METHOD OF STABILIZING, AND BLUING, OF ANTHOCYANIN PIGMENT USING GENE CODING FOR TRANSFERASE OF AROMATIC ACYL TO 3'-POSITION OF ANTHOCYANIN

VERFAHREN ZUR STABILISIERUNG UND BLAUFÄRBUNG VON ANTHOCYANINPIGMENT UNTER VERWENDUNG EINES FÜR TRANSFERASE VON AROMATISCHEN ACYL AN DIE 3'-STELLLUNG VON ANTHOCYANIN CODIERENDENS GENS

METHODE DE STABILISATION ET AZUARAGE D’UN PIGMENT ANTHOCYANINE EN EMPLOYANT UN GENE CODANT POUR LA TRANSFERASE D’UN ACYLE AROMATIQUE VERS LA POSITION 3' DE L’ANTHOCYANINE

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

Priority: 29.10.2004 JP 2004315733

Date of publication of application: 25.07.2007 Bulletin 2007/30

Proprietor: Suntory Holdings Limited
Kita-ku, Osaka-shi
Osaka 530-8203 (JP)

Inventors:
• TANAKA, Yoshikazu
Otsu-shi, Shiga 5200246 (JP)
• KATSUMOTO, Yukihisa
Mishima-gun, Osaka 6180001 (JP)
• MIZUTANI, Masako
Kyoto-shi, Kyoto 6158086 (JP)
• FUKUI, Yuko
Takatsuki-shi, Osaka 5691123 (JP)
• TOGAMI, Junichi
Takatsuki-shi, Osaka 5690814 (JP)

Representative: Denison, Christopher Marcus et al
Mewburn Ellis LLP
33 Gutter Lane
London
EC2V 8AS (GB)

References cited:
JP-A- 09 070 290

• DATABASE UniProt [Online] 1 May 1999 (1999-05-01), "RecName: Full=Anthocyanin 5-aromatic acyltransferase; Short=5AT; EC=2.3.1.153;" XP002549175 retrieved from EBI accession no. UNIPROT:Q9ZWR8 Database accession no. Q9ZWR8

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
• NAKAYAMA T ET AL: "Anthocyanin acyltransferases: specificities, mechanism, phylogenetics, and applications" JOURNAL OF MOLECULAR CATALYSIS. B, ENZYMATIC, ELSEVIER, AMSTERDAM, NL, vol. 23, no. 2-6, 1 September 2003 (2003-09-01), pages 117-132, XP002995251

• FUJIWARA H. ET AL: 'cDNA cloning, gene expression and subcellular localization of anthocyanin 5-aromatic acyltransferase from Gentiana triflora' PLANT J. vol. 16, no. 4, 1998, pages 421 - 431, XP002305502

• FORKMANN G. AND MARTENS S.: 'Metabolic engineering and applications of flavonoids' PLANT BIOTECHNOL. vol. 12, no. 2, April 2001, pages 155 - 160, XP001094351

• FUKUCHI-MIZUTANI M. ET AL: 'Biochemical and molecular characterization of a novel UDP-glucose:anthocyanin 3'-O-glucosyltransferase, a key enzyme for blue anthocyanin biosynthesis, from Gentian' PLANT PHYSIOL. vol. 132, July 2003, pages 1652 - 1663, XP002309423

• YONEKURA-SAKAKIBARA K. ET AL: 'Molecular and biochemical characterization of a novel hydroxycinnamoyl-Co-A: anthocyanin 3-O-glucoside-6"-O-acyltransferase from Perilla Frutescens' PLANT CELL PHYSIOL vol. 41, no. 4, 2000, pages 495 - 502, XP002972564

• FUJIWARA H. ET AL: 'Anthocyanin 5-aromatic acyltransferase from Gentiana triflora purification, characterization and its role in anthocyanin biosynthesis' EUR. J. BIOCHEM. vol. 249, 1997, pages 45 - 51, XP002972567
FIELD OF THE INVENTION

[0001] The present invention relates to a method of altering anthocyanin bluer and more stable using an enzyme that transfers an aromatic acyl group to the 3' and 5 positions of anthocyanin or a gene encoding said enzyme, and can be applied to the alteration and stabilization of anthocyanin pigments and to the alteration and stabilization of flower color. More specifically, it relates to a method of making the color of flowers blue and stabilizing it using an aromatic acyltransferase that transfers an aromatic acyl group to the 3' and 5 positions of anthocyanin derived from plants including Gentiana triflora var. japonica or a cDNA encoding said enzyme.

[0002] The present invention relates to a method of altering anthocyanin bluer and more stable using a single enzyme that transfers aromatic acyl groups to sugars at multiple positions of anthocyanin or gene encoding said enzyme, and can be applied to the alteration and stabilization of anthocyanin pigments and to the alteration and stabilization of flower color.

BACKGROUND OF THE INVENTION

[0003] The flower industry strives to develop new and different varieties of flowers. An effective way to create such novel varieties is the manipulation of flower color where classical breeding techniques have been used to produce a wide range of colors for most of the commercial varieties. This approach has been limited, however, by the constraints of a particular species' gene pool and for this reason it is rare for a single species to have the full spectrum of colored varieties.

[0004] Flower color is predominantly due to two types of pigments: flavonoids and carotenoids. Flavonoids mainly contribute a wide range of color from yellow to red to blue, whereas carotenoids mainly contribute color tones such as orange or yellow. The flavonoids which are a major contribution to flower color are a class of compounds called anthocyanins. The chromophoric group of anthocyanins is anthocyanidins, and as major anthocyanidins, there are known pelargonidin, cyanidin and delphinidin. Plants are known to have a wide variety of anthocyanins, and the diversity thereof is one of the causes of the diversity of flower colors. Structures of hundreds of anthocyanins have already been determined, and the hydroxyl group at the 3 position of most anthocyanins has been modified with sugars (Harborne, in The Flavonoids: 565, 1986).

[0005] The biosynthetic pathway for anthocyanins is common among flowering plants up to the biosynthesis of the 3-glucosides (Holton et al., Plant Cell 7: 1071, 1995), and subsequently they undergo various modifications such as glycosylation, acylation and methylation in species- and variety-specific manners. Such differences in modification patterns in varieties are one of the reason for diversities in anthocyanins, i.e. diversities in flower colors. Generally the more aromatic acyl groups modify anthocyanins, the more stabilized and bluer anthocyanins become (Harborne, in he Flavonoids: 565, 1986; Norio Saito, TANPAKUSITU KAKUSAN KOUSO (Proteins, Nucleic Acids, Enzymes) 47: 202, 2002). Furthermore, flower color may be affected by the formation of metal complex of anthocyanins, the copigment effect by flavonoid compounds such as flavonol and flavone, and pH of vacuoles in which anthocyanins are localized (Forkmann, Plant Breeding 106: 1, 1991).

[0006] Biosynthesis of flavonoids including anthocyanidin has been extensively studied. All the genes for enzymes involved in anthocyanin biosynthesis have been cloned, and genes for the transcription factors therefor have also been obtained. Therefore, the artificially modification of the expression of these genes can alter the structure and the amount of flavonoids accumulated in flowers, and thereby can change flower color. There are some reports on the modification of anthocyanin structures and flower color by a molecular biological technique and gene transformation into plants (Forkmann G. & Martens S. (2001), Curr. Opin. Biotechnology, 12: 155-160; Tanaka Y. & Mason J. (2003), In: Singh RP & Jaiwal PK (ed.) Plant genetic engineering, pp. 361-385, SCI tech publishing, Houston).

[0007] One possible method for making flower color blue is to increase the number of hydroxyl groups of B ring of anthocyanin. An enzyme that catalyzes a reaction of hydroxylating the 3' position of anthocyanin (flavonoid 3'-hydroxylase: F3'H) and an enzyme that catalyzes a reaction of hydroxylating the 3' and the 5' position of anthocyanin (flavonoid 3',5'-hydroxylase: F3'S5'H) are important in altering flower color. In general, pelargonidin (one hydroxyl group in B ring) is contained in orange- to red-colored flowers, cyanidin (two hydroxyl groups in B ring) is contained in red- to magenta-colored flowers, and delphinidin (three hydroxyl groups in B ring) is contained in purple- to blue-colored flowers. In most cases, plant species that do not have purple- to blue-colored varieties often lack the ability to produce delphinidin, and are represented by roses, chrysanthemums and carnations.

[0008] For these plants, the creation of purple- to blue-colored varieties by biotechnology has long attracted attention. In fact, by expressing the F3'S5'H gene essential for the production of delphinidin, carnations whose flower color is blue purple were produced (Tanaka Y. & Mason J. (2003), In: Singh RP & Jaiwal PK (ed.) Plant genetic engineering, pp. 361-385, SCI tech publishing, Houston), and it became possible to produce delphinidin in flower petals, but the flower
color has not been fully blue yet. Thus, in order to make flower color sheer blue, the introduction of the F3’S’H gene alone is not sufficient, and further contrivances may be required.

[0009] Actually anthocyanins contained in blue flowers are often modified with aromatic acyl groups via sugars (Honda & Saito, Heterocycles 56: 633 (2002)). Thus, one possible method of making flower color blue is to modify anthocyanin with aromatic acyl groups such as caffeoyl groups, coumaroyl groups and sinapoyl groups (Tanaka Y. & Mason J. (2003), In: Singh RP & Jaiwahl PK (ed.) Plant genetic engineering, pp. 361-385, SCI tech publishing, Houston).

[0010] Generally, anthocyanin is slightly reddened by glycosylation, and the addition of aromatic acyl groups via sugars makes the color of anthocyanin blue (Forkmann, Plant Breeding 106: 1, 1991). Also, anthocyanin is a compound unstable in neutral solutions, and the stability is enhanced by modification with sugars or acyl groups (Forkmann, Plant Breeding 106: 1, 1991). An experiment using anthocyanins from morning glories (Pharbitis nil) revealed that acylated anthocyanins to which an aromatic acyl group such as, for example, coumaric or caffeic acid was bound showed a hypsochromic shift (Dang et al., Phytochemistry 34: 1119, 1993).

[0011] As for anthocyanins acylated with aromatic acyl groups, many isolation examples from nature have been reported including awobanin (Goto and Kondo, Angew. Chem. Int. Ed. Engl. 30: 17, 1991) derived from Commelinina communis (Honda & Saito, Heterocycles 56: 633 (2002)). For example, anthocyanins from blue flowers have multiple aromatic acyl groups as represented by cinerarin (derived from cineraria), gentiodelphin (derived from Gentiana triflora), heavenly blue anthocyanin (derived from Pharbitis nil), ternatin (derived from Clitoria ternatea) and lobelinin (derived from Lobelia).

[0012] Cinerarin (Goto et al., Tetrahedron 25: 6021, 1984) derived from cineraria (Senecio cruentus) has one aliphatic acyl group and three aromatic acyl groups, and these aromatic acyl groups are reported to contribute to the stabilization of pigments in neutral aqueous solutions (Goto et al., Tetrahedron 25: 6021, 1984). Gentiodelphin (DEL 3G-5CaG-3’ CaeG) which is a major pigment of Gentiana triflora petals has a delphinidin 3-glycoside as the basic backbone, and two side chains comprising one glucose molecule and one caffeic acid molecule on the hydroxyl groups at the 5 position and the 3’ position. It is reported that the side chains at the 5 and 3’ position comprised of sugar-acyl group contributed to a sandwich-type of intra-molecular stacking, resulting in the stabilization of pigments in aqueous solutions (Yoshida et al., Tetrahedron 48: 4313, 1992). Furthermore, it has been confirmed that among the two side chains of sugar-acyl group, the glucosylacyl group at the 3’ position rather than the 5 position contributes more strongly to the stabilization and bluing of pigments (Yoshida et al., Phytochemistry 54: 85, 2000).

[0013] The aromatic acyl transfer reaction was first demonstrated in Silene (Kamsteeg et al., Biochem. Physiol. Plantizen 175: 403, 1980), a plant of the family Caryophyllaceae, in 1980, and a similar aromatic acyl transferase activity was also found in the solubilized enzyme fraction of Matthiola as well (Teusch et al., Phytochemistry 26: 991, 1986). Subsequently, an anthocyanin 5-aromatic acyltransferase (hereinafter 5AT) that transfers aromatic acyl groups such as caffeic acid and coumaric acid to sugars at the 5 position of anthocyanins was isolated from Gentiana triflora (Fujiwara et al., Eur. J. Biochem. 249, 45, 1997), and based on the internal amino acid sequences of the purified enzyme, cDNA that codes for 5AT of Gentiana triflora was isolated (Fujiwara et al., Plant J., 16, 421, 1998).

[0014] Based on this gene, a homolog was isolated from Torenia (WO 2005/017147), and furthermore based on the amino acid sequence conserved between these enzymes, a Perilla cDNA coding for the enzyme (3AT) that transfers aromatic acyl groups to the sugar at the 3 position of anthocyanin was isolated (Yonekura-Sakibara et al., Plant Cell Physiol 41: 495, 2000). Using the Perilla 3AT gene, the 3AT gene was cloned from lavender of the same family Labiatae (WO 1996/25500).

[0015] An enzyme gene that transfers an acyl group to anthocyanidin-3-rutinoside has been obtained from petunia (National Publication of Translated Version (Kohyo) No. 2003-528603). When the Perilla 3AT gene or the toreina 5AT gene was introduced into roses, anthocyanin in which aromatic acyl groups were added to the 3 position or the 5 position was formed in petals, but it failed to significantly alter flower color blue, and the maximum absorption spectra just shifted to the long wavelength by about 1-2 nm.

[0016] The reason for this, as reported by Yoshida et al. (Yoshida et al., Tetrahedron 48: 4313, 1992), it was thought that acylation of A ring or C ring such as the 3 or 5 position is not fully effective, and that acylation at the 3’ position is necessary for blueing and stabilization of an anthocyanin, and more preferably acylation at multiple positions including the 3’ position is necessary. Since there is in fact anthocyanins containing an aromatic acyl group attached to a sugar at the 3’ position, the presence of an enzyme (3’AT) that catalyzes a reaction of transferring an aromatic acyl group to a sugar at the 3’ position may be postulated. However, there is no report on a measurement for 3’ AT reaction and no 3’ AT enzyme or a gene encoding for a 3’ AT has been isolated so far.

[0017] All acyltransferases reported so far act on the 3 position or the 5 position of anthocyanin, and the site specificity of the reaction has been reported to be high (Fuj iwara et al., Plant J., 16, 421, 1998; Yonekura-Sakibara et al., Plant Cell Physiol 41: 495, 2000). Therefore, the acylation at the 3’ position using a known aromatic acyltransferase was thought to be impossible. There have been no report for an aromatic acyltransferase that have an activity of transferring aromatic acyl groups to multiple positions of anthocyanins. Thus, with the level of conventional technology, it was impossible, for example, to create a recombinant plant and transfer aromatic acyl groups to sugars at the 3’ position or
multiple positions including the 3’ position of anthocyanin. That is, it was impossible to add aromatic acyl groups to sugars at the 3’ position or multiple positions including the 3’ position of an anthocyanin in order to make a bluer and more stable anthocyanin, and to make bluer and more stable flower color.

Non-patent document 10: Dangle et al., Phytochemistry 34: 1119, 1993
Non-patent document 16: Teusch et al., Phytochemistry 26: 991, 1986

DISCLOSURE OF THE INVENTION

[0018] As described in the above report by Yoshida et al., the aromatic acyl groups of anthocyanin contribute to the stabilization and blueing of anthocyanin, and specifically the sugar-acyl group side chain at the 3’ position contributes more strongly than that at the 5 position. It is also believed that the sugar-acyl group side chain at multiple positions including the 3’ position make anthocyanins bluer and more stable. Thus, by using an enzyme that transfers an aromatic acyl group to the 3’ position of anthocyanin or multiple positions including the 3’ position, or a gene encoding said enzyme, it seems to be possible to artificially modify anthocyanins and alter anthocyanins to more stable compounds, or to increase bluish hue of anthocyanins.

[0019] As described above, the transfer of aromatic acyl groups to the 3’ position is very effective for the stabilization and blueing of anthocyanins. For that purpose, an aromatic acyltransferase that transfers aromatic acyl groups to the 3’ position of anthocyanin or a gene encoding the enzyme is essential. The present inventors have investigated in detail the enzymatic properties of the anthocyanin 5-aromatic acyltransferase isolated from Gentiana triflora, and demonstrated that the 5-aromatic acyltransferase of Gentiana triflora also have an activity of 3'-acyl transfer. Thus, we clarified that, in spite of a single enzyme, the enzyme catalyzes the aromatic acyltransferring reactions to sugars at both of the 5 and the 3’ positions of anthocyanins.

[0020] Thus, the present invention provides a method of making a bluer and more stable anthocyanin by adding an aromatic acyl group to the 3’ and 5 positions of anthocyanin. It also provides a method of making flower color bluer and more stable by introducing and expressing a gene, encoding an aromatic acyltransferase into plants.

[0021] Thus, disclosed herein is

(1) a method of acylating the 3’ position of anthocyanins using an enzyme that transfers an aromatic acyl group to a sugar at the 3’ position of anthocyanin or a gene encoding the enzyme.
(2) Also disclosed herein is a method of stabilizing anthocyanins by using an enzyme that transfers an aromatic acyl group to a sugar at the 3’ position of anthocyanin or a gene encoding the enzyme.
(3) Also disclosed herein is a method of blueing anthocyanins by using an enzyme that transfers an aromatic acyl group to a sugar at the 3’ position of anthocyanin or a gene encoding the enzyme.
(4) Further disclosed herein is a method of acylating a pigment of interest by expressing a gene encoding an aromatic acyltransferase that transfers an aromatic acyl group to the 3’ position of anthocyanin in plants.
(5) Further disclosed herein is a method of stabilizing a pigment of interest by introducing a gene encoding an aromatic acyltransferase that transfers an aromatic acyl group to the 3’ position of anthocyanin, and acylating the pigment of interest in plants.

(6) Also disclosed herein is a method of blueing a pigment of interest by introducing a gene encoding an aromatic acyltransferase that transfers an aromatic acyl group to the 3’ position of anthocyanin, and acylating the pigment of interest in plants.

(7) Further disclosed herein is a method of stabilizing anthocyanin, which comprises using a single enzyme that transfers aromatic acyl groups to sugars at multiple positions of an anthocyanin or a gene encoding the enzyme.

(8) Also disclosed herein is a method of stabilizing a pigment of interest by introducing a gene encoding an aromatic acyltransferase that transfers an aromatic acyl group to the 3’ position of anthocyanin, and acylating the pigment of interest in plants.

(9) Further disclosed herein is a method of stabilizing anthocyanin, which comprises using a single enzyme that transfers aromatic acyl groups to sugars at multiple positions of an anthocyanin or a gene encoding the enzyme.

(10) Further disclosed herein is a method of blueing anthocyanin, which comprises using a single enzyme that transfers aromatic acyl groups to sugars at multiple positions of an anthocyanin or a gene encoding the enzyme.

(11) Further disclosed herein is a method according to any of the above (8) - (10) wherein one of the multiple positions is the 3’ position of an anthocyanin.

(12) Also disclosed herein is a method of acylating a pigment of interest by expressing a single enzyme that has activities of transferring aromatic acyl groups to sugars at multiple positions of an anthocyanin or a gene encoding the enzyme in plants.

(13) Also disclosed herein is a method of stabilizing a pigment of interest by introducing a single enzyme that has activities of transferring aromatic acyl groups to sugars at multiple positions of an anthocyanin or a gene encoding the enzyme, and acylating the pigment of interest in plants.

(14) Also disclosed herein is a method of blueing a pigment of interest by introducing a single enzyme that has activities of transferring aromatic acyl groups to sugars at multiple positions of an anthocyanin or a gene encoding the enzyme, and acylating the pigment of interest in plants.

(15) Further disclosed herein is a method according to any of the above (12) - (14) wherein one of the multiple positions is a sugar at the 3’ position of an anthocyanin.

(16) Also disclosed herein is a method according to any of the above (12) - (15), a vegetative propagation product or a seed of a plant, or a progeny plant of a plant, a vegetative propagation product or a seed of a plant having properties identical to those of the plant.

(17) Also disclosed herein is a gene encoding a protein having an amino acid sequence as set forth in SEQ ID NO: 4 or 6 and having an activity of transferring an aromatic acyl group to a sugar at the 3’ position of anthocyanin, or a gene encoding a protein having a sequence identity of 70% or greater to an amino acid sequence and having an activity of transferring an aromatic acyl group to a sugar at the 3’ position of anthocyanin, or a gene encoding a protein having a sequence identity of 70% or greater to the nucleotide sequence as set forth in SEQ ID NO: 3 or 5 and having an activity of transferring an aromatic acyl group to a sugar at the 3’ position of anthocyanin.

(18) Also disclosed herein is a gene encoding a protein having an amino acid sequence as set forth in SEQ ID NO: 4 or 6 and having an activity of transferring aromatic acyl groups to sugars at multiple positions of an anthocyanin, or a gene encoding a protein having a sequence identity of 70% or greater to an amino acid sequence and having an activity of transferring aromatic acyl groups to sugars at multiple positions of an anthocyanin, or a gene encoding a protein having a sequence identity of 70% or greater to the nucleotide sequence as set forth in SEQ ID NO: 3 or 5 and having an activity of transferring aromatic acyl groups to sugars at multiple positions of an anthocyanin.

(19) Also disclosed herein is the gene according to the above (18) wherein one of the multiple positions is a sugar at the 3’ position of an anthocyanin.

(20) Also disclosed herein is a vector comprising the gene according to any of the above (17) - (19).

(21) Also disclosed herein is a plant transformed with the vector according to the above (20).

(22) Also disclosed herein is a protein encoded by the gene according to any of the above (17) - (19).

(23) Also disclosed herein is a method of producing a protein having an activity of transferring a sugar to the 3’ position of a flavonoid, which method comprises culturing or growing the host according to the above (21), and harvesting the protein from the host.

(24) Also disclosed herein is a plant in which the gene according to any of the above (17) - (19) has been introduced, or a progeny having properties identical thereto, or a tissue thereof.

(25) Also disclosed herein is a cut flower of the plant according to the above (24) or a cut flower of a progeny having properties identical thereto.

(26) Also disclosed herein is a method of acylating the 3’ position of anthocyanin, which method comprises using the gene according to any of the above (17) - (19).
(27) Also disclosed herein is a method of stabilizing anthocyanin, which method comprises using the gene according to any of the above (17) - (19).

(28) Also disclosed herein is a method of blueing anthocyanin, which method comprises using the gene according to any of the above (17) - (19).

(29) Further disclosed herein is a method of expressing the gene according to any of the above (17) - (19) in a plant and acylating the pigment of interest in the plant.

(30) Also disclosed herein is a method of stabilizing a pigment of interest which comprises introducing the gene according to any of the above (17) - (19) to a plant and acylating the pigment of interest in the plant.

(31) Also disclosed herein is a method of blueing a pigment of interest which comprises introducing the gene according to any of the above (17) - (19) to a plant and acylating the pigment of interest in the plant.

[0022] The present invention provides a method of adding aromatic acyl groups to sugars at the 3' and 5 positions of anthocyanin, the method comprising the step of:

Using a gene encoding a protein having an amino acid sequence as set forth in SEQ ID NO: 4 or 6, or a gene encoding a protein having a sequence identity of 90% or greater to the amino acid sequence as set forth in SEQ ID NO: 4 or 6 and having an activity of transferring aromatic acyl groups to sugars at both the 3' and 5 positions of anthocyanin.

BRIEF EXPLANATION OF THE DRAWINGS

[0023] Fig. 1 shows the structural formulas, names and abbreviations of anthocyanin compounds related to the present invention.

Fig. 2 shows the structural formulas, names and abbreviations of anthocyanin compounds related to the present invention.

Fig. 3 is a graph showing time course changes of reaction products when 50 \(\mu \text{M} \) of DEL 3G-5G-3'G was used as the substrate. In the figure, triG represents DEL 3G-5G-3'G, 5Caf represents DEL 3G-5CafG-3'G, 3'Caf represents DEL 3G-5G-3'CafG, and 5,3'Caf represents gentiodelphin (DEL 3G-5CafG-3'CafG).

Fig. 4 is a graph showing time course changes of reaction products when 100 \(\mu \text{M} \) of DEL 3G-5G-3'G was used as the substrate. In the figure, triG represents DEL 3G-5G-3'G, 5Caf represents DEL 3G-5CafG-3'G, 3'Caf represents DEL 3G-5G-3'CafG, and 5,3'Caf represents Gentiodelphin (DEL 3G-5CafG-3'CafG).

Fig. 5 is a graph showing time course changes of reaction products when 200 \(\mu \text{M} \) of DEL 3G-5G-3'G was used as the substrate. In the figure, triG represents DEL 3G-5G-3'G, 5Caf represents DEL 3G-5CafG-3'G, 3'Caf represents DEL 3G-5G-3'CafG, and 5,3'Caf represents Gentiodelphin (DEL 3G-5CafG-3'CafG).

Fig. 6 shows the result of SDS-PAGE and Western blot of a protein partially purified from the petal of Gentiana triflora. The left figure shows the result of SDS-PAGE and the right figure shows the result of Western blot against the GAT4 antibody. In the figure, M represents a molecular marker, lane 1 represents the result of 40 - 70% ammonium sulfate-saturated precipitate, and lane 2 represents the result of the active fraction after the Dyematrix column.

Fig. 7 shows a result of flower color simulation using the Medio squeeze liquid.

BEST MODE FOR CARRYING OUT THE INVENTION

[0024] The present invention provides a method of adding aromatic acyl groups to sugars at the 3' and 5 positions of anthocyanin, the method comprising the step of:

using a gene encoding a protein having an amino acid sequence as set forth in SEQ ID NO: 4 or 6, or a gene encoding a protein having a sequence identity of 90% or greater to the amino acid sequence as set forth in SEQ ID NO: 4 or 6 and having an activity of transferring aromatic acyl groups to sugars at both the 3' and 5 positions of anthocyanin.

[0025] Proteins having an amino acid sequence that has been modified by the addition or deletion of a plurality of amino acids, or by replacement with other amino acids are known to maintain the enzyme activity similar to that of the original protein. Thus, as long as the activity of transferring an aromatic acyl group to a sugar at the 3' and 5 position has been maintained, protein having an amino acid sequence that has been modified by the addition or deletion of one or a plurality of amino acids, or by replacement with other amino acids, and a gene encoding the protein are also envisaged.

[0026] Also described herein is a gene encoding a protein that has an amino acid sequence identity of 70% or greater,
preferably 90% or greater to the amino acid sequence of the aromatic acyltransferase that transfers an aromatic acyl group to the 3' position of anthocyanin derived from Gentiana triflora, amino acid sequence as set forth in SEQ ID NO: 4 or 6, and that has an activity of transferring an aromatic acyl group to a sugar at the 3' position of anthocyanin.

[0027] Also described herein are cases which use a gene hybridizing to a gentian DNA encoding an aromatic acyltransferase for a sugar at the 3' position of anthocyanin under a relatively mild condition of 5 x SSC and 50°C, and encoding a protein with an activity of transferring an aromatic acyl group to the 3' position. Furthermore, described herein are cases which use a gene hybridizing to a gentian DNA encoding an 3'-aromatic acyltransferase under a stringent condition, and encoding a protein with an activity of transferring an aromatic acyl group to the 3' position.

[0028] Although the stringent condition as used herein is, for example, 2 x SSC and 65°C, it is not limited to this condition since the hybridization condition varies depending on the length and the base composition of DNA used. Genes selected by such hybridization include naturally occurring ones, for example genes derived from plants containing anthocyanin to which an aromatic acyl group has been added at the 3' position, for example genes derived from Cittoria ternatea, lobelia or cineraria, but not limited to those derived from plants. Thus, any genes that encode enzymes having an activity of transferring an aromatic acyl group to the 3' position of anthocyanin may be used. The gene selected by hybridization may be cDNA or genomic DNA.

[0029] It is also possible to produce purify aromatic acyltransferases that transfer aromatic acyl groups to the 3' position from plants such as lobelia and Cittoria ternatea that contain anthocyanin to which an aromatic acyl group has been added to the 3' position by the purification method per se of the enzyme from the Gentiana triflora or modifying the method. Furthermore, by determining the amino acid sequence of the purified enzyme, a gene encoding said enzyme can be cloned.

[0030] DNA encoding a protein having the altered amino acid sequence can be synthesized using a known site-directed mutagenesis or a PCR method. For example, a DNA fragment of which an amino acid sequence is desired to be altered may be obtained by obtaining cDNA or genomic DNA by restriction enzyme treatment, and, with this as a template, using primers corresponding to the alteration of the desired amino acid sequence, and performing site-directed mutagenesis or a PCR method to obtain a DNA fragment corresponding to the alteration of the desired amino acid sequence. Then, the alteration-introduced DNA fragment may be ligated to a DNA fragment encoding another portion of the enzyme of interest.

[0031] Alternatively, in order to obtain a DNA that encodes an enzyme comprising a shortened amino acid sequence, for example, an amino acid sequence longer than the amino acid sequence of interest, for example a full-length amino acid sequence, may be cleaved with the desired restriction enzyme, and if the resulting DNA fragment does not encode the entire amino acid sequence of interest, a DNA fragment corresponding to the amino acid sequence of the lacking part may be synthesized and ligated. By expressing the gene thus obtained in the Escherichia coli (E. coli) or a yeast expression system, and measuring the activity of transferring an aromatic acyl group to the 3' position in said E. coli or yeast extract, the gene obtained may be confirmed to encode an aromatic acyltransferase. A DNA encoding the amino acid sequence of interest may also be synthesized.

[0032] Also described are cases in which aromatic acyltransferase extracted from recombinant vectors, specifically expression vectors, and host cells transformed with said vectors. As host cells, prokaryocytes or eukaryocytes may be used. As prokaryocytes, there can be used conventional known host cells including, for example, bacteria belonging to genus Escherichia such as Escherichia coli, microorganisms belonging to genus Bacillus such as Bacillus subtilis, and the like. As eukaryocytes, there can be used, for example, eukaryotic microorganisms, preferably yeast or filamentous fungi.

[0033] As the yeast, there can be mentioned yeast of the genus Saccharomyces such as Saccharomyces cerevisae, and as the filamentous fungi, there can be mentioned microorganisms of the genus Aspergillus such as Aspergillus oryzae and Aspergillus niger, and of the genus Penicillium. Furthermore, animal cells or plant cells may be used, and as the animal cells, cell systems such as mice, hamsters, and human cells may be used. Furthermore, insect cells such as silkworm cells or silkworm larvae per se may be used as the host.

[0034] Expression vectors may contain expression control regions such as promoters and terminators and replication origins depending on the species of the host into which they are to be introduced. As the promoters of expression vectors for bacteria such as E. coli, there can be used conventionally known promoters such as a trc promoter, tac promoter, and lac promoter. As the promoters for yeast, there can be used, for example, the glycyerylaldehyde-3-phosphate dehydrogenase promoter and the PH05 promoter, and the promoters for the filamentous fungi include, but not limited to, promoters such as amylase and trpC. Also as the promoters for animal cells, there can be used viral promoters such as the SV40 early promoter and the SV40 late promoter.

[0035] Expression vectors may be prepared using restriction enzymes, ligases and the like according to standard methods. Transformation of host cells with expression vectors may also be conducted according to conventionally known methods. As the expression vectors for plants, there can be used binary vectors such as pBI121 when Agrobacterium is used, and E. coli vectors such as pUC19 when particle guns are used. Furthermore, plant cells that were transformed with said expression vector may be selected with a marker gene such as an antibiotics-resistant gene, and redifferentiated using a condition of a suitable plant hormone, etc. to obtain transformed plants.
Example 2. Measurement of activity of recombinant acyltransferase (Amicon). Through fraction, and the activity was only found in the adsorbed fraction, which was concentrated with Centricon-10. 0.5 M NaCl-containing in 20 mM Tris-HCl (pH 7.5), an activity of 5-acyltransferase to delphinidin 3,5-diglucoside (DEL glucoside (DEL 3G-5CafG-3'G), delphinidin 3-glucosyl-5-glucosyl-3'-caffeoylglucoside (DEL 3G-5G-3'CafG)) shown in and eluted with 10 mM Tris-HCl (pH 7.5) containing 0.3 M NaCl and 0.5 mM DTT. No activity was found in the flow-through fraction of Blue Sepharose, and the adsorbed fraction was eluted with 20 mM Tris-HCl (pH 7.5), and then loaded to Blue Sepharose (Pharmacia). No activity was found in the flow-through fraction of Blue Sepharose, and the adsorbed fraction was eluted with 20 mM Tris-HCl (pH 7.5) containing 150 mM NaCl was collected. Salting out with ammonium sulfate was further performed to collect a 40-60% ammonium sulfate-saturated fraction, which was dissolved in a small amount of 20 mM Tris-HCl (pH 7.5) and dialyzed using Sephadex G-25 (Pharmacia) equilibrated with 20 mM Tris-HCl (pH 7.5).

Subsequently, this fraction was adsorbed to Phenyl Sepharose (Pharmacia), and eluted with a linear gradient of 0 to 0.5 M NaCl-containing in 20 mM Tris-HCl (pH 7.5), an activity of 5-acyltransferase to delphinidin 3,5-diglucoside (DEL 3G-5G) was present in the eluted fraction of 120 - 240 mM NaCl. The active fraction was dialyzed against a 20 mM Tris-HCl (pH 7.5) containing 150 mM NaCl was collected. Salt out with ammonium sulfate was further performed to collect a 40-60% ammonium sulfate-saturated fraction, which was dissolved in a small amount of 20 mM Tris-HCl (pH 7.5) and dialyzed using Sephadex G-25 (Pharmacia) equilibrated with 20 mM Tris-HCl (pH 7.5).

After this was loaded to DEAE-TOYOPEARL (TOSOH Corporation), and eluted with a linear gradient of 0 to 0.5 M NaCl-containing in 20 mM Tris-HCl (pH 7.5), an activity of 5-acyltransferase to delphinidin 3,5-diglucoside (DEL 3G-5G) was present in the eluted fraction of 120 - 240 mM NaCl. The active fraction was dialyzed against a 20 mM Tris-HCl (pH 7.5) containing 150 mM NaCl was collected. Salt out with ammonium sulfate was further performed to collect a 40-60% ammonium sulfate-saturated fraction, which was dissolved in a small amount of 20 mM Tris-HCl (pH 7.5) and dialyzed using Sephadex G-25 (Pharmacia) equilibrated with 20 mM Tris-HCl (pH 7.5).

This was dialyzed against 20 mM Tris-HCl (pH 7.5), then allowed to adsorb to Dyematrix column Orange A (Amicon), and the flow-through fraction with 25 mM Tris-HCl (pH 7.5) containing 1 M NaCl. Subsequently, this fraction was adsorbed to Phenyl Sepharose (Pharmacia), and eluted with a linear gradient of 40 to 0% ammonium sulfate in 20 mM Tris-HCl (pH 7.5). The active fraction was eluted with 0% ammonium sulfate. This was dialyzed against 20 mM Tris-HCl (pH 7.5), then allowed to adsorb to Dyematrix column Orange A (Amicon), and eluted with 10 mM Tris-HCl (pH 7.5) containing 0.3 M NaCl and 0.5 mM DTT. No activity was found in the flow-through fraction, and the activity was only found in the adsorbed fraction, which was concentrated with Centricon-10 (Amicon).

Example 1. Expression of cDNA of Gentiana triflora acyl transferase in Escherichia coli and purification of recombinant protein

By cleaving a construct pGeAT102 (Fujiwara et al., Plant J., 16, 421, 1998) for E. coli expression of cDNA of Gentiana triflora-derived acyltransferase with NcoI/HindIII, a fragment containing the coding region of the acyltransferase and the 3'-untranslated region was subcloned to the NcoI/HindIII site of E. coli expression vector pQE60 (QIAGEN) to obtain a construct pQE8 for E. coli expression.

An E. coli strain JM109, in which pQE8 was introduced was cultured in a SB medium at 37°C to OD600nm = 0.8, and then further cultured at a reduced temperature of 15°C for 1 hour, to which IPTG was added to a final concentration of 0.1M to induce the expression of the gene of Gentiana triflora acyltransferase. After culturing at 15°C for 1 hour, cells were collected and sonication-disrupted, and used in the following purification. The disrupted cells were subjected to DE52 (Whatman), and the flow-through fraction with 25 mM Tris-HCl (pH 7.5) containing 150 mM NaCl was collected. Salt out with ammonium sulfate was further performed to collect a 40-60% ammonium sulfate-saturated fraction, which was dissolved in a small amount of 20 mM Tris-HCl (pH 7.5) and dialyzed using Sephadex G-25 (Pharmacia) equilibrated with 20 mM Tris-HCl (pH 7.5).

The enzymatic activity of the recombinant enzyme obtained in Example 1 was measured with 3 types of delphinidin derivatives (delphinidin 3,5,3'-triglucoside (DEL 3G-5G-3'G), delphinidin 3-glucosyl-5-cafeoylglucosyl-3'-glucoside (DEL 3G-5CafG-3'G), delphinidin 3-glucosyl-5-glucosyl-3'-cafeoylglucoside (DEL 3G-5G-3'CafG)) shown in...
Example 3. Purification of aromatic acyl group transferase derived from Gentiana triflora

In order to analyze time course changes of reaction products, 5 μl of a 25-fold diluted enzyme solution and each of 50 μM, 100 μM or 200 μM of DEL 3G-5G-3’G were used as a substrate, and the reaction was stopped at 2.5, 5, 10, and 20 minutes later to analyze the products. The reaction products were analyzed with a reverse phase high performance liquid chromatography (HPLC) using a DE-41 column (4.6 x 250 mm, Shodex). Samples were eluted with an linear gradient of 20-50% of acetone containing 0.5% TFA at 0.6 ml/min for 15 minutes, and then isocratic elution at 0.6 ml/min for 10 minutes, and detected with SPD-M10A (SHIMADZU Corporation) at a wavelength of 250 - 600 nm. The HPLC elution time and absorption spectra of products were compared with those of authentic samples to identify the structure of products.

As a result of reaction using the above three types of compounds as the substrate, the recombinant acyltransferase reacted with all of the substrates. With 250 mM DEL 3G-5CafG-3’G as the substrate, 94.1% was converted to DEL 3G-5CafG-3’CafG. On the other hand, with 250 mM DEL 3G-5G-3’CafG as the substrate, 95.2% was converted to DEL 3G-5CafG-3’CafG. When 250 mM DEL 3G-5G-3’G was used as a substrate, 7.2% was converted to DEL 3G-5CafG-3’G to which an aromatic acyl group was added at the 5 position alone, and 58.7% was converted to DEL 3G-5CafG-3’CafG, while only the trace amount of DEL 3G-5G-3’CafG was produced, to which an aromatic acyl group was added at the 3’ position alone (1% or less).

When the time course changes of the reaction was measured using a diluted enzyme solution with DEL 3G-5G-3’G as a substrate, the amount produced of DEL 3G-5CafG-3’G and DEL 3G-5CafG-3’CafG increased according to the reaction time. The amount of DEL 3G-5G-3’CafG was much smaller than the other two substrates, and barely detected when the amount of the substrate and the reaction time were increased (Fig. 3, Fig. 4, and Fig. 5). This result consistent with those obtained when the undiluted enzyme solution was reacted to DEL 3G-5G-3’G.

From the above result, it was revealed that a recombinant protein obtained by expressing the gene of an acyltransferase derived from Gentiana triflora in E. coli has an activity of transferring acyl groups to sugars on both the 5 position and the 3’ position of anthocyanin. Thus, although a previous report (Fujiwara et al., Plant J., 16, 421, 1998) showed that this enzyme was thought to transfer an aromatic acyl group only to the 5 position of anthocyanin, the present invention revealed that this enzyme transfers aromatic acyl groups to sugars at both of the 5 and the 3’ position of anthocyanin. Furthermore, considering the reaction products with DEL 3G-5G-3’G as a substrate, it is likely that the addition of an aromatic acyl group to the 5-glucose precedes the addition to the 3’-glucose.

The recombinant protein obtained by expressing a gentian cDNA of an aromatic acyltransferase in E. coli turned out to have an activity of transferring aromatic acyl groups to glucoses at the 5 and the 3’ position of an anthocyanin (Example 2). In order to confirm that an enzyme naturally occurring in gentian petals also has both activities of the 5-aromatic acyltransferase and the 3’-aromatic acyl transferase, this enzyme was purified from gentian petals. In a series of purification, as described in Example 2, each eluted fraction of column chromatography was measured for 5-aromatic acyltransferase activity with DEL 3G-5G as a substrate and for 3'-aromatic acyltransferase activity with DEL 3G-5G-3’G as a substrate.

According to a report by Fujiwara et al. (Fujiwara et al., Eur. J. Biochem. 249: 45, 1997) in which a gentian 5-aromatic acyltransferase was purified, 40 - 70% ammonium sulfate-saturated fraction was obtained from extract of approximately 100 g of Gentiana petals. This fraction was dialyzed with Sephadex G-25 (Pharmacia) equilibrated with 20 mM Tris-HCl (pH 7.0) containing 10 μM p-aminophenylmethanesulfonyl fluoride (APMSF) and 1 mM DTT (hereinafter referred to as the Tris buffer), then it was loaded to MONO Q (Pharmacia) equilibrated with the Tris buffer. The unadsorbed fraction was washed off with the Tris buffer, and then eluted with a liner gradient of 0 - 0.5 M NaCl in the Tris buffer at a flow rate of 5 ml/min for 20 minutes. The activity of transferring an aromatic acyl group was present in fractions eluted at 0.2 - 0.42 M NaCl.

The active fractions were loaded to HiTrap Blue (Pharmacia) and extensively washed in the Tris buffer, and then the adsorbed fraction was eluted with a Tris buffer containing 0.9 M NaCl. The activity was present in the adsorbed fraction. Then, the active fraction was loaded to a DEAE-Sepharose (Pharmacia). After extensively washing with the Tris buffer, the adsorbed fraction was eluted with a linear gradient os 0-0.5M NaCl in the Tris buffer at 0.5 ml/min for 60 minutes. The activity was found in the fractions eluted with 0.22 - 0.3 mM NaCl. The active fraction concentrated with Centricon 30 (Amicon) was loaded to a Dyematrix column Red (Amicon). After washing off the unabsorbed fraction with the Tris buffer, the adsorbed fraction was eluted with the Tris buffer containing 1.5 M KCl. When the eluted protein was subject to SDS-PAGE, only a single band was detected at molecular weight of 52 kDa which is an estimated molecular weight for an anthocyanin 5-acyltransferase.
Example 4. Stabilization and bluing of anthocyanin with an acyltransferase derived from Gentiana triflora

In order to simulate the flower color when the gene for gentian anthocyanin 5,3'-acyltransferase was introduced into roses and DEL 3G-5CafG-3'CafG was accumulated in rose petals, the color development of a purified pigment suspended in juice squeezed form rose petals (cv. Medeo) was measured. As for purified pigments, DEL 3G-5CafG-3'CafG, and as a comparative control, DEL 3G-5G, cyanidin 3,5-diglucoside (CYA 3G-5G), pelargonidin 3,5-diglucoside (PEL 3G-5G) and malvidin 3,5-diglucoside (MAL 3G-5G) were used. About 20 g of Medeo petals frozen at -80°C for more than one hour were squeezed by a garlic squeezer for household use, and centrifuged at 1000 rpm for 1 minute to remove the debris of the petals, and the supernatant was prepared as the squeezed juice.

Twenty μl of 50 mM DMSO solution of purified pigment was added to 1 ml of the squeezed juice, and kept for 10 minutes, and the absorption and transmittance spectra at 380 - 780 nm were measured with a spectrophotometer UV-2500PC (SHIMADZU Corporation). The transmittance spectrum values were converted into CIE L*a*b* color system (JISZ8729). The Royal Horticultural Society color chart (RHSCC) number was referenced based on the color value (CIE L*a*b* color system) to check the approximate colors using the color classification system Version 2.1.1 (The Japan Research Institute, Co. Ltd., Japan; Japanese Unexamined Patent Publication No. 2002-016935). By using this system, an approximate RHSCC number can be objectively selected. The final concentration of the pigment added to the squeezed juice approximately identical to the average anthocyanin concentration in the vacuoles of rose petals. However, since the absorbance for 3G-5CafG-3'CafG was too high, it was diluted 4-fold prior to measurement. Medeo is a variety that shows an average petal pH (pH 4.38) among the garden species of roses.

As shown in Fig. 7, DEL 3G-5CafG-3'CafG exhibited the largest maximum absorption spectrum among five purified pigments. The approximate color was 89A in the Royal Horticultural Society color chart (RHSCC), which was obtained based on the L*a*b* value converted from the transmission spectrum, and the DEL 3G-5CafG-3'CafG exhibited the strongest blue color among the five purified pigments as shown in Fig. 7.

From this result, it seems to be possible to produce DEL 3G-5CafG-3'CafG in rose petals and as a result to produce rose flowers with blue color by coexpressing the genes for anthocyanin 5,3'-aromatic acyltransferase, the F3'5'H gene (WO 2004/020637) and the gene of 3'-glycosyltransferase (WO 2001/92509) in rose petals. Also it seems to be possible to create blue flower varieties in carnations, chrysanthemums, petunias, verbenas, nierembergias, lilies and so on.

Example 5. Isolation of 5,3'-position aromatic acyltransferase homolog of anthocyanin from Gentiana triflora-related species

In the genus Gentiana, there are various related species such as Gentiana rubicunda and Gentiana yakushimensis in addition to Gentiana triflora. Isolation of 5,3'-aromatic acyltransferase homolog from these species was attempted by PCR.

Since the gene for gentian 5,3'-aromatic acyltransferase was known to contain no introns, genomic DNAs extracted from the leaves of the related species were used as templates in PCR with primers specific for the gene of 5,3'-aromatic acyltransferase. An OIAGEN’s DNeasy kit was used for the extraction of genomic DNA following a method.
recommended by the manufacturer. Primers, GAT4-Met-F and GAT4-B, specific for the gene of 5,3'-acyltransferase had the following sequences, and the full-length cDNA containing the entire coding region can be amplified by PCR using these primers. The reaction condition for PCR is as described below.

Sequences of primers:

-[0063]

\[
\text{GAT4-Met-F: TCA TTA TGG AGC AAA TCC AAA (SEQ ID NO: 1)} \\
\text{GAT4-B: CAT GTC AGG TGT GAG GTT CAA C (SEQ ID NO: 2)}
\]

PCR condition:

-[0064]

\[
\text{Denaturation reaction: 94°C for 5 minutes, 1 cycle} \\
\text{Amplification reaction: 94°C for 1 minute, 55°C for 1 minute 30 seconds, 72°C for 3 minutes, 30 cycles} \\
\text{Extension reaction: 72°C for 7 minutes, 1 cycle}
\]

-[0065] In this PCR, a band at expected size, 1.5kb, was amplified in three related species, Gentiana yakushimensis, ochroleuca and wutaiensis. These fragments were collected and cloned into a pCR-II-TOPO (Invitrogen) and their nucleotide sequences were determined. The nucleotide sequences and the corresponding amino acid sequences of the amplified fragments obtained from each species are shown in Sequence Listing.

- [0066] Gentiana yakushimensis: SEQ ID NO: 3 and 4
- [0067] Gentiana ochroleuca and wutaiensis: SEQ ID NO: 5 and 6
- [0068] Fragments obtained from ochroleuca and wutaiensis turned out to encode the identical amino acid sequence. The identity with 5,3'-aromatic acyltransferase first obtained from Gentiana triflora was 95% for that from Gentiana yakushimensis and 90% for those obtained from ochroleuca and wutaiensis. From this high identity, the proteins encoded in these DNAs seem to be homologs to 5,3'-aromatic acyltransferase.

Example 6. Expression of 5,3'-aromatic acyltransferase of anthocyanin from Gentiana triflora in nierembergia

-[0069] The gene for 5,3'-aromatic acyltransferase from Gentiana triflora was introduced into nieirembelia together with the genes for gentian 3'-glucosyltransferase and for pansy F3'5'H gene. In transformants, it is expected that the 3' position of DEL 3G-5G was first glucosylated by gentian 3'-glucosyltransferase to form DEL 3G-5G-3'G, on which gentian 5,3'-aromatic acyltransferase may act to form a final product gentiodelphin (DEL 3G-5CafG-3'CafG).

-[0070] A expression construct pSPB1536 was prepared by introducing an expression cassette of 3'-glucosyltransferase into the HindIII and the EcoRI sites of a binary vector for expression in plants (van Engelen FA et al. (1995) Transgenic Res. 4: 288-290), an expression cassette of pansy F3'5'H into the PacI site and an expression cassette of 5,3'-aromatic acyltransferase into the AscI site. Any of the expression cassettes is regulated by the 35S promoter derived from a cauliflower mosaic virus, and has the Agrobacterium-derived nopaline synthase terminator sequence downstream to each structural gene. Transformation of nierembergia was conducted as described in a report by Tanaka et al. (Tanaka et al. (2005) Plant Cell Tiss. Org. Cult. 80: 1-24).

-[0071] The expression of three genes (gentian 5,3'-aromatic acyltransferase gene, gentian 3'-glucosyltransferase gene, and pansy F3'5'H gene) in nierembergia transformants was confirmed by RT-PCR. For the lines where transcription of all three genes were confirmed, the petal color was analyzed in a similar manner to that described in a report by Mizutani et al. (Fukuchi-Mizutani et al. (2003) Plant Physiol. 132: 1652-1663), but the expected final product gentiodelphin was not detected in any of the lines.

-[0072] On the other hand, a crude enzyme was extracted from the petals of the transformants where transcription of all three genes were confirmed, in a manner as described in the report by Fujiwara et al. (Fujiwara et al., (1997) Eur. J. Biochem. 249: 45-51). Using this crude extract as a enzyme solution, in vitro activity of 5,3'-aromatic acyltransferase was measured with DEL 3G-5G-3'G as the substrate in a manner similar to Example 2, then, formation of gentiodelphin was confirmed. On the other hand, when the crude enzyme from a non-recombinant nierembergia was used as the control, gentiodelphin was not detected. This result revealed that the transgenic nierembergia has 5,3'-aromatic acyltransferase activity, i.e., an activity of transferring aromatic acyl groups to both 5 and 3' position of DEL 3G-5G-3'G used as a substrate.

-[0073] However, when the activity of the 3'-glucosyltransferase was measured in vitro as described in a report by Mizutani et al. (Fukuchi-Mizutani et al. (2003) Plant Physiol. 132: 1652-1663) with crude enzyme solution from nierem-
bergia transformants, no 3'-glucosyltransferase activity was detected. These results confirmed that a protein with an activity of 5,3'-aromatic acyltransferase is indeed present in the cell of the nierembergia transformants. However, the reason why the expected gentiodelphin was not detected in the petals of the transformants was because the protein of the 3'-glucosyltransferase that should work prior to the 5,3'-aromatic acyltransferase was not synthesized in the cell of nierembergia, or did not function even if it was synthesized.

Effect of the Invention

[0074] As described above, the present invention has demonstrated that a recombinant aromatic acyltransferase obtained by expressing a gentian aromatic acyltransferase gene in E. coli has an activity of transferring aromatic acyl groups not only to a sugar at the 5 position of delphinidin glucosides, but also to a sugar at the 3' position thereof. It further revealed that the naturally occurring anthocyanin 5-aromatic acyltransferase purified from gentian petals also has an activity of transferring an aromatic acyl group to a sugar at the 3' position, i.e., unlike the conventional anthocyanin aromatic acyltransferase, a single enzyme transfers aromatic acyl groups to sugars at both 5 position and 3' position of an anthocyanin. Furthermore, it was possible to express this gene in different species of plants, thus to obtain the 5,3'-aromatic acyltransferase activity.

[0075] It is generally believed that the aromatic acyl group at the 3' position contributes to the stabilization and blueing of anthocyanin more strongly than the aromatic acyl group at the 5 position, and the presence of sugar-acyl side chains at multiple positions including 3' position is more preferred. Thus, as described in the present invention, it is possible to create an anthocyanin that has a more stable and bluish hue by conducting aromatic acylation at both 5 and 3' position of an anthocyanin glucosides using a 5,3'-aromatic acyltransferase that transfers aromatic acyl groups to both 5 and 3' position. Furthermore, by expressing the gene for the said enzyme in plants together with other genes essential for anthocyanin biosynthesis or anthocyanin modification, it is possible to make flower color, mainly comprising of anthocyanins, more stable and bluer.

SEQUENCE LISTING

[0076]

```
<110>International Flower Developments Proprietary Limited
<120>Method for stabilization and blue-coloring of anthocyanin dye using gene encoding enzyme transferring aromatic acyl group to 3'-position of anthocyanin
<130>IFD(STY)-R881
<150>JP 2004-315733
<151>2004-10-29
<160>6
<170>
<210>1
<211>21
<220>
<221>DNA
<222>Artificial Sequence
<223>Primer GAT4-Met-F
<400>1
tcattatgga gcaaatccaa a 21
<210>2
<211>DNA
<223>Primer GAT4-B
<400>2
catgtcaggt gtgaggttca ac 22
<210>3
<211>1603
```
<212> DNA
<213> Gentiana yakushimensis
<220>
<221>
<222>
<223> nucleotide sequence encoding enzyme transferring aromatic acyl group to 3'-position of anthocyanin
<400>

```
<1582>ttcatt cgtg cag caa atc caa atg gcgg aag gtt gtt gaa aaa tgc caa

Met Glu Gln Ile Gln Met Ala Lys Val Val Glu Lys Cys Gln
  1    5    10

<237> gtt aca cca cca ttt gac aca aca gat gtc gag tta tca gta ccg gta
Val Thr Pro Pro Phe Asp Thr Thr Asp Val Glu Leu Ser Val Pro Val
 15   20    25    30

<327> aca ttc ttt gat atc ccc tgg ttg cac ttc tat aag atg cag tcc ctt
Thr Phe Phe Asp Ile Pro Trp Leu His Leu Tyr Lys Met Gln Ser Leu
 35   40    45

<417> ctg ttt tac gac ttt ccc tac cca aaa aca cat ttc ttg gac act gtt
Leu Phe Tyr Asp Phe Pro Tyr Pro Lys Thr His Phe Leu Asp Thr Val
 45   50    55    60

<507> atc cct aat ctt aag gcc tct tgg tct ctc act cta aaa cac tac ctt
Ile Pro Asn Leu Lys Ala Ser Leu Ser Leu Thr Leu Lys His Tyr Leu
 65   70    75

<597> ccc ctt aat gga aat ttg tta atg ccc atc aaa tcg ggc aaa atg cca
Pro Leu Ser Gly Asn Leu Leu Met Pro Ile Lys Ser Gly Lys Met Pro
 80   85    90

<687> aag ttt cac tac tcc cgt gat gac gga gac tcg ata act ttg atc ttt
Lys Phe His Tyr Ser Arg Asp Asp Gly Asp Ser Ile Thr Leu Ile Phe
 95   100   105   110

<777> ggc gag tct gac cag gat ttt gac tac ctt aaa ggt cat cca ctt gta
Ala Glu Ser Asp Gln Asp Phe Asp Tyr Leu Lys Gly His Gln Leu Val
 115  120   125

<867> gat tcc aat gat ttg cat gcc ctt ttt tat gtt atg cca cgg gtt ata
Asp Ser Asn Leu His Ala Leu Phe Tyr Val Met Pro Arg Val Ile
 130  135   140

<957> agg acc atg cca gac tat aaa gtg atc ccc ctc gta gct gtt gca gta
Arg Thr Met Glu Asp Tyr Lys Val Ile Pro Leu Val Ala Val Glu Val
 145  150   155

<1047> acc gtt ttt cct aac cat ggc ata gcc gtt gct ctt acg gca cat cat
527
```
<table>
<thead>
<tr>
<th></th>
<th>Thr</th>
<th>Val</th>
<th>Phe</th>
<th>Pro</th>
<th>Asn</th>
<th>His</th>
<th>Gly</th>
<th>Ile</th>
<th>Ala</th>
<th>Val</th>
<th>Ala</th>
<th>Leu</th>
<th>Thr</th>
<th>Ala</th>
<th>His</th>
<th>His</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>tca</td>
<td>att</td>
<td>gca</td>
<td>gat</td>
<td>gct</td>
<td>aaa</td>
<td>agt</td>
<td>ttt</td>
<td>gta</td>
<td>atg</td>
<td>ttc</td>
<td>atc</td>
<td>aat</td>
<td>gct</td>
<td>tgg</td>
<td>gcc</td>
</tr>
<tr>
<td>20</td>
<td>tat</td>
<td>att</td>
<td>aac</td>
<td>aaa</td>
<td>ttt</td>
<td>ggg</td>
<td>aaa</td>
<td>gac</td>
<td>ggc</td>
<td>gac</td>
<td>tgg</td>
<td>ttc</td>
<td>ggc</td>
<td>aat</td>
<td>ctt</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>ctt</td>
<td>cca</td>
<td>tct</td>
<td>ttt</td>
<td>gat</td>
<td>aga</td>
<td>tgc</td>
<td>ata</td>
<td>atc</td>
<td>aaa</td>
<td>gat</td>
<td>ctg</td>
<td>tat</td>
<td>ggc</td>
<td>cta</td>
<td>gag</td>
</tr>
<tr>
<td>30</td>
<td>gaa</td>
<td>aca</td>
<td>ttt</td>
<td>tgg</td>
<td>aac</td>
<td>gaa</td>
<td>atg</td>
<td>caa</td>
<td>gat</td>
<td>ttg</td>
<td>aat</td>
<td>ttc</td>
<td>ttt</td>
<td>tct</td>
<td>tca</td>
<td>aca</td>
</tr>
<tr>
<td>35</td>
<td>Glu</td>
<td>Thr</td>
<td>Phe</td>
<td>Trp</td>
<td>Asn</td>
<td>Glu</td>
<td>Met</td>
<td>Gln</td>
<td>Asp</td>
<td>Ala</td>
<td>Lys</td>
<td>Leu</td>
<td>Ser</td>
<td>Ala</td>
<td>Tyr</td>
<td>Val</td>
</tr>
<tr>
<td>40</td>
<td>ttt</td>
<td>gga</td>
<td>agc</td>
<td>aaa</td>
<td>ccc</td>
<td>cct</td>
<td>cga</td>
<td>ttc</td>
<td>aac</td>
<td>aag</td>
<td>gta</td>
<td>cga</td>
<td>gct</td>
<td>gca</td>
<td>tat</td>
<td>gtc</td>
</tr>
<tr>
<td>45</td>
<td>Phe</td>
<td>Gly</td>
<td>Ser</td>
<td>Lys</td>
<td>Pro</td>
<td>Pro</td>
<td>Arg</td>
<td>Phe</td>
<td>Asn</td>
<td>Lys</td>
<td>Val</td>
<td>Arg</td>
<td>Ala</td>
<td>Ala</td>
<td>Tyr</td>
<td>Val</td>
</tr>
<tr>
<td>50</td>
<td>cta</td>
<td>tcc</td>
<td>ctt</td>
<td>gct</td>
<td>gaa</td>
<td>atc</td>
<td>cag</td>
<td>aag</td>
<td>cta</td>
<td>aag</td>
<td>aac</td>
<td>aaa</td>
<td>gta</td>
<td>ctg</td>
<td>aat</td>
<td>ctc</td>
</tr>
<tr>
<td>55</td>
<td>Leu</td>
<td>Ser</td>
<td>Leu</td>
<td>Ala</td>
<td>Glu</td>
<td>Ile</td>
<td>Gln</td>
<td>Lys</td>
<td>Leu</td>
<td>Lys</td>
<td>Asn</td>
<td>Val</td>
<td>Leu</td>
<td>Asn</td>
<td>Leu</td>
<td>Val</td>
</tr>
</tbody>
</table>

Sequence:

```
Thr Val Phe Pro Asn His Gly Ile Ala Val Ala Leu Thr Ala His His
```

<table>
<thead>
<tr>
<th></th>
<th>160</th>
<th>165</th>
<th>170</th>
</tr>
</thead>
<tbody>
<tr>
<td>tca</td>
<td>gca</td>
<td>gat</td>
<td>gct</td>
</tr>
<tr>
<td>175</td>
<td>180</td>
<td>185</td>
<td>190</td>
</tr>
<tr>
<td>tat</td>
<td>att</td>
<td>aac</td>
<td>aaa</td>
</tr>
<tr>
<td>215</td>
<td>215</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>ctt</td>
<td>cca</td>
<td>tct</td>
<td>ttt</td>
</tr>
<tr>
<td>225</td>
<td>230</td>
<td>235</td>
<td></td>
</tr>
<tr>
<td>gaa</td>
<td>aca</td>
<td>ttt</td>
<td>tgg</td>
</tr>
<tr>
<td>240</td>
<td>245</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>cta</td>
<td>tcc</td>
<td>ctt</td>
<td>gct</td>
</tr>
<tr>
<td>255</td>
<td>260</td>
<td>265</td>
<td>270</td>
</tr>
<tr>
<td>aga</td>
<td>gga</td>
<td>tcc</td>
<td>gaa</td>
</tr>
<tr>
<td>275</td>
<td>280</td>
<td>285</td>
<td></td>
</tr>
<tr>
<td>gga</td>
<td>tac</td>
<td>gta</td>
<td>tgg</td>
</tr>
<tr>
<td>290</td>
<td>295</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>gag</td>
<td>gaa</td>
<td>tca</td>
<td>tgc</td>
</tr>
<tr>
<td>305</td>
<td>310</td>
<td>315</td>
<td></td>
</tr>
<tr>
<td>ggc</td>
<td>gat</td>
<td>tgc</td>
<td>cga</td>
</tr>
<tr>
<td>320</td>
<td>325</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>gcc</td>
<td>aac</td>
<td>tgt</td>
<td>ctt</td>
</tr>
<tr>
<td>335</td>
<td>340</td>
<td>345</td>
<td>350</td>
</tr>
<tr>
<td>gtt</td>
<td>ggg</td>
<td>aat</td>
<td>aaa</td>
</tr>
<tr>
<td>1103</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Amino Acid:

```
Thr Val Phe Pro Asn His Gly Ile Ala Val Ala Leu Thr Ala His His
```

Nucleotide:

```
tca att gca gat gct aaa agt ttt gta atg ttc atc aat gct tgg gcc
Ser Ile Ala Asp Ala Lys Ser Phe Val Met Phe Ile Asn Ala Trp Ala
```
Val Gly Asn Lys Gly Leu Leu Val Ala Val Ala Val Ala Ala Ile Val Glu Ala
355 360 365
att gaa aag agg gtg cac aac gaa aag ggc gtt ctc gca gat gca aaa 1151
Ile Glu Lys Arg Val His Asn Glu Lys Gly Val Leu Ala Asp Ala Lys
370 375 380
act tgg tta tgc gaa tct aat gga atc cct tca aaa aga ttt ctc ggc 1199
Thr Trp Leu Ser Glu Ser Asn Gly Ile Pro Ser Lys Arg Phe Leu Gly
385 390 395
att act gga tca cct aag ttt gat tgc tat ggt gta gat ttt gga tgg 1247
Ile Thr Gly Ser Pro Lys Phe Asp Ser Tyr Gly Val Asp Phe Gly Trp
400 405 410
gga aag cct gca aaa ttt gac att acc tct att gat tat gca gaa ttt 1295
Gly Lys Pro Ala Lys Phe Asp Ile Thr Ser Ile Asp Tyr Ala Glu Leu
415 420 425 430
att tat gtg att gag tcc agg gat ttt gaa aaa ggt gtg gag atc gga 1343
Ile Tyr Val Ile Glu Ser Arg Asp Phe Glu Lys Gly Val Glu Ile Gly
435 440 445
gta tca ttg ccc aag att cat atg gat gca ttt gca aaa atc ttt gaa 1391
Val Ser Leu Pro Lys Ile His Met Asp Ala Ala Lys Ile Phe Glu
450 455 460
gaa ggt ttt tgc ttt ttg tca tagttctttt aatagaacca tattgctgc 1442
Glu Gly Phe Cys Phe Leu Ser
465
aataaagtac gaagtttta gtaacactac accaaacctactttcagagg caggaacacc 1502
aacaacga ggttcatca ctgataaggt gtaaaggta attccagag gttgaatatc 1562
caccgttgct ctagaaag ttgaacctca cacctgacat g 1603

<210>4
<211>469
<212>PROTEIN
<213>Gentiana yakushimensis
<220>
<221>
<222>
<223>Amino acid sequence of enzyme transferring aromatic acyl group to 3'-position of anthocyanin
<400>4
Met Glu Gln Ile Gln Met Ala Lys Val Val Glu Lys Cys Gln Val Thr
Pro Pro Phe Asp Thr Thr Asp Val Glu Leu Ser Val Pro Val Thr Phe
Phe Asp Ile Pro Trp Leu His Leu Tyr Lys Met Gln Ser Leu Leu Phe
Tyr Asp Phe Pro Tyr Pro Tyr Pro Lys Thr His Phe Leu Asp Thr Val Ile Pro
Asn Leu Lys Ala Ser Leu Ser Leu Thr Leu Lys His Tyr Leu Pro Leu
Ser Gly Asn Leu Leu Met Pro Ile Lys Ser Gly Lys Met Pro Lys Phe
His Tyr Ser Arg Asp Asp Gly Asp Ser Ile Thr Leu Ile Phe Ala Glu
Ser Asp Gln Asp Phe Asp Tyr Leu Lys Gly His Gln Leu Val Asp Ser
Asn Asp Leu His Ala Leu Phe Tyr Val Met Pro Arg Val Ile Arg Thr
Met Gln Asp Tyr Lys Val Ile Pro Leu Val Ala Val Gln Val Thr Val
Phe Pro Asn His Gly Ile Ala Val Ala Leu Thr Ala His His Ser Ile
Ala Asp Ala Lys Ser Phe Val Met Phe Ile Asn Ala Trp Ala Tyr Ile
Asn Lys Phe Gly Lys Asp Ala Asp Leu Leu Ser Ala Asn Leu Leu Pro
Ser Phe Asp Arg Ser Ile Ile Lys Asp Leu Tyr Gly Leu Glu Glu Thr
Phe Trp Asn Glu Met Gln Asp Ile Leu Glu Met Phe Ser Thr Phe Gly
Ser Lys Pro Pro Arg Phe Asn Lys Val Arg Ala Ala Tyr Val Leu Ser
Leu Ala Glu Ile Gln Lys Leu Lys Asn Lys Val Leu Asn Leu Arg Gly
Ser Glu Pro Thr Ile Arg Val Thr Thr Phe Thr Val Thr Cys Gly Tyr
275 280 285
Val Trp Thr Cys Met Val Lys Ser Lys Asp Asp Val Val Ser Glu Glu
290 295 300
Ser Ser Asn Asp Glu Asn Glu Leu Glu Tyr Phe Ser Phe Thr Ala Asp
305 310 315 320
Cys Arg Gly Leu Leu Thr Pro Pro Cys Pro Pro Asn Tyr Phe Gly Asn
325 330 335
Cys Leu Ala Ser Cys Val Ala Lys Ala Thr His Lys Glu Leu Val Gly
340 345 350
Asn Lys Gly Leu Leu Val Ala Val Ala Ala Ile Val Glu Ala Ile Glu
355 360 365
Lys Arg Val His Asn Glu Lys Gly Val Leu Ala Asp Ala Lys Thr Trp
370 375 380
Leu Ser Glu Ser Asn Gly Ile Pro Ser Lys Arg Phe Leu Gly Ile Thr
385 390 395 400
Gly Ser Pro Lys Phe Asp Ser Tyr Gly Val Asp Phe Gly Trp Gly Lys
405 410 415
Pro Ala Lys Phe Asp Ile Thr Ser Ile Asp Tyr Ala Glu Leu Ile Tyr
420 425 430
Val Ile Glu Ser Arg Asp Phe Glu Lys Gly Val Glu Ile Gly Val Ser
435 440 445
Leu Pro Lys Ile His Met Asp Ala Phe Ala Lys Ile Phe Glu Glu Gly
450 455 460
Phe Cys Phe Leu Ser
465

<210>5
<211>1587
<212>DNA
<213>Odorleuca and Wutariensis
<220>
<221>
<222>
<223>nucleotide sequence encoding enzyme transferring aromatic acyl group to 3'-position of anthocyanin
<400>5
tcatt atg gag caa atc caa atg gtg aag gtt ctt gaa aaa tgt caa
Met Glu Gln Ile Gln Met Val Lys Val Leu Glu Lys Cys Gln
1 5 10
gtt aca cca cca tct gac aca aca gat gtc gag tta tca cta tct gta
Val Thr Pro Pro Ser Asp Thr Thr Asp Val Glu Leu Ser Leu Ser Val
15 20 25 30
aca ttc ttt gat atc ccc tgg ttg cat ttg tat aag atg cag tcc ctt
Thr Phe Phe Asp Ile Pro Trp Leu His Leu Tyr Lys Met Gln Ser Leu
35 40 45
ctg ttt tac gat ttt ccg tat cca aaa aac gct ttc ttg gac act gtt
Leu Phe Tyr Asp Phe Pro Tyr Pro Lys Thr Arg Phe Leu Asp Thr Val
50 55 60
atc cct aat ctt aag gcc tcc ttg tct ctc act cta aaa cac tac ctt
Ile Pro Asn Leu Lys Ala Ser Leu Ser Leu Thr Leu Lys His Tyr Leu
65 70 75
ccg ctt agc gga aat ttg tta atg ccc atc aaa tcg ggc aaa atg cca
Pro Leu Ser Gly Asn Leu Leu Met Pro Pro Lys Ser Gly Lys Met Pro
80 85 90
atg ttt cac tac tct cgt gat gac gga gac tcg ata act ttg atc ttt
Met Phe His Tyr Ser Arg Asp Asp Gly Asp Ser Ile Thr Leu Ile Phe
95 100 105 110
gcg gag tct gcc gag cag gat ttt gcc gac tac ctt aaa ggt cat cac ctc cca
Ala Glu Ser Asp Gln Asp Phe Asp Tyr Leu Lys Gly His His Leu Gln
115 120 125
gat tcc aat gat ttg cat gcc ctt ttt tat gtt atg cca cgg gtt tta
Asp Ser Asn Asp Leu His Ala Leu Phe Tyr Val Met Pro Arg Val Leu
130 135 140
agg acc act caa gac tat aaa gtc atc ccc ctt ctc gcg gat tgg aat gta
Arg Thr Thr Gln Asp Tyr Lys Val Ile Pro Leu Val Ala Val Gln Val
145 150 155
acc gtt ttt cct aac cat ggc att gcc gtc ggt gct ctc gca cat cat
Thr Val Phe Pro Asn His Gly Ile Ala Val Ala Leu Thr Ala His His
160 165 170
tca att gca gat gcc aaa agt ttt gta atg ttc atg aat gct tgg gcc
Ser Ile Ala Asp Ala Lys Ser Phe Val Met Phe Met Asn Ala Trp Ala
175 180 185 190
tgt att aac aaa ttt ggg aaa gac aca gac tta ttg tct ggg aat ctt
Cys Ile ASN Lys Phe Gly Lys Asp Thr Asp Leu Leu Ser Gly Asn Leu
195 200 205
ctt cca tct ttt gat aga tgg ata atc aaa gat ctg tat ggc cta gag
Leu Pro Ser Phe Asp Arg Ser Ile Ile Lys Asp Leu Tyr Gly Leu Glu
210 215 220
gaa aca ttt tgg aac gaa atg caa cat att ctt gac atg ttc tct aag
Glu Thr Phe Trp Asn Glu Met Glu His Ile Leu Asp Met Phe Ser Arg
225 230 235
ttt gga agc aaa ccc cct cga ttc aac aag gta cga gcc aca tat gtc
Phe Gly Ser Lys Pro Pro Arg Phe Asn Lys Val Arg Ala Thr Tyr Val
240 245 250
cTA tcc cct gtt gaa atc gag aag cta aag aac aaa gta cta aat ctc
Leu Ser Pro Val Glu Ile Glu Lys Leu Lys Val Leu Asn Leu
255 260 265 270
aga gga tct gaa ccc gca ata cgt gta acg acg ttc aca gtc aca tct
Arg Gly Ser Glu Pro Ala Ile Arg Val Thr Thr Phe Thr Val Thr Cys
275 280 285
gga tac ata tgg aca tgc atg gtc aaa tca aaa gat gtc gta tgg aac
Gly Tyr Ile Trp Thr Cys Met Val Lys Ser Lys Asp Val Val Ser Asn
290 295 300
gac gaa aat gag ctc gag tac ttc agt ttt aca gcc gat tgc cga ggg
Asp Glu Asn Glu Leu Glu Tyr Phe Ser Phe Thr Ala Asp Cys Arg Gly
305 310 315
cTT ctc acG ccc cCG tGt ccc ttt gGC aac tCT ctt gGC
Leu Leu Thr Pro Pro Cys Pro Pro Asn Tyr Phe Gly Asn Cys Leu Ala
320 325 330
cCG tGt gCC aAA gca aca cgt a aa gAG ttt gga aat aAA gGG
Pro Cys Val Ala Lys Ala Thr Arg Lys Glu Leu Val Gly Asn Lys Gly
335 340 345 350
ttt cTT gtt gCA gtt cCT att GTG gAA gCC att gAA aAG agg gTG
Phe Leu Val Ala Val Ala Ile Val Glu Ala Ile Glu Lys Arg Val
355 360 365
cac aac gaa aaa ggc gtt ctt gca gat gaa aac act tgg ttt tgc gaa
His Asn Glu Lys Gly Val Leu Ala Asp Ala Lys Thr Trp Leu Ser Glu
370 375 380
tct aat gga atc cct tca aaa aga ttt ctc ggg att act gga tca cct
Ser Asn Gly Ile Pro Ser Lys Arg Phe Leu Gly Ile Thr Gly Ser Pro
385 390 395
aag ttt gat tcg tat ggt gta gat ttt gga tgg gga aag cct gca aac
Lys Phe Asp Ser Tyr Gly Val Asp Phe Gly Trp Gly Lys Pro Ala Lys
400 405 410
ttt gac att acc tct att gat tat gca gaa ttg att tat gtg att gag
Phe Asp Ile Thr Ser Ile Asp Tyr Ala Glu Leu Ile Tyr Val Ile Glu
415 420 425 430
tcc agg gag ttt gaa aaa ggc gtg gag atc gga gta tca ttg cct aag
Ser Arg Glu Phe Glu Lys Gly Val Glu Ile Gly Val Ser Leu Pro Lys
435 440 445
att cat atg gat gca ttt gca aaa atc ttt gaa cca ggt ttt tgc ttt
Ile His Met Asp Ala Phe Ala Lys Ile Phe Glu Gin Gly Phe Cys Phe
450 455 460
ttg tca tagttcttt aatagaacca aattttgtgc aataaagtac caagttctta
Leu Ser
gtgaacatag ttaacaaacc ctcattttcga ggttagagca ccaacaacaag gtctcatac
<210>6
tacaagttgg aacttcataa attcagagc tgaatatcc accgttggacc tgtgaaagt
<211>464
tgaactcacc acctgacagt
<212>PROTEIN
<213>Ochroleuca and Wutariensis
<220>
<221>
<222>
<223>Amino acid sequence of enzyme transferring aromatic acyl group to 3’-position of anthocyanin
<400>6

Met Glu Gln Ile Gln Met Val Lys Val Leu Glu Lys Cys Gln Val Thr
1 5 10 15
Pro Pro Ser Asp Thr Thr Asp Val Glu Leu Ser Leu Ser Val Thr Phe
20 25 30
Phe Asp Ile Pro Trp Leu His Leu Tyr Lys Met Gln Ser Leu Leu Phe

21
1. A method of adding aromatic acyl groups to sugars at both the 3’ and 5 positions of anthocyanins, the method comprising the step of:

 using a gene encoding a protein having an amino acid sequence as set forth in SEQ ID NO: 4 or 6, or a gene encoding a protein having a sequence identity of 90% or greater to the amino acid sequence as set forth in SEQ ID NO: 4 or 6 and having an activity of transferring aromatic acyl groups to sugars at the 3’ and 5 positions of anthocyanin.

Patentansprüche

1. Verfahren zum Hinzufügen von aromatischen Acylresten an Zucker, welche sich an den Positionen 3’ und 5 des Anthocyans befinden, umfassend die Schritte:

 Verwenden eines Gens, welches ein Protein mit einer Aminosäuresequenz wie in SEQ ID NO: 4 oder 6 dargestellt codiert, oder eines Gens, welches ein Protein codiert, das eine Sequenzidentität von 90% oder mehr zu der in SEQ ID NO: 4 oder 6 dargestellten Aminosäuresequenz hat und das die Aktivität hat, aromatische Acylreste auf Zucker zu übertragen, welche sich an den Positionen 3’ und 5 des Anthocyans befinden.

Revendications

1. Un procédé d'addition de groupes acyles aromatiques à des sucres en positions 3’ et 5 de l’anthocyanine, ce procédé comprenant l’étape :
d’utilisation d’un gène codant pour une protéine présentant une séquence d’acide aminé telle que définie dans SEQ ID NO : 4 ou 6, ou d’utilisation d’un gène codant pour une protéine ayant une identité de séquence d’au moins 90 % avec la séquence d’acide aminé telle que définie dans SEQ ID NO : 4 ou 6 et témoignant d’une activité de transfert de groupes acyles aromatiques aux sucres en positions 3’ et 5 de l’anthocyanine.
Fig. 3

(A)

(B)

<table>
<thead>
<tr>
<th>TIME (MINUTES)</th>
<th>5,3'Caf (µM)</th>
<th>5Caf (µM)</th>
<th>3'Caf (µM)</th>
<th>triG (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>1.65</td>
<td>13.05</td>
<td>0.00</td>
<td>35.3</td>
</tr>
<tr>
<td>5.0</td>
<td>3.90</td>
<td>17.40</td>
<td>0.00</td>
<td>28.7</td>
</tr>
<tr>
<td>10.0</td>
<td>7.30</td>
<td>18.15</td>
<td>0.00</td>
<td>24.6</td>
</tr>
<tr>
<td>20.0</td>
<td>11.70</td>
<td>16.20</td>
<td>0.00</td>
<td>22.1</td>
</tr>
</tbody>
</table>
Fig. 4

(A)

(B)

<table>
<thead>
<tr>
<th>TIME (MINUTES)</th>
<th>5,3’Caf (μ M)</th>
<th>5Caf (μ M)</th>
<th>3’Caf (μ M)</th>
<th>triG (μ M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>1.70</td>
<td>21.80</td>
<td>0.00</td>
<td>76.5</td>
</tr>
<tr>
<td>5.0</td>
<td>3.50</td>
<td>30.10</td>
<td>0.00</td>
<td>66.4</td>
</tr>
<tr>
<td>10.0</td>
<td>6.80</td>
<td>35.60</td>
<td>0.00</td>
<td>57.6</td>
</tr>
<tr>
<td>20.0</td>
<td>11.80</td>
<td>39.60</td>
<td>0.00</td>
<td>48.6</td>
</tr>
</tbody>
</table>
Fig. 5

(A)

(B)

<table>
<thead>
<tr>
<th>TIME (MINUTES)</th>
<th>5,3'Caf (µM)</th>
<th>5Caf (µM)</th>
<th>3'Caf (µM)</th>
<th>triG (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>1.60</td>
<td>31.20</td>
<td>0.00</td>
<td>167.2</td>
</tr>
<tr>
<td>5.0</td>
<td>3.00</td>
<td>44.40</td>
<td>0.00</td>
<td>152.6</td>
</tr>
<tr>
<td>10.0</td>
<td>7.00</td>
<td>60.60</td>
<td>0.20</td>
<td>132.2</td>
</tr>
<tr>
<td>20.0</td>
<td>11.60</td>
<td>70.00</td>
<td>0.60</td>
<td>117.8</td>
</tr>
</tbody>
</table>
Fig. 6

(kDa) M 1 2
100
75
50
37

Fig. 7

PEL 3G-5G Cya 3G-5G DEL 3G-5G Mal 3G-5G Gentiodelphin
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 2005017147 A [0014] [0017]
- WO 199625500 A [0014] [0017]
- JP 2003528603 A [0015] [0017]
- JP 8000348 W [0040]
- JP 2002016935 A [0058]
- WO 2004020637 A [0060]
- WO 200192509 A [0060]
- JP 2004315733 A [0076]

Non-patent literature cited in the description

- Harborne. The Flavonoids, 1986, 565 [0004] [0017]
- Harborne. The Flavonoids, 1986, 565 [0005]
- Norio Saito. TANPAKUSITU KAKUSAN KOUSO, 2002, vol. 47, 202 [0005] [0017]
- Tanaka Y.; Mason J. Plant genetic engineering. SCl tech publishing, 2003, 361-385 [0006] [0008] [0009] [0017]
- Yoshida et al. Tetrahedron, 1992, vol. 48, 4313 [0012] [0016] [0017]
- Yoshida et al. Phytochemistry, 2000, vol. 54, 85 [0012] [0017] [0056]
- Caryophyllaceae, 1980 [0013]
- Fujiwara et al. Plant J., 1998, vol. 16, 421 [0013] [0017] [0041] [0049]