origin, nature and composition. It may be any organic or inorganic substance, such as a lipid, peptide, polypeptide, nucleic acid, small molecule, etc., in isolated or in mixture with other substances. The compounds may be all or part of a combinatorial library of products, for instance.

A further object of this invention resides in a method of selecting biologically active compounds, said method comprising contacting in vitro a test compound with a BCSC-1 gene and determining the ability of said test compound to modulate the expression of long isoform of a BCSC-1 gene.

In a particular embodiment of the methods of screening, the modulation is an activation.

A further object of this invention resides in a method of selecting biologically active compounds, said method comprising contacting in vitro a test compound with a BCSC-1 gene and determining the ability of said test compound to modulate the expression of long isoform of a BCSC-1 gene.

In a particular embodiment of the methods of screening, the modulation is an activation.

A further object of this invention resides in a method of selecting biologically active compounds, said method comprising contacting in vitro a test compound with a BCSC-1 gene and determining the ability of said test compound to modulate the expression of long isoform of a BCSC-1 gene.

In a particular embodiment of the methods of screening, the modulation is an activation.

A further object of this invention resides in a method of selecting biologically active compounds, said method comprising contacting in vitro a test compound with a BCSC-1 gene and determining the ability of said test compound to modulate the expression of long isoform of a BCSC-1 gene.

In a particular embodiment of the methods of screening, the modulation is an activation.

A further object of this invention resides in a method of selecting biologically active compounds, said method comprising contacting in vitro a test compound with a BCSC-1 gene and determining the ability of said test compound to modulate the expression of long isoform of a BCSC-1 gene.

In a particular embodiment of the methods of screening, the modulation is an activation.

A further object of this invention resides in a method of selecting biologically active compounds, said method comprising contacting in vitro a test compound with a BCSC-1 gene and determining the ability of said test compound to modulate the expression of long isoform of a BCSC-1 gene.

In a particular embodiment of the methods of screening, the modulation is an activation.

A further object of this invention resides in a method of selecting biologically active compounds, said method comprising contacting in vitro a test compound with a BCSC-1 gene and determining the ability of said test compound to modulate the expression of long isoform of a BCSC-1 gene.

In a particular embodiment of the methods of screening, the modulation is an activation.

A further object of this invention resides in a method of selecting biologically active compounds, said method comprising contacting in vitro a test compound with a BCSC-1 gene and determining the ability of said test compound to modulate the expression of long isoform of a BCSC-1 gene.

In a particular embodiment of the methods of screening, the modulation is an activation.

A further object of this invention resides in a method of selecting biologically active compounds, said method comprising contacting in vitro a test compound with a BCSC-1 gene and determining the ability of said test compound to modulate the expression of long isoform of a BCSC-1 gene.

In a particular embodiment of the methods of screening, the modulation is an activation.

A further object of this invention resides in a method of selecting biologically active compounds, said method comprising contacting in vitro a test compound with a BCSC-1 gene and determining the ability of said test compound to modulate the expression of long isoform of a BCSC-1 gene.

In a particular embodiment of the methods of screening, the modulation is an activation.
A further aspect of this invention resides in novel products for use in diagnosis, therapy or screening. More particularly, a further object of this invention is a vector comprising a nucleic acid encoding a BCSC-1 polypeptide, preferably a long isoform thereof. The vector may be a cloning vector or, more preferably, an expression vector, i.e., a vector comprising regulatory sequences causing expression of a BCSC-1 polypeptide from said vector in a competent host cell.

These vectors can be used to express a BCSC-1 polypeptide in vitro, ex vivo or in vivo, to create transgenic or “Knock Out” non-human animals, to amplify the nucleic acids, to express antisense RNAs, etc.

The vectors of this invention typically comprise a BCSC-1 coding sequence according to the present invention operably linked to regulatory sequences, e.g., a promoter, a polyA, etc. The term “operably linked” indicates that the coding and regulatory sequences are functionally associated so that the regulatory sequences cause expression (e.g., transcription) of the coding sequences. The vectors may further comprise one or several origins of replication and/or selectable markers. The promoter region may be homologous or heterologous with respect to the coding sequence, and may provide for ubiquitous, constitutive, regulated and/or tissue specific expression, in any appropriate host cell, including for in vivo use. Examples of promoters include bacterial promoters (T7, pTAC Trp promoter, etc.), viral promoters (LTR, TK, CMV-IE, etc.), mammalian gene promoters (albumin, PGK, etc.) and the like.

The vector may be a plasmid, a virus, a cosmid, a phage, a BAC, a YAC, etc. Plasmid vectors may be prepared from commercially available vectors such as pBluescript, pUC, pBR, etc. Viral vectors may be produced from baculoviruses, retroviruses (e.g., lentiviruses), adenoviruses, AAVs, etc., according to recombinant DNA techniques known in the art.

The recombinant virus is preferably replication-defective, even more preferably selected from E1- and/or E4-defective adenoviruses, Gag-, pol- and/or env-defective retroviruses and Rep- and/or Cap-defective AAVs. Such recombinant viruses may be produced by techniques known in the art, such as by transfecting packaging cells or by transient transfection with helper plasmids or viruses. Typical examples of virus packaging cells include PA317 cells, PsiCRIP cells, GPen+ cells, 293 cells, etc. Detailed protocols for producing such replication-defective recombinant viruses may be found for instance in WO95/14785, WO96/22378, US5,882,877, US6,013,516, US4,861,719, US5,278,056 and WO94/19478.

A further object of the present invention resides in a recombinant host cell comprising a recombinant BCSC-1 gene or a vector as defined above. Suitable host cells include, without limitation, prokaryotic cells (such as bacteria) and eukaryotic cells (such as yeast cells, mammalian cells, insect cells, plant cells, etc.). Specific examples include E. coli, Kluyveromyces or Saccharomyces yeasts, mammalian cell lines (e.g., Vero cells, CHO cells, 3T3 cells, COS cells, etc.) as well as primary or established mammalian cell cultures (e.g., produced from fibroblasts, embryonic cells, epithelial cells, nervous cells, adipocytes, etc.).

The present invention also relates to a method for producing a recombinant host cell expressing a BCSC-1 polypeptide according to the present invention, said method comprising (i) introducing in vitro or ex vivo into a competent host cell a recombinant nucleic acid or a vector as described above, (ii) culturing in vitro or ex vivo the recombinant host cells obtained and (iii), optionally, selecting the cells which express the BCSC-1 polypeptide.

Such recombinant host cells can be used for the production of BCSC-1 polypeptides, as well as for screening of active molecules, as described below. Such cells may also be used as a model system to study skin cancer. These cells can be maintained in suitable culture media, such as DMEM, RPMI, HAM, etc., in any appropriate culture device (plate, flask, dish, tube, pouch, etc.).

Further aspects and advantages of the present invention will be disclosed in the following experimental section, which should be regarded as illustrative and not limiting the scope of the present application.
EXPERIMENTAL SECTION

A. MATERIALS AND METHODS

1. RNA extraction and cDNA synthesis.

[0108] Total RNA was isolated from frozen skin tissue from 70 patients with different stages of melanoma and from normal naevus tissue. 1 μg of total RNA was used to synthesize cDNA using random hexamers and Supercript II reverse transcriptase (Invitrogen) following suppliers instructions.

2. Real-time semi-quantitative RT-PCR.

[0109] cDNA was amplified for different exons of BCSC-1 using different combinations of primers. Amplicons were designed over exon boundaries when possible, and sequences were aligned against the human genome by BLAST to ensure that they were specific for the gene being tested. The sequences of the primers used are shown in table 1. The efficiency of each design was tested with serial dilutions of cDNA. Oligonucleotides PCR reactions (10 ul volume) contained diluted cDNA, 2 x SYBR Green Master Mix (Applied Biosystems), 300 nM of forward and reverse primers. PCR were performed on a SDS 7900 HT instrument (Applied Biosystems) with the following parameters: 50°C for two minutes, 95°C for ten minutes, and 40 cycles of 95°C 15 seconds-60°C one minute. Each reaction was performed in six replicates on 384-well plate. Raw Ct values obtained with SDS 2.2 (Applied Biosystems). Four different housekeeping genes were used for the normalisation performed with GenNorm software. Relative expression was calculated as a ratio of the expression in the tumour compared with the average expression in the normal tissue (benign naevus).

Below are the oligonucleotides used in the BCSC-1 study

3. Construction and Production of Lentiviral Vectors encoding BCSC-1

[0110] The complete coding sequence of isoform F of BCSC-1 tagged with HA-protein sequence was inserted in two different lentiviral vectors (gifts from D.Trono, EPFL, Epalinges, Switzerland) and modified from (Naldini et al., 1996; Salmon et al., 2000), PGK Ires Neo and PWIR GFP plasmid. The 293T and HeLa cell lines were cultured in Dulbecco’s modified Eagle’s medium supplemented with 10% FCS. Recombinant lentiviruses were produced by transient transfection of 293T cells according to standard protocols. Briefly, subconfluent 293T cells were co-transfected with 20 μg of the plasmid vector (PGK BCSC Ires Neo / PWIR BCSC GFP), 15 μg of pCMV-deltaR8.91, and 5 μg of pMD2G-VSVG by calcium phosphate precipitation. After 16 h medium was changed, and recombinant lentivirus vectors were harvested 24 h later. All tests FACS, Western Blot and cell transductions were similar as previously described (Arrighi et al., 2004).

B. EXAMPLES

Example 1 - Identification that BCSC-1 expression is altered in skin cancers

[0111] The gene profiling technology DATAS (Differential Analysis of Transcripts with Alternative Splicing) (Schweighoffer et al., 2000) allows the isolation of a library of alternatively spliced sequences that are differentially expressed
between two conditions, which library may be subsequently used for building arrays or isolating target genes.

[0112] DATAS is achieved through extraction of total RNA from 2 distinct populations (benign nevus versus metastatic melanoma) followed by messenger RNA isolation (using Dynabeads oligodT-Dynal). A reverse transcription is carried out on mRNA using biotinylated oligonucleotide dt in order to generate first strand cDNA. Cross-hybridisations between mRNA from one population and cDNA from the other population give rise to heteroduplexes which are isolated using streptavidin-coated beads. RNase H treatment is used to release the loops of mRNA that do not hybridise to cDNA in the heteroduplexes. These mRNA loops, which encode the alternatively spliced sequences, are subjected to RT-PCR with 5 degenerate primers followed by cloning of the PCR products in an AT cloning vector (TOPO, Invitrogen). The cDNA inserts in all the clones are amplified by PCR using the T7 primer. The final result is a library of alternatively spliced mRNA sequences unique to a given condition. After sequencings, the DATAS clones are subjected to bioinformatic analysis to identify their gene of origin. This allows the analysis of certain types of splicing events (such as exon skipping, intron retention, presence of novel exons, alternative splice site usage) with high accuracy.

[0113] We have performed DATAS profiling assays on tissue obtained from a population of healthy patients presenting benign naevi and a population of patients’ suffering from metastatic melanoma. We have built a DATAS library on tissue using 11 patients from the benign naevus group and 10 patients from the metastatic melanoma group. A pool of total RNA of 80 μg was available for each population from which 1.6 μg of mRNA was extracted : 800 ng used for cDNA synthesis and 800 ng retained as mRNA. The quality and quantity of all RNA tissue samples was determined using the Agilent Bioanlyser. Only total RNA samples of good quality were used for DATAS.

[0114] A total of 755 clones resulted from DATAS on tissue RNA. Approximately 25% of the clones were obtained from the condition mRNA metastatic melanoma/cDNA benign nevus while the remaining 75% of the clones were obtained from the condition mRNA benign naevus/cDNA metastatic melanoma. The average size of the inserts was between 300 and 500 bp. After sequencing, individual clones were processed and analyzed as described above. Out of the 755 clones sequenced, 217 fragments were non redundant and contained unknown gene sequences.

[0115] From the 217 clones that we obtained from the DATAS analysis, we selected about 10 of them with potentially interesting properties and performed real-time semi-quantitative RT-PCR on RNA extracted from biopsies from melanocytic lesions. Out of this second screen, we identified BCSC-1 as a potentially interesting candidate.

Example 2 : BCSC-1 expression is down-regulated in melanoma patients

[0116] Gene expression of BCSC-1 was determined by real-time semi-quantitative RT-PCR of RNA extracted from biopsies of a total of 70 patients, including biopsies of benign naevus (negative control) and different stages of pigmented skin lesions. The results showed that all the patients with metastatic melanoma had a significant lower expression in comparison with the mean expression of BCSC in the benign naevus samples (Figure 2). In some metastatic biopsies the expression of BCSC reach values 20 folds lower that the mean expression in benign naevus. Atypical naevus biopsies showed a higher expression of BCSC than benign naevus, and both primary melanoma and biopsies from lymph nodes, shown a similar expression of BCSC than benign naevus.

Example 3 : Long isoforms of BCSC-1 are selectively downregulated in melanoma

[0117] Seven different isoforms have been described for the BCSC-1 gene (See Figure 3A). We performed a more specific analysis of the BCSC-1 expression using different combinations of primers to determine which isoforms were down-regulated. The results showed that longer isoforms c and f, which code for the same protein, are selectively down-regulated in melanoma patients (Figure 3B).

Example 4 : BCSC-1 expression is down-regulated in melanoma patients and melanoma cells lines.

[0118] To confirm the previous results, new real-time PCR experiments were done in a larger cohort of biopsies from skin lesions. In agreement with the previous results, all patients with metastatic lesions had a lower expression of BCSC-1 in comparison with the mean expression in healthy donors (Figure 4A).

Moreover, several cell lines of melanocytes were tested for the expression of BCSC-1 (Figure 4B). The results showed that all melanoma cell lines have a significant lower expression than healthy donors. In some cell lines, as SK-Me123 (L1), the expression of BCSC-1 was not detectable, and only the two cell lines of primary melanoma tested show an expression of BCSC-1 more similar than benign naevus.

Example 5 : Ectopic Expression of BCSC-1 decreases melanoma cells proliferation.

[0119] PGK BCSC Ires Neo or PWIR BCSC GFP vectors were used to transduce SK-Me123 and Hela cells inducing the expression of BCSC-1. Moreover, cells transduced with the corresponding empty vector were used as negative
control.

The results showed that ectopic expression of BCSC-1 in melanoma cell line SK-Me123 decreases markedly the proliferation of the cells (Figure 5). The expression of BCSC-1 was confirmed by Western Blot and Real-time PCR (Figure 6) using an anti-HA antibody. This effect of the ectopic expression of BCSC-1 was not observed in other non-melanocyte cell lines such as Hela.

Protein sequence of BCSC-1 (SEQ ID NO: 13)

```
MHFCLTLTLHREPVKLISVSNNYIFAVGSATLNYEENNEKVPLEAFFVPMEDWDA
VYSFEGALVGKKIVEELQDKMARTNYEKASQGHQALLEGDSRDFSNCVNOQLQPG
SKAATVLKLVQLEADGLEALRFVLPVLANPRQFSGSGKSCLSNVKTQIFIVPVDLPYL
SMATIDSQGIEKVOCSCELTEYLGEDKTSQVLSAGHKFRDVELLYYNEVHP
SVLEMGMNPKMIFQVLMGDSMPVMPSFYPNIDEPQSHOPSGSDFSMPSEQSGD
TSQRLIQAKETILLLKLPSLGCFYNYFGSSYAEFCPEVESFYKTYQTMEALGRVKL
```

cDNA sequence of BCSC-1 (NM_001622) – SEQ ID NO: 14

```
CGGCCTTTCTG CAGAACACTTT GACTGCAGCT GTGTTCACTTC CGCTGTGACT 50
CAGAGGCTTC CGGCTGCAGG CAGAGGAGAA AGACTTGAGTT CAGATGAGTG 100
CACCTCTGCTG CCTCTACTAC CCCTCCACCG GAGCAAGAGT 150
TATCCTCTGGT AGGGAGACCA TTAGAAGATT CAGATGAGGA 200
CTTCTGACAA CAGAATGAGG CAGAAGCTCT TTTGCTGCTG 250
TCCTCCATTT AGTGAGGAGG CAGATGAGGA 300
TGGAAGAAGA ATTTGAGAGA AATTAACAGA CAGATGAGGA 350
ACTAGTAAAGA GAGGTGACCT CAGGAGACCA AGCCAGTTTT 400
GACAGAGCTT CAGGGAGATT TCTTCTTTCTT TTTGCTGCTG 450
TGTCGGAGAG CGCGAGCTCT CAGCTGACTT GAATCTGTTT 500
AAGCAGAGTT CAGGCTGCAGG TTTGCTGCTG 550
TCAGGGCTCT CGCGAGCTCT TTTGCTGCTG 600
TAGAAGTTCT TCTGCTGAAG TTTGCTGCTG 650
CCATGGTGAG ACACTTGAGA GGACGGAGCT 700
TGCTGACGAG CAGAAGCTCT TTTGCTGCTG 750
AGGTGCACTAC CCGGGCGGAG TGGGCTGAGA 800
CCAGGTCTCT TGGAGTGGAG TTTGCTGCTG 850
TATCCTCTTC TGTGAGTGGAG TTTGCTGCTG 900
CAACCTGATT CAAATACTGT GAGGAGGTTT ATCTCTGTTT 950
TGACCCAGAA CGAAGATTAG CGAAGGCCCA TATGTCAGGG CAGATCATC 1000
CACTGAGAA CAGCAAGCGG TAAAGAGGAG CTATGACAGT 1050
TTTCACCATA CAGCTGATTT CAGATGAGTG TTCTCTTCTG 1100
AGGACAGCTT TGGGAGGCTT TGTGAGTGGAG 1150
GCTCGGGGA GAGGAGGCTT TATGAGGCTT CAGCTGAGG GACCTGAAAT 1200
CTGCGGGAC CAGGAGCTCT TTTGCTGAGT CAGATGAGTG 1250
CCTACAGCTT CAGCTGAGGT TATGAGGCTT GAAAGGCTT 1300
GTTAATTCTCT ATGATGAGGT TATGAGGCTT 1350
TGGAGCAGGAA GAGGAGCTCT CAGCTGAGGT 1400
CATCAACAGG CAGCTGAGGT TATGAGGCTT 1450
```

13
References

[0121]

Annex to the application documents - subsequently filed sequences listing

[0122]
SEQUENCE LISTING

<110> Exonhit Therapeutics SA
 Hopitaux Universitaires de Genève
 Université de Genève

<120> Detection and Treatment of Cancers

<130> 80462EP

<160> PatentIn version 3.3

<210> 1
<211> 26
<212> DNA
<213> Artificial sequence

<220>
<223> Primer

<400> 1
aaattagactgcaagtgttttacct 26

<210> 2
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> Primer

<400> 2
gtgaacaggctggtttctcc t 21

<210> 3
<211> 27
<212> DNA
<213> Artificial sequence

<220>
<223> Primer

<400> 3
ctgtttactacaatggtgccaacc 27

<210> 4
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Primer

<400> 4
cattatactaatggtgccaacc t 22

<210> 5
<211> 27
<212> DNA
Artificial sequence

Primer

agaaaacacag gtaggaaga aatgtga

DNA

Artificial sequence

Primer

tcatgtagca ctagagtctg tgtggtca

DNA

Artificial sequence

Primer

agccctgtgt caacctcacc at

DNA

Artificial sequence

Primer

catgtccttg gtctggagca a

DNA

Artificial sequence

Primer

agcacagtcc agggctttgga
<400> 10
caggacat ttgcattttg g 21

<210> 11
<211> 21
<212> DNA
<213> Artificial sequence

<220>
<223> Primer

<400> 11
aattggagct tctggaagg a 21

<210> 12
<211> 18
<212> DNA
<213> Artificial sequence

<220>
<223> Primer

<400> 12
gcatgggtgga gcctgcag 18

<210> 13
<211> 786
<212> PRT
<213> Homo sapiens

<400> 13
Met Val His Phe Cys Gly Leu Leu Thr Leu His Arg Glu Pro Val Pro
1 5 10 15
Leu Lys Ser Ile Ser Val Ser Val Asn Ile Tyr Glu Phe Val Ala Gly
20 25 30
Val Ser Ala Thr Leu Asn Tyr Glu Asn Glu Glu Lys Val Pro Leu Glu 35 40 45
 Ala Phe Phe Val Phe Pro Met Asp Glu Asp Ser Ala Val Tyr Ser Phe
50 55 60
Glu Ala Leu Val Asp Gly Lys Lys Ile Val Ala Glu Leu Gln Asp Lys 65 70 75 80
Met Lys Ala Arg Thr Asn Tyr Glu Lys Ala Ile Ser Gln Gly His Gln 85 90 95
 Ala Phe Leu Leu Glu Gly Asp Ser Ser Ser Arg Asp Val Phe Ser Cys 100 105 110
Asn Val Gly Asn Leu Gln Pro Gly Ser Lys Ala Ala Val Thr Leu Lys 115 120 125

17
Tyr Val Glu Gln Glu Leu Pro Leu Glu Ala Asp Gly Ala Leu Arg Phe Val 130
Leu Pro Ala Val Leu Asn Pro Arg Tyr Gln Ser Gly Ser Ser Lys 145
Asp Ser Cys Leu Asn Val Lys Thr Pro Ile Val Pro Val Glu Asp Leu 165
Pro Tyr Thr Leu Ser Met Val Ala Thr Ile Asp Ser Gin His Gly Ile 180
Glu Lys Val Gin Ser Asn Cys Pro Leu Ser Pro Thr Glu Tyr Leu Gly 195
Glu Asp Lys Thr Ser Ala Gin Val Ser Leu Ala Ala Gly His Lys Phe 210
Asp Arg Asp Val Glu Leu Leu Ile Tyr Tyr Asn Glu Val His Thr Pro 225
Ser Val Val Leu Glu Met Gly Met Pro Asn Met Lys Pro Gly His Leu 245
Met Gly Asp Pro Ser Ala Met Val Ser Phe Tyr Pro Asn Ile Pro Glu 260
Asp Gin Pro Ser Asn Thr Cys Gin Glu Phe Ile Phe Leu Met Asp Arg 275
Ser Gin Ser Met Gin Ser Pro Met Ser Ser Gin Asp Thr Ser Gin Leu 290
Arg Ile Gin Ala Ala Lys Glu Thr Leu Ile Leu Leu Leu Lys Ser Leu 305
Pro Ile Gly Cys Tyr Phe Asn Ile Tyr Gly Phe Gly Ser Ser Tyr Glu 325
Ala Cys Phe Pro Glu Ser Val Lys Tyr Thr Gin Gin Thr Met Gin Glu 340
Ala Leu Gly Arg Val Lys Leu Met Gin Ala Asp Leu Gly Gly Thr Glu 355
Ile Leu Ala Pro Leu Gin Asn Ile Tyr Arg Gly Pro Ser Ile Pro Gly 370
His Pro Leu Gln Leu Phe Val Phe Thr Asp Gly Glu Val Thr Asp Thr
385 390 395 400

Phe Ser Val Ile Lys Glu Val Arg Ile Asn Arg Gln Lys His Arg Cys
405 410 415

Phe Ser Phe Gly Ile Gly Glu Gly Thr Ser Thr Ser Leu Ile Lys Gly
420 425 430

Ile Ala Arg Ala Ser Gly Gly Thr Ser Glu Phe Ile Thr Gly Lys Asp
435 440 445

Arg Met Gln Ser Lys Ala Leu Arg Thr Leu Lys Arg Ser Leu Gln Pro
450 455 460

Val Val Glu Asp Val Ser Leu Ser Trp His Leu Pro Pro Gly Leu Ser
465 470 475 480

Ala Lys Met Leu Ser Pro Glu Gln Thr Val Ile Phe Arg Gly Gln Arg
485 490 495

Leu Ile Ser Tyr Ala Gln Leu Thr Gly Arg Met Pro Ala Ala Glu Thr
500 505 510

Thr Gly Glu Val Cys Leu Lys Tyr Thr Leu Gln Gly Lys Thr Phe Glu
515 520 525

Asp Lys Val Thr Phe Pro Leu Gln Pro Lys Pro Asp Val Asn Leu Thr
530 535 540

Ile His Arg Leu Ala Ala Lys Ser Leu Leu Gln Thr Lys Asp Met Gly
545 550 555 560

Leu Arg Glu Thr Pro Ala Ser Asp Lys Asp Ala Leu Asn Leu Ser
565 570 575

Leu Glu Ser Gly Val Ile Ser Ser Phe Thr Ala Phe Ile Ala Ile Asn
580 585 590

Lys Glu Leu Asn Lys Pro Val Gln Gly Pro Leu Ala His Arg Asp Val
595 600 605

Pro Arg Pro Ile Leu Leu Gly Ala Ser Ala Pro Leu Lys Ile Lys Cys
610 615 620

Gln Ser Gly Phe Arg Lys Ala Leu His Ser Asp Arg Pro Pro Ser Ala
625 630 635 640

19
Ser Gln Pro Arg Gly Glu Leu Met Cys Tyr Lys Ala Lys Thr Phe Gln 645 650 655

Met Asp Asp Tyr Ser Leu Cys Gly Leu Ile Ser His Lys Asp Gln His 660 665 670

Ser Pro Gly Phe Gly Glu Asn His Leu Val Gln Leu Ile Tyr His Gln 675 680 685

Asn Ala Asn Gly Ser Trp Asp Leu Asn Glu Asp Leu Ala Lys Ile Leu 690 695 700

Gly Met Ser Leu Glu Glu Ile Met Ala Ala Gln Pro Ala Glu Leu Val 705 710 715 720

Asp Ser Ser Gly Trp Ala Thr Ile Leu Ala Val Ile Trp Leu His Ser 725 730 735

Asn Gly Lys Asp Leu Lys Cys Glu Trp Glu Leu Glu Arg Lys Ala 740 745 750

Val Ala Trp Met Arg Ala His Ala Gly Ser Thr Met Pro Ser Val Val 755 760 765

Lys Ala Ala Ile Thr Phe Leu Lys Ser Ser Val Asp Pro Ala Ile Phe 770 775 780

Ala Phe 785

<210> 14
<211> 3438
<212> DNA
<213> Homo sapiens

<400> 14
cggtttctttc cggaaattat gactgca gct cgttcacct gcgttgact cagagcg ctc 60
cggcctgcag gagaggaaga aatcttgcct caccatgggta cacttctgtag cacttctcactg 120
cctccaccgg gagccagtgc cgctgaagag tatcttcttgc agcgtgaacact tttcagttttcatg 180
tgtggtgtgttgtgtctgcag ctctgcgaact gaagagcagtgc ctttctgcacc tttgagtcctgc 240
tttcttcatt gcgggacctag tgtctgttgatcg ctcggctagcct gcgggccgagct ctttcagttttc 300
tggagagaggt aattgtaaacta caagagagag gcccggcacca actatgcagta ctctgctgccagtg 360
agccatctcc cagggccacc aggctctctt acttgagagag gacagcaggtg ccaggagctgt 420
cgctctttgc aatctgccagc cctgctggagactg gccggcggctg cccggctgctgc ctcgctgtg 480
tgtgcagggct ctcctgccttgg actcagagatg gcgtctgcgcc cttgctgcctgcc ctcgctgtgccttg 540
gaattctgccattgcctccct ctcgggcttgact cctgccttaagt gcggactg 600
tatagtcct gcggaggacc tgcctcacac actcagcatgc tgcgccacca tagatctcca 660
gcatggcatt gagaagttcc aatcacaactg cccctttgagt cctaacgagt acctaggaga 720
ggacaagact tctgctcagg ttttcctgggc tgcctggacac aagttttgtgc gggacggtgga 780
acctcctgatt tactacaatt agtgctcata cccacgcgtg gtttggagac gggggatggcc 840
taacatgaag cccagttcatt tgatgggaga tccatctgca atgtgattt tcttatccaa 900
tatccccagaa gataacactcg tgaggagttt acttttttctc tggaccgctc 960
gggagatgtag cagaccccca tagtagccga ggtgatcact cagctgcagc taccgccagc 1020
caggggaaac ctcgattttgc tgcgtaaag gttttactata gcgtgattt tcaacatcta 1080
tggatttgc cttcttcctag aggctagctt tccggagagt gtgaatgaca ttcagcacaac 1140
aatggaggag gctctgtggga gatgtgaagct ttagcaggcc gcactctggg gcacgtgaat 1200
cctggccaca tccacgaaaca cttacagaggg accctcactcact cccagggacc cccatcagct 1260
ttttcttctt acagatggag aagttcagaa cacgtttagtc gtaataaag aagttgagt 1320
caacagacag aaacacaggt gtttcttatt tggatttgga gaaggcacact cccacagcct 1380
aataaagagtt atggccgagg ctcaggaggac cccctcagaaa tttatcagac gcaagaacag 1440
agtgcagtcc aaggtcttcca ggacttctga agctctctcc gacgctgtgg tagaggtgat 1500
cctctctgac tggcatattgc ctctctggtct gctgctaaaa atgtctttcc cagaacagac 1560
tgtcatctttt aagggctcaga gattatcag ctatgcccag cttagccggga ggtgccagac 1620
agcagagaca acagggaaag tagctcctaaaa atataacacac cagggcaagaag ctttgtgaga 1680
taggtgacac tttctctctac aaccccaagcc tggatgcaac ttcacacattacc accgctctgc 1740
tgccaagtcc ttgctcagaa ccaagggact ggccttcaggg gacactcagc caagtgttata 1800
aaaagatgca ttagacccca gctttttagtc tggtgtcata agctctctac cagcttttatt 1860
tgctatcaat aagagctctcca aacagccggt tcaggggccct ctggctctaca gggacgtctcc 1920
aagggccatt ctgttggtgtct cctctgcccc attgaagata aatgacaat caggttttcg 1980
aaagggcttta cactctgtgact ccctctcttct tgcctactca agctctctct cagcttttcat 2040
tttaaggcc aagacatctcc agatggcagca ttacagctctc tggggttgtaa taagtcaca 2100
ggaccagcac agttcaggttt ttgagagaa tcccttttctg cagctgtattt ccacacacaa 2160
tgcaaatggt tctctgggtc tgaatgaga tctagccagg attctagtta tgggtttgga 2220
agaaatatcg tgtgcacgagc ttgggaggtct ggtgtgtcata cccagagggg aatcttagtgc 2280
ggccgtacgc tggctgcaca gagatgttacagacagtttcagaggtttc gagtccttcca 2340
aaggaagggcc gtggctgctga tgcgtgcccc tgcagggcttc accatcgcct ccgtggttga 2400
agctgtcttt actttctctga agtccttctg ggtgacctct acttttggct ttgagatcta 2460
ccatccagaa aaagagctgc cttaattttc tcatcctgat cttccttttctc 2520
Claims

1. A method for detecting the presence, stage or type of a melanoma or skin cancer in a subject, the method comprising detecting in vitro or ex vivo the presence of an altered BCSC-1 gene expression in a sample from the subject, the presence of such an altered BCSC-1 gene expression being indicative of the presence, stage or type of melanoma or skin cancer in said subject.

2. The method of claim 1, wherein a reduced expression of a BCSC-1 gene in said sample is indicative of the presence, stage or type of melanoma or skin cancer in said subject.

3. The method of claim 1 or 2, wherein a reduced expression of a long isoform of a BCSC-1 gene in said sample is indicative of the presence, stage or type of melanoma or skin cancer in said subject.

4. The method of claim 3, wherein the long isoform comprises exon 13, 14, 15, 16, 17 or 18.

5. A method of assessing the efficacy of a treatment of melanoma or skin cancer in a subject, the method comprising comparing BCSC-1 gene expression in a sample from the subject prior to and after said treatment, an increased expression being indicative of a positive response to treatment.

6. A method of any one of claims 1-5, wherein the BCSC-1 gene expression is detected by sequencing, selective hybridization, selective amplification and/or specific ligand binding.

7. The method of any one of claims 1 to 6, wherein the cancer is selected from basal cell carcinoma, squamous cell carcinoma, Merckel carcinoma and melanoma.

8. A nucleic acid primer that allows amplification of a long isoform of BCSC-1.
9. A nucleic acid probe that specifically hybridizes to a long isoform of BCSC-1.

10. An antibody that specifically binds a long isoform of a BCSC-1 protein.

11. A kit comprising a primer, probe or antibody according to any one of claims 8 to 10, respectively.

12. The use of a BCSC-1 protein or of a nucleic acid encoding a BCSC-1 protein for the manufacture of a medicament for treating melanoma or skin cancer.

13. The use of a BCSC-1 agonist for the manufacture of a pharmaceutical composition for treating melanoma or skin cancer.

14. The use of a compound that stimulates BCSC-1 gene expression for the manufacture of a pharmaceutical composition for treating melanoma or skin cancer.

15. A method of selecting biologically active compounds on melanoma or skin cancer, the method comprising a step of selecting compounds that mimic or stimulate BCSC-1 expression or activity.

16. A method of selecting biologically active compounds on melanoma or skin cancer, said method comprising contacting a test compound with a recombinant host cell comprising a reporter construct, said reporter construct comprising a reporter gene under the control of a BCSC-1 gene promoter, and selecting the test compounds that stimulate expression of the reporter gene.

17. A method for detecting the presence, stage or type of a cancer in a subject, the method comprising determining in vitro or ex vivo the (relative) amount of a long isoform of BCSC-1 gene or protein in a sample from the subject, such amount being indicative of the presence, stage or type of a cancer in said subject.

18. A method for detecting the presence, stage or type of a cancer in a subject, the method comprising determining in vitro or ex vivo the (relative) amount of BCSC-1 protein in a fluid sample derived from the subject, such amount being indicative of the presence, stage or type of a cancer in said subject.
Figure 3A

Exon 1 - 1b

Exon 13 - 14

Exon 6 - 7

Exon 15 - 16

Exon 9 - 10

Exon 17 - 18

Figure 3B
Figure 4A

Figure 4B
Figure 5
Figure 6
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>* page 102 * -----</td>
<td>8,9</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>* abstract * -----</td>
<td>8,9</td>
<td></td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims

Place of search: Munich
Date of completion of the search: 13 June 2006
Examiner: Costa Roldán, N

CATEGORY OF CITED DOCUMENTS
X: particularly relevant if taken alone
Y: particularly relevant if combined with another document of the same category
A: technological background
O: non-written disclosure
P: intermediate document
T: theory or principle underlying the invention
E: earlier patent document, but published on, or after the filing date
D: document cited in the application
L: document cited for other reasons
&: member of the same patent family, corresponding document
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>ORIOOLA J ET AL: "Screening of selected genomic areas potentially involved in thyroid neoplasms" EUROPEAN JOURNAL OF CANCER, vol. 37, no. 18, December 2001 (2001-12), pages 2470-2474, XP004322525 ISSN: 0959-8049</td>
<td>1-7, 10-18</td>
<td>8,9</td>
</tr>
<tr>
<td>X</td>
<td>abstract *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>WO 02/10449 A (COMPUEN INC; SHOSHAN, AVI; WASSERMAN, ALON; MINTZ, ELI; MINTZ, LIAT;) 7 February 2002 (2002-02-07) abstract *</td>
<td>8-14</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>BRACCO L ET AL: "The relevance of alternative RNA splicing to pharmacogenomics" TRENDS IN BIOTECHNOLOGY, ELSEVIER PUBLICATIONS, CAMBRIDGE, GB, vol. 21, no. 8, August 2003 (2003-08), pages 346-353, XP004442025 ISSN: 0167-7799 abstract *</td>
<td>-/--</td>
<td></td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims.

Place of search: Munich
Date of completion of the search: 13 June 2006
Examiner: Costa Roldán, N

CATEGORY OF CITED DOCUMENTS
- **X**: particularly relevant if taken alone
- **Y**: particularly relevant if combined with another document of the same category
- **A**: technological background
- **O**: non-written disclosure
- **P**: intermediate document
- **T**: theory or principle underlying the invention
- **E**: earlier patent document, but published on, or after the filing date
- **D**: document cited in the application
- **L**: document cited for other reasons
- **B**: member of the same patent family, corresponding document
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>FEHLBAUM PASCALE ET AL: "A microarray configuration to quantify expression levels and relative abundance of splice variants." NUCLEIC ACIDS RESEARCH. 2005, vol. 33, no. 5, 2005, page e47, XP002384843 ISSN: 1362-4962 * abstract *</td>
<td>----</td>
<td></td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims

<table>
<thead>
<tr>
<th>Place of search</th>
<th>Date of completion of the search</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Munich</td>
<td>13 June 2006</td>
<td>Costa Roldán, N</td>
</tr>
</tbody>
</table>

CATEGORY OF CITED DOCUMENTS

- T: theory or principle underlying the invention
- E: earlier patent document, but published on, or after the filing date
- D: document cited in the application
- L: document cited for other reasons
- X: particularly relevant if taken alone
- Y: particularly relevant if combined with another document of the same category
- A: technological background
- O: non-written disclosure
- P: intermediate document

TECHNICAL FIELDS SEARCHED (IPC)

ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO. EP 06 29 0425

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on 13-06-2006.

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 0210449 A</td>
<td>07-02-2002</td>
<td>AU 1079102 A</td>
<td>13-02-2002</td>
</tr>
<tr>
<td>EP 1305450 A2</td>
<td>02-05-2003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 2004508019 T</td>
<td>18-03-2004</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82

32
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 9514785 A [0103]
- WO 9622378 A [0103]
- US 5882877 A [0103]
- US 6013516 A [0103]
- US 4861719 A [0103]
- US 5278056 A [0103]
- WO 9419478 A [0103]

Non-patent literature cited in the description