An apparatus for measuring body liquids

An apparatus for measuring body liquids comprising a vessel (1) with a liquid inlet (2) at its top end and a liquid outlet (4) at its lower end, the inside bottom surface (3) of the vessel being curved, is disclosed. The vessel comprises a measuring scale (5) for reading the volume of urine inside the vessel, and filling elements (6) provided inside the vessel taking up a predefined volume of the vessel. As the bottom surface (3) is curved, the measuring scale (5) provided on the vessel is not a linear scale, but in order to solve that, one or more filling elements (6) are provided inside the vessel taking up a predefined volume of the vessel to compensate for the curved surface. The curved bottom surface provides an ergonomic rounded shape which makes it easier to hold and handle for users.
Description

[0001] The present invention relates to an apparatus for measuring and collecting volume of body liquids, which apparatus comprises a vessel with a liquid inlet at its top end and a liquid outlet at its lower end, and a measuring scale provided on the vessel for reading the volume of urine inside the vessel.

[0002] Apparatus of the kind mentioned above are used at hospitals for measuring and monitoring the urine discharge from bedridden patients, in particular from patients with catheters inserted into their urine bladder.

[0004] It is an object of the present invention to provide an apparatus for measuring and collecting urine, and which has an ergonomic rounded shape and a linear measuring scale.

[0005] It is a further object of the present invention to provide an apparatus for measuring and collecting urine, and which has a smooth outer shape being easier to keep clean.

SUMMARY OF THE INVENTION

[0006] These objects are achieved with the apparatus according to the invention, the apparatus for measuring body liquids comprising a vessel with a liquid inlet at its top end and a liquid outlet at its lower end, the inside bottom surface of the vessel being curved, a measuring scale provided on the vessel for reading the volume of urine inside the vessel, and filling element(s) provided inside the vessel and taking up a predefined volume of the vessel to compensate for the inside curved bottom surface of the vessel in order to allow for the use of a linear measuring scale.

[0007] As the bottom surface is curved, the vessel obtains an ergonomic rounded shape which makes it easier to hold and handle for the nurses. However, as the bottom surface is curved, the measuring scale provided on the vessel can basically not be a linear scale, but in order to solve that, one or more filling elements are provided inside the vessel taking up a predefined volume of the vessel to compensate for the curved surface, which makes it possible to use a linear scale on the vessel.

[0008] The filling element(s) may be provided as projections or recesses in and/or a wall part of the vessel, such as for example on the back wall inside of the vessel, and it may define a straight horizontal bottom surface inside the vessel at a level substantially equal to the level at which the curved surface begins. The filling elements may be provided as projections moulded in a sidewall of the vessel during moulding of the vessel. "Wall part” means any bottom, top or side wall part of the vessel.

[0009] The filling element(s) may comprise independent fixed or movable elements arranged inside the vessel provided during or after manufacture of the vessel.

[0010] The curved bottom surface of the vessel allows for a better hygiene as there are no corners that can be difficult to access and clean from outside.

[0011] The curved bottom surface is preferably substantially circular formed, but it may have any curved form.

[0012] The apparatus may further comprise a valve provided with the outlet and a liquid collection bag connected to the liquid outlet and suspended from the measuring vessel.

[0013] A hollow valve body may be placed in and vertically displaceable with the measuring vessel, and the liquid outlet has the shape of a valve seat for the hollow valve body. The interior of the valve body is divided into a reception chamber and an overflow chamber, said reception chamber being connected to the liquid inlet and having at the lower end of the valve body at least one outlet opening which in the closed position of the valve body is closed by the valve seat and which at its upper part is connected to the measuring vessel through at least one hole in the chamber wall.

[0014] The overflow chamber may have at its lower end a duct which is directly connected to the measuring vessel via a hole in the chamber wall, the holes connecting the reception chamber to the measuring vessel and the measuring vessel to the overflow chamber being placed on the same side of the hollow valve body.

[0015] When the valve is in its closed position the outlet opening of the reception chamber is closed by the valve seat and consequently the liquid introduced into the reception chamber gradually fills said chamber which is preferably provided with the above mentioned linear measuring scale.

[0016] When the liquid levels with the hole in the chamber wall the introduction of additional liquid will cause overflow of liquid into the vessel, which vessel is thus gradually filled.

[0017] When the liquid surface in the vessel has reached the level of the hole in the overflow chamber the introduction of additional liquid will cause overflow into the overflow chamber and through the duct being in communication with the liquid outlet into the collection bag.

[0018] When emptying the reception chamber and vessel the valve body is lifted from the valve seat. This causes the liquid in the reception chamber to flow out through the outlet opening at the lower end of the chamber and allows the flow of liquid to pass from the vessel to the outlet and from here into the collection bag.

[0019] As the holes of the valve body are placed on the same side of the hollow valve body the apparatus may be positioned in an inclined position or horizontally provided, said holes face upwards without causing unintentional overflow of liquid from the reception chamber to the vessel and overflow chamber.

[0020] The valve body may have at its upper end a protrusion extending radially from the outside of the valve body which protrusion is placed in a helical groove on
the inside of a surrounding part of the measuring vessel so as to cause a vertical displacement of the valve body by rotation of the valve body.

[0021] The valve body is preferably provided with a radially extending wing at its upper end to facilitate turning of the valve body.

[0022] The inside of the measuring vessel may comprise one or more protrusions which are in contact with the outside of the valve body and serve as a guide for the presence of the filling elements 6 taking up a predefined volume of the vessel and thereby compensating for the curved bottom surface 3, it is possible to use a linear scale 5.

[0028] The curved surface 3 of the vessel 1 allows for a better hygiene as there are no corners that can be difficult to access and clean from outside. Furthermore, it provides a more ergonomic vessel being easier to hold.

[0029] Fig. 2 shows a vessel 1 and a collection bag 8 connected to each other via the outlet 4 of the vessel and an inlet of the bag, which may be formed by a tubular member being adhered to the bag.

[0030] Figs. 3a-b show transparent views of the vessel of Figs. 1a-b and 2 in order to see the inside of the vessel more in detail. The vessel 1 comprises the hollowed member for receiving and containing the liquid, and the bottom surface 3 has a curved shape provided on each side of a central column terminating in the outlet 4 of the vessel 4. The central column defines a valve body 9 for the vessel, the valve body 9 being axially displaceable by rotation and which at its lower end is in contact with a valve seat 10 and is closed at the top with a cover 11. The valve body 9 is described more in detail with reference to Figs. 4a-e.

[0031] Fig. 3b is a cross-sectional view of the vessel 1. As seen in fig. 3b, the filling element 6 is provided as a projection moulded in the back wall of the vessel.

[0032] Figs. 4a-e show sectional views of a valve body 9 of the vessel 1 as shown in Figs. 1a-b, Fig. 2 and Figs. 3a-b.

[0033] Fig. 4c is a sectional view along the line III-III of the valve body of Fig. 4a, Fig. 4d shows the upper part of the valve body seen from the bottom, and Fig. 4e shows the upper part of the valve body of Fig. 4d in sectional view.

[0034] The central column defines the valve body 9, which is constructed with two chambers; a reception chamber 12 and an overflow chamber 13. At its lower end the reception chamber 12 is provided with two holes 14 ending in a valve surface 15 which contacts the valve seat 10 in its closed position thus preventing liquid outflow. At the upper end of the reception chamber 12 two holes 16 are provided in the wall separating the chamber 12 from the surrounding vessel 1.

[0035] At its lower end the overflow chamber 13 is provided with a duct 17 through which said overflow chamber 13 is in direct contact with the liquid outlet of the vessel. The liquid outlet is defined by a tubular member so that the vessel can be connected to a collection bag 8.

[0036] At the top end of the overflow chamber 13 a hole 18 is provided in the valve wall.

[0037] Two annular-shaped grooves 19 each comprising an O-ring (not shown) is provided on the outside of the valve body at the lower end thereof. An annular groove 20 comprising an O-ring (not shown) is provided.

[0038] The outside of the valve body 9 is also provided with a projection 21 being inserted in a helical groove formed on the outside of the back wall of the measuring vessel.
An apparatus for measuring body liquids comprising:

- a measuring vessel (1) with a liquid inlet (2) at its top end and a liquid outlet (4) at its lower end, the inside bottom surface (3) of the vessel (1) being curved,
- a measuring scale (5) provided on the vessel (1) for reading the volume of urine inside the vessel (1), and
- filling elements (6) provided inside the vessel (1) and taking up a predefined volume of the vessel (1) to compensate for the inside curved bottom surface (3) of the vessel (1) in order to allow for the use of a linear measuring scale (5).

2. An apparatus according to claim 1, wherein the filling elements (6) comprise projections or recesses (6) provided in and/or on a wall part inside of the vessel (1).

3. An apparatus according to claim 1 or 2, wherein the filling elements comprise independent fixed or movable elements arranged inside the vessel after manufacture of the vessel.

4. An apparatus according to any of claims 1-3, wherein the bottom surface (3) is formed as a circular arc.

5. An apparatus according to any of claims 1-4, further comprising a valve (9, 10) provided with the outlet (4) and a liquid collection bag (8) connected to the liquid outlet (4) and suspended from the measuring vessel (1).

6. An apparatus according to claim 5 and comprising a hollow valve body (9) placed in and vertically displaceable with the measuring vessel (1), the liquid outlet (4) having the shape of a valve seat (10) for the hollow valve body (9), the interior of the valve body (9) being divided into a reception chamber (12) and an overflow chamber (13), said reception chamber (12) being connected to the liquid inlet (2) and having at the lower end of the valve body (9) at least one outlet opening (14) which is connected to the measuring vessel (1) through at least one hole (16) in the chamber wall, the overflow chamber (13) having at its lower end a duct (17) which is connected to the measuring vessel (1) via a hole (18) in the chamber wall, the holes connecting the reception chamber (12) to the measuring vessel (1) and the measuring vessel (1) to the overflow chamber (13) being placed on the same side of the hollow valve body (9).

7. An apparatus according to claim 6, wherein the valve body (9) has at its upper end a protrusion (21) extending radially from the outside of the valve body (9) which protrusion (21) is placed in a helical groove on the inside of a surrounding part of the measuring vessel (1) so as to cause a vertical displacement of the valve body (9) by rotation of the valve body (9).

8. An apparatus according to claim 7, wherein the valve body (9) is provided with a radially extending wing (26) at its upper end.
9. An apparatus according to any of claims 6-8, wherein the inside of the measuring vessel (1) comprises one or more protrusions which are in contact with the outside of the valve body (9) and serve as a guide for same.

10. An apparatus according to any of claims 6-9, wherein two annular grooves (19) for O-rings are provided in that zone of the valve body (9) which is in contact with the valve seat (10) in its closed position.

11. An apparatus according to any of claims 6-10, wherein the valve body (9) is closed at the top by a cover (11).

12. An apparatus according to claim 11, wherein the cover (11) comprises a liquid inlet (22) in the form of a tubular member having an inclined end surface covered by a valve flap.

13. An apparatus according to claim 12, wherein the cover (11) comprises an opening (24) which is covered by an air permeable and liquid tight filter.

14. An apparatus according to any of the preceding claims for measuring and collecting urine.
Fig. 2
European Patent Office

EUROPEAN SEARCH REPORT

DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 96/08219 A (PHARMA PLAST INT AS [DK]; SVENDSEN GUNNAR [DK]; POULSEN MARK KAARE [DK]) 21 March 1996 (1996-03-21) * the whole document *</td>
<td>1,5-14</td>
<td>INV. A61B5/20</td>
</tr>
<tr>
<td>A</td>
<td>EP 0 983 746 A2 (BRAUN MELSUNGEN AG [DE]) 8 March 2000 (2000-03-08) * paragraph [0015] - paragraph [0021]; figure 1 *</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

TECHNICAL FIELDS SEARCHED (IPC)

A61B

The present search report has been drawn up for all claims

Place of search

Munich

Date of completion of the search

2 May 2007

Examiner

Lickel, Andreas

CATEGORY OF CITED DOCUMENTS

- **T**: theory or principle underlying the invention
- **E**: earlier patent document, but published on, or after the filing date
- **D**: document cited in the application
- **L**: document cited for other reasons
- **A**: member of the same patent family, corresponding document
- **P**: intermediate document
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EPO file on.

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

02-05-2007

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 9608219 A</td>
<td>21-03-1996</td>
<td>AU 2734495 A</td>
<td>29-03-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 107394 A</td>
<td>17-03-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3853009 D1</td>
<td>23-03-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3853009 T2</td>
<td>08-06-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 628287 A</td>
<td>31-05-1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 19839962 C1</td>
<td>27-04-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2192002 T3</td>
<td>16-09-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6129684 A</td>
<td>10-10-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 8133591 A</td>
<td>20-02-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2045248 A1</td>
<td>14-02-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69110989 D1</td>
<td>10-08-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69110989 T2</td>
<td>04-01-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2077155 T3</td>
<td>16-11-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4253845 A</td>
<td>09-09-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5119675 A</td>
<td>09-06-1992</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description