Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

1. Field of the Invention

[0001] The present invention is directed towards a method and apparatus for applying a pattern to a nonwoven web and particularly to a nonwoven web formed by spunbonding and spunbond-meltblown-spunbond ("SMS") processes.

2. Background of the Invention

[0002] There presently exists apparatus for the production of spunbond webs or fabrics formed from filaments or fibers typically made from a thermoplastic resin. Such an apparatus is disclosed in U.S. Patent No. 5,814,349 issued September 29, 1998, the disclosure of which is incorporated herein by reference. Typically, such apparatus includes a spinneret for producing a curtain of strands and a process-air blower for blowing process air onto the curtain of strands for cooling same to form thermoplastic filaments. The thermoplastic filaments are then typically, aerodynamically entrained by the process air for aerodynamic stretching of the thermoplastic filaments which are then, after passing through a diffuser, deposited upon a continuously circulating sieve belt for collecting the interentangled filaments and forming a web thereon. The web or fabric, so formed, is then subject to further processing.

[0003] In the spunbonding process for manufacturing nonwoven materials, thermoplastic fiber forming polymer is placed in an extruder and passed through a linear or circular spinneret. The extruded polymer streams are rapidly cooled and attenuated by air and/or mechanical drafting rollers to form desired diameter solidifying filaments. The solidifying filaments are then laid down on a conveyor belt to form a web. The web is then bonded by rollers to form a spunbonded web.

[0004] In the meltblown process for manufacturing nonwoven materials, thermoplastic forming polymer is placed in an extruder and is then passed through a linear die containing about twenty to forty small orifices per inch of die width. Convergent streams of hot air rapidly attenuate the extruded polymer steams to form solidifying filaments. The solidifying filaments are subsequently blown by high velocity air onto a take-up screen or another layer of woven or nonwoven material thus forming a meltblown web.

[0005] The spunbonding and meltblowing process can be combined in applications such as SMS shown in Fig. 1. In SMS a first layer of spunbonded material is formed on a belt or conveyor 10 by the spunbond beam 12. The belt 10 typically has a uniform surface and air permeability to reach the right formation during spunbond process. The spunbonded material is deposited on the belt 10 at a point between the upstream and downstream press rolls 16 and 16′ to form the web. The press rolls 16 and 16′ function to eliminate any air leakage between the belt 10 and the web to enhance pre-bonding caused by the pressure and temperature of the top heated press roll. In order to assist in drawing the thermoplastic fibers onto the belt 10, a vacuum box 14 is located beneath the belt 10 and which applies a suction to the belt. The airflow needed for the spunbond process is sucked from the system by a vacuum box 14.

[0006] Next, in the meltblown beam 18 small fibers are blown onto the spunbond web layer. During the meltblowing process there is typically no need for precompaction press rolls.

[0007] Finally, a second spunbond beam 20 with press rolls 22 applies a second spunbond layer onto the web formed of the meltblown layer and the first spunbond layer. The composite spunbond-meltblown-spunbond material is then consolidated through a calender or a dryer mechanism (not shown).

[0008] While, initially it may appear that to form a pattern on an SMS or spunbond product all that would be necessary is a conveyor or forming belt having the desired topographical features, it is intuitive that the combination of the press rolls and the thermoplastic materials could be combined to create a spunbond material having a mirror image of the pattern of the conveyor. However, as described in U.S. Patent Application No. 2003/0164199, the competing factors of speed, avoidance of undesirable marking, air permeability, and reduced bounce make the use of a topographical pattern belt as the conveyor very difficult in practice.

[0009] There have also been described in the art other methods of providing patterns onto a nonwoven web or preform. For example, reference is made to U.S. Patent No. 5,115,544. In the '544 patent, there is described a spunlacing method and apparatus for imprinting a pattern on a nonwoven material. In particular, the '544 patent describes a method and apparatus for imprinting a pattern on nonwovens formed by a spunlacing technique. As described therein, a nonwoven material is formed and transported on a wire screen having a pattern. The nonwoven material is then treated by a series of water jets, which cause the nonwoven to assume the shape of the wire screen. In this way the pattern from the wire screen is imparted on the nonwoven resulting in a patterned nonwoven.

[0010] While this method has proven to be very satisfactory in a spunlace application, the present invention is directed towards a spunbond apparatus and process.

[0013] JPH03146755 A discloses two meltblown fibers superimposed one another.

[0014] There is still need for an apparatus and method for the production of patterned spunbond nonwovens, and particularly an apparatus and method for the produc-
tion of patterned SMS nonwoven.

SUMMARY OF THE INVENTION

[0015] It is an object of the present invention to provide a method and apparatus for the formation of nonwovens having patterns in a spunbonding process.

[0016] It is another object of the present invention to provide a method and apparatus for the formation of spunbond and meltblown composite nonwovens having patterns formed thereon.

[0017] The objects of the invention will be generally achieved by providing an apparatus for the production of nonwovens including at least one spunbonding apparatus for forming a first web of nonwoven material on a first belt and at least one meltblowing apparatus for forming a second web of nonwoven material on a second belt. After formation, the second web is deposited on the first web by the second belt to form a composite spunbond and meltblown web.

[0018] Another aspect of the invention is directed to a method of forming a patterned nonwoven, including the steps of forming a first web of nonwoven material in a spunbonding process on a first belt, and forming a second web of nonwoven material in a meltblowing process on a second belt. The first and second webs of nonwoven material are then combined to form a composite nonwoven web.

[0019] The various features which characterize the invention are pointed out in particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and specific objects attained by its uses, reference is made to the accompanying descriptive matter in which preferred embodiments of the invention are illustrated.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] The following detailed description, given by way of example will best be appreciated in conjunction with the accompanying drawings, wherein like reference numerals denote like elements and parts, in which:

Figure 1 is a profile view of a spunbond-meltblown spunbond nonwoven forming line according to the prior art; and

Figure 2 is a profile view of a spunbond-meltblown spunbond nonwoven forming line according to one aspect of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

[0021] Turning now to Figure 2, a spunbond-meltblown-spunbond nonwoven forming line according to one aspect of the present invention is shown. In this embodiment of the present invention, there is substantially no change in the spunbond beams 12 and 20 from Figure 1. As with the example shown in Figure 1, a spunbond web 24 is formed by the spunbond beam 12 and the press rolls 16. Again the vacuum box 14 operates to draw the thermoplastic fibers onto the belt 10 and remove the air used in the spunbond process to prevent disturbances in the formation of the web 24.

[0022] Progressing down the SMS line, to the meltblown section, there is a patterning belt 26 supported by two rollers 28, which in this example runs opposite to the direction of travel of belt 10. This belt 26 is installed below the meltblown beam 18 and preferably is a patterning fabric. Meltblown fibers are laid down on the belt 26 and then transferred onto the belt 10 so that a meltblown web 32 that is formed on the belt 26 is deposited onto the spunbond web 24.

[0023] The patterning fabric 26 provides a patterned surface onto which the meltblown fibers are deposited. Due to the heat and air pressure applied to the fibers by the meltblown process, a web formed by this process adopts the pattern of the belt 26. In this fashion, by combining the meltblown web 32 with the spunbond web 24 it is possible to create a patterned SMS nonwoven. Alternatively, a drum covered with a patterning sleeve can be used instead of the belt 26. In such an arrangement the drum would be placed downstream of the area where the meltblown fiber is deposited, and close enough so that such fibers have not yet cooled and may be impressed with the pattern on the drum.

[0024] As with the known SMS processes, air distribution and removal are important factors to consider. Due to the high pressure air applied to the meltblown fibers and the belt 26 during the meltblowing process, and in order to avoid air turbulence between the upper and lower portions of the patterning belt 26, a diffuser 30 is installed to drive the airflow into the vacuum box 14. The diffuser works to reduce the force of the air pressure which works on the backside of the belt 26, the composite webs, and belt 10 and to eliminate turbulence between portions of the belt 26. The vacuum box 14 is used to remove air from the system to prevent disruption of the web.

[0025] After combining the meltblown web 32 with the spunbond web 24 to form a combined web 34, the combined web 34 may be directed through a second spunbond beam 20. The second spunbond process is similar to the first in that it includes press rolls 22 and a means for applying a spunbond web to the combined web 34 to form a final SMS web 36.

Claims

1. An apparatus for the production of nonwovens comprising:

 at least one spunbonding apparatus (12; 20) for forming a first web (24) of nonwoven material on a first belt (10); and

 at least one meltblowing apparatus (18) for form-
ing a second web (32) of nonwoven material on a second belt (26), said second belt (26) disposed over said first belt (10) and depositing the second web (32) on said first web (24) while said first web (24) is on said first belt (10) to form a composite spunbond and meltblown web; and wherein high-pressure air and heat of said meltblowing apparatus (18) causes the second web (32) to be imprinted with a pattern of the second belt (26).

2. The apparatus of claim 1, wherein the pattern imprinted on the second web (32) is exposed on the composite spunbond and meltblown web when the second web (32) is deposited on the first web (24).

3. The apparatus of claim 1 further comprising a second spunbonding apparatus (12; 20) forming a third web on said composite web and joined thereto.

4. The apparatus of claim 1 further comprising a diffuser located beneath the second belt (26) of said meltblowing apparatus (18), said diffuser reducing the air turbulence in said second belt (26).

5. The apparatus of claim 1 further comprising at least one vacuum box for removing air used in said spunbonding and meltblowing apparatus (18).

6. A method of forming a patterned nonwoven comprising the steps of:

- forming a first web (24) of nonwoven material in a spunbonding process on a first belt (10);
- forming a second web (32) of nonwoven material in a meltblowing process on a second belt (26); and
- combining said first and second webs (24, 32) of nonwoven material by positioning said second belt (26) over the first belt (10) to form a composite nonwoven web; and
- impressing a pattern onto said second web (32) by high-pressure air and heat of said meltblowing process which causes the second web (32) to be imprinted with a pattern of the second belt (26).

7. The method of claim 6, further comprising a step of exposing the pattern on said second nonwoven web on the composite nonwoven web when the first and second webs (24,32) are combined.

8. The method of claim 6, further comprising a step of forming a third web of spunbonded nonwoven material on the composite web.

9. The method of claim 8, further comprising a step of pressing the combination of the third web and the composite web in a press roll.

Patentansprüche

1. Vorrichtung zur Herstellung von Vlies, umfassend:

- mindestens eine Spunbond-Vorrichtung (12; 20) zum Bilden einer ersten Bahn (24) aus Vlies auf einem ersten Band (10); und
- mindestens eine Meltsblow-Vorrichtung (18) zur Bildung einer zweiten Bahn (32) aus Vlies auf einem zweiten Band (26), wobei das zweite Band (26) über dem ersten Band angeordnet ist (10) und die zweiten Bahn (32) auf der ersten Bahn (24) ablegt, während sich die erste Bahn (24) auf dem ersten Band (10) befindet, um eine Verbund-Spunbond-Meltsblow-Vliesbahn zu bilden; und
- wobei Druckluft und Wärme der Meltsblow-Vorrichtung (18) ein Einprägen des Musters des zweiten Bandes (26) bezüglich der zweiten Bahn (32) bewirken.

2. Vorrichtung nach Anspruch 1, bei welcher das bezüglich der zweiten Bahn (32) eingeprägte Muster an der Verbund-Spunbond-Meltsblow-Vliesbahn frei liegt, wenn die zweite Bahn (32) auf/an die erste Bahn (24) abgelegt ist/wird.

3. Vorrichtung nach Anspruch 1, weiterhin umfassend eine zweite Spunbond-Vorrichtung (12; 20), die eine dritte Bahn auf der Verbundbahn bildet und diesbezüglich verbunden ist.

4. Vorrichtung nach Anspruch 1, weiterhin umfassend einen unter dem zweiten Band (26) der Schmelz-Blas- oder Meltsblow-Vorrichtung (18) befindlichen Diffusor, der die Luft-Verwirbelung in dem zweiten Band (26) verringert.

5. Vorrichtung nach Anspruch 1, weiterhin umfassend zumindest eine Vakuumkammer oder einen Saugkasten zum Entfernen von Luft, verwendet in der Spunbond- und Meltsblow-Vorrichtung (18).

6. Verfahren zur Herstellung von strukturiertem Vlies, umfassend die Schritte von:

- Bilden einer ersten Bahn (24) aus Vlies-Material in einem Spunbond-Verfahren an/auf einem ersten Band (10);
- Bilden einer zweiten Bahn (32) aus Vlies-Material in einem Meltsblow-Verfahren an/auf einem zweiten Band (26); und
- Kombinieren der ersten und zweiten Bahnen

7. Verfahren nach Anspruch 6, weiterhin umfassend einen Schritt des Freilegens des Musters an/auf der zweiten Vliesbahn an/auf der Verbundvliesbahn, wenn die ersten und zweiten Bahnen (24, 32) kombiniert werden/sind.

Revendications

1. Appareil pour la production de produits non tissés comprenant :
 au moins un appareil de filage-liage (12 ; 20) destiné à former une première toile (24) d’un matériau non tissé sur une première courroie (10) ; et au moins un appareil de soufflage à l’état fondu (18) destiné à former une deuxième toile (32) d’un matériau non tissé sur une deuxième courroie (26), ladite deuxième courroie (26) étant disposée sur ladite première courroie (10) et en déposant la deuxième toile (32) sur ladite première toile (24) alors que ladite première toile (24) se trouve sur ladite première courroie (10) pour former une toile filée-liée et soufflée à l’état fondu composite ; et dans lequel une haute pression et de la chaleur dudit appareil de soufflage à l’état fondu (18) amènent la deuxième toile (32) à être imprimée avec un motif de la deuxième courroie (26).

2. Appareil selon la revendication 1, dans lequel le motif imprimé sur la deuxième toile (32) est exposé sur la toile filée-liée et soufflée à l’état fondu composite lorsque la deuxième toile (32) est déposée sur la première toile (24).

3. Appareil selon la revendication 1 comprenant en outre un deuxième appareil de filage-liage (12 ; 20) formant une troisième toile sur ladite toile composite et collée à celle-ci.

4. Appareil selon la revendication 1 comprenant en outre un diffuseur situé en dessous de la deuxième courroie (26) dudit appareil de soufflage à l’état fondu (18), ledit diffuseur réduisant la turbulence de l’air dans ladite deuxième courroie (26).

5. Appareil selon la revendication 1 comprenant en outre un moins une boîte à vide destinée à retirer l’air utilisé dans l’appareil de filage-liage et de soufflage à l’état fondu (18).

6. Procédé de formation d’un produit non tissé doté d’un motif comprenant les étapes consistant à :
 former une première toile (24) d’un matériau non tissé dans un processus de filage-liage sur une première courroie (10) ; former une deuxième toile (32) d’un matériau non tissé dans un processus de soufflage à l’état fondu sur une deuxième courroie (26) ; et combiner lesdites première et deuxième toiles (24, 32) d’un matériau non tissé en positionnant ladite deuxième courroie (26) sur la première courroie (10) et en déposant ladite deuxième toile (32) à partir de ladite deuxième courroie (26) sur ladite première toile (24) alors que la première toile (24) se trouve sur la première courroie (10) pour former une toile non tissée composite ; et appliquer un motif sur ladite deuxième toile (32) par de l’air à haute pression et de la chaleur dudit processus de soufflage à l’état fondu ce qui amène la deuxième toile (32) à être imprimée avec un motif de la deuxième courroie (26).

7. Procédé selon la revendication 6, comprenant en outre une étape consistant à exposer le motif sur ladite deuxième toile non tissée sur la toile non tissée composite lorsque les première et deuxième toiles (24, 32) sont combinées.

8. Procédé selon la revendication 6, comprenant en outre une étape consistant à former une troisième toile d’un matériau non tissé filé-lié sur la toile compositive.

9. Procédé selon la revendication 8, comprenant en outre une étape consistant à appliquer une pression sur la combinaison de la troisième toile et de la toile composite dans un rouleau presseur.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 5814349 A [0002]
- US 20030164199 A [0008]
- US 5115544 A [0009]
- US 5656232 A [0012]
- JP H03146755 A [0013]