Methods, apparatuses and computer media for judging period of validity in a digital certificate and generating an e-mail if predefined condition is satisfied

Verfahren, Vorrichtungen und Computermedien zur Einschätzung des Gültigkeitsbereichs in einem digitalen Zertifikat und zum Erstellen einer Mail, falls eine vordefinierte Bedingung erfüllt ist

Procédés, appareils et supports de données pour juger de la durée de validité dans un certificat numérique et pour générer un courrier électronique si une condition prédéfinie est satisfaite

Designated Contracting States: DE FR GB

date of publication of application: 04.07.2007 Bulletin 2007/27

Inventor: Miyazawa, Masafumi c/o Brother Kogyo K.K., I.P.D. Nagoya, Aichi 467-8562 (JP)

Representative: Kuhnen & Wacker Patent- und Rechtsanwaltsbüro Prinz-Ludwig-Strasse 40A 85354 Freising (DE)

References cited:

KLENSIN J: “Simple Mail Transfer Protocol” IETF STANDARD-WORKING-DRAFT, INTERNET ENGINEERING TASK FORCE, IETF, CH, 7 July 2005 (2005-07-07), pages 1-83, XP015040523 ISSN: 0000-0004
Background of the Invention

Technical Field of the Invention

[0001] The present invention relates to a management apparatus for managing a digital certificate according to claim 1 and also a method for managing a digital certificate according to claim 4. Moreover, the present invention also relates to a computer readable medium according to claim 5.

Related Art

[0002] From US 2002/184493 A1 a system for allowing a computer application or computer service to notify a user that his certificate is within some specified interval before its expiry date utilizing information that is already contained in a standard digital certificate, together with current data information that is already known by the application or service to enforce expiry of the certificate when it occurs. With this known system no additional storage of information is required.

[0003] Heretofore, as for communication technology, SSL (Secure Socket Layer) communication technique is widely used. In SSL communication, a public key is notified through a digital certificate (digital ID) to enter into a cipher communication. In order to establish high-security communication, a digital certificate used in SSL communication is commonly set its effective period, and an expired digital certificate is generally prohibited to use.

[0004] Therefore, each owner of the digital certificate is required to grasp the expiration date in possession always, and required to carry out updating operation of the digital certificate as appropriate. However, same owners may forget the expiration date, and in case of losing the period, the users may be unable to use the terminal unit in network using the digital certificate when necessary. That is to say, a communication system using the digital certificate has been inconvenient on this point for users.

[0005] Japanese Patent Provisional Publication No. 2005-269558 (hereafter, referred to as JP 2005-269558A) discloses a technique for resolving the problem of validity expiration. According to the technique disclosed in JP 2005-269558A, the approaching expiration date is notified to users by e-mail in accordance with each expiration date of the digital certificate.

[0006] Conventionally, however, it was a sort of sending an e-mail written with a message for urgent update of the digital certificate simply according to the expiration date and that may press users annoying to move on to updating operation. As a consequence of such mood of the users, carrying out updating operation may be delayed, and some users may cause expiration of the digital certificate in spite of having been warned.

Summary of the Invention

[0007] It is an object of the present invention to realize an improved management apparatus and improved method for managing a digital certificate capable of reducing workload concerning an updating operation of a digital certificate and to prevent expiration of the digital certificate effectively.

[0008] According to the inventive management apparatus the above object is solved by the features of claim 1. Further developments of the invention are specified in the dependent claims.

[0009] According to the management apparatus of the invention, a certificate updating unit updates (creates a digital certificate in which the period of validity is updated) the target digital certificate in the case the update condition is judged as satisfied; and transmits the e-mail attached with the updated digital certificate to a user such as the owner; so that the e-mail receiving side can use the updated digital certificate in communication by importing the digital certificate attached to the e-mail into software such as a browser. Therefore, workload concerning the updating operation of the digital certificate will be reduced so that expiration of the digital certificate may be prevented effectively.

[0010] In at least one aspect, the target digital certificate is written with an e-mail address of an owner of the target digital certificate; and the destination setting unit sets the e-mail address of the owner which is written in the updated target digital certificate as the destination e-mail address when the target digital certificate is updated by the certificate updating unit.

[0011] According to the management apparatus configured above, destination of the e-mail can be set by each digital certificate easily, therefore, each e-mail can be transmitted to the user properly.

[0012] In at least one aspect, the management apparatus further comprises a certificate displaying unit which displays information relating to the target digital certificate responding to a viewing request signal inputted through an interface from a user. In this case, the update condition judgment unit is configured to judge whether the predetermined update condition is satisfied based on the elapsed time from the last displaying time of information relating to the target digital certificate by the certificate displaying unit and the period of validity written in the target digital certificate.

[0013] According to the management apparatus configured as above, transmission of the e-mail can be switched between "to transmit" and "not to transmit" depending on the target digital certificate viewing situation of the user, so that transmission of the e-mail can be withheld to a user having low-potential of expiration of the target digital certificate occurrence. In other words, according to the management apparatus, transmission of aforementioned e-mail can be switched between "to transmit" and "not to transmit" depending on the user’s characteristics including personality thereof.
In order to judge whether the predetermined update condition is satisfied based on the elapsed time from the last displaying time of information relating to the target digital certificate of the managed object, the update condition judgment system may be configured specifically as described below.

In at least one aspect, the update condition judgment unit is configured that the predetermined update condition is judged as satisfied if the remaining time to the period of validity written in the target digital certificate is less than or equal to a predetermined threshold and the elapsed time is over the predetermined criterion time; while the predetermined update condition is judged as not satisfied in other cases.

According to the management apparatus configured as above, in the case the elapsed time from the last displaying time of the information relating to the target digital certificate by the certificate displaying unit is within a criterion time, the e-mail is not to be transmitted, that allows to prevent annoying users by the e-mail which is delivered regardless of the user who already checked information relating to the target digital certificate.

The object is also attained by a method according to claim 4.

With this method, workload concerning the updating operation of the digital certificate will be reduced so that expiration of the digital certificate may be prevented effectively.

According to another aspect of the invention, there is provided a computer readable medium having computer readable instructions stored thereon, which, when executed by a computer functioning as a management apparatus for managing a digital certificate which is written with a period of validity, are configured to execute the steps of the method according to claim 4.

Detailed Description

FIRST EMBODIMENT

Hereinafter, referring to accompanying drawings, embodiments of the present invention will be described.

Fig. 1 is a schematic block diagram showing a configuration of a communication system according to a first embodiment.

Figs. 2A and 2B are schematic diagrams showing configurations of digital certificates to be used for the communication system.

Figs. 3A and 3B are rudder charts showing steps in SSL handshake.

Fig. 4 is a flowchart showing a cipher printing process to be executed by a PC in the communication system.

Fig. 5 is a flowchart showing a MFP process to be executed by a MFP (multifunction peripheral) in the communication system.

Fig. 6 is a flowchart showing a server certificate valid period check process to be executed by the MFP.

Fig. 7 is a flowchart showing a cipher communication start process to be executed by the MFP.

Fig. 8 is a flowchart showing a client certificate valid period check process to be executed by the MFP.

Fig. 9 is a flowchart showing a request acceptance process to be executed by the MFP.

Fig. 10 illustrates a schematic view showing a certificate setting screen.

Fig. 11A illustrates a schematic view showing a server certificate creation screen, and Fig. 11B illustrates a schematic view showing a server certificate saving screen.

Fig. 12A illustrates a schematic view showing a client certificate creation screen, and Fig. 12B illustrates a schematic view showing a client certificate saving screen.

Fig. 13 illustrates a schematic view showing an administrator setting screen.

Fig. 14 is a flowchart showing a server certificate valid period check process to be executed by the MFP according to a second embodiment.

Fig. 15 is a flowchart showing a client certificate valid period check process to be executed by the MFP according to the second embodiment.

Brief Description of the Accompanying Drawings

Fig. 1 is a schematic block diagram showing a configuration of a communication system according to a first embodiment.

Figs. 2A and 2B are schematic diagrams showing configurations of digital certificates to be used for the communication system.

Figs. 3A and 3B are rudder charts showing steps in SSL handshake.

Fig. 4 is a flowchart showing a cipher printing process to be executed by a PC in the communication system.

Fig. 5 is a flowchart showing a MFP process to be executed by a MFP (multifunction peripheral) in the communication system.

Fig. 6 is a flowchart showing a server certificate valid period check process to be executed by the MFP.

Fig. 7 is a flowchart showing a cipher communication start process to be executed by the MFP.
print data by controlling the printing unit 17 (printing function). And, when a read command is inputted on the displaying and operating unit 21 by an operation of a user through the displaying and operating unit 21, the CPU 11 generates image data which indicates the scanned image of the document placed on the platen, and transmits it to the predetermined PC 30 through the communication I/F 15 (scanning function).

[0026] The MFP 10 has a web server function, a SSL (Secure Socket Layer) communication function, and a function as certificate authority (CA), and stores self-signed server certificate and a server secret key which are issued from the MFP 10 itself, and a CA certificate for client certificate verification, in a flash memory 13. The CA certificate for client certificate verification is for verifying the client certificate signed with the server secret key, which is identical with the server certificate.

[0027] Further, the MFP 10 is configured to authenticate the client (the PC 30) by a digital certificate or a password at the acceptance of an access from the PC 30 through a specific port, and stores a password in the flash memory 13 for client authentication. Moreover, the MFP 10 has a function to transmit an e-mail to the administrator when the period of validity of the server certificate is getting close, and stores an e-mail address of the administrator which is set as the destination of the e-mail (e-mail address of the administrator). Furthermore, the MFP 10 has configuration information about the last viewing time of the server certificate and the operation mode of SSL communication information (hereinafter referred to as "mode configuration information") in the flash memory 13 (as will hereinafter be described in detail).

[0028] Figs. 2A 2B are schematic diagrams showing configurations of digital certificates to be used for the communication system 1 according to the embodiment. Specifically, Fig. 2A is a schematic diagram showing configuration of the server certificate which is stored in the flash memory 13 of the MFP 10, and Fig. 2B is a schematic diagram showing configuration of the client certificate which is issued together with a client secret key from the MFP 10 and registered into the PC 30.

[0029] The server certificate which is managed in the SSL communication of the communication system 1 according to the embodiment is configured, as shown in Fig. 2A, to contain version information which indicates the version of the certificate, a serial number of the certificate, an algorithm identifier, issuer information which indicates the certificate issuer who signed the digital signature, a valid period information which indicates information of the period of validity of the certificate, subject information which indicates information of the owner of the certificate, public key information which indicates a public key of the owner, and digital signature information which indicates the value (symbols) of the digital signature. Therein, the subject information in the server certificate contains a FQDN (Full Qualified Domain Name) of the MFP 10, and the valid period information is configured to indicate the commencement time and the expiration time of the valid period of the certificate (the period of validity).

[0030] On the other hand, the client certificate is configured, as shown in Fig. 2B, to contain basically same sort of information as the server certificate, and to contain additionally information of an e-mail address of the owner (the e-mail address to be used by the main user of the PC 30) as the subject information.

[0031] The server certificate stored in the MFP 10 is to be provided to destination PC(s) 30 in the steps shown in Fig. 3 at the SSL communication. Figs. 3A and 3B are rudder charts showing steps in SSL handshake. Specifically, Fig. 3A is a rudder chart showing the steps of SSL handshake in the case of not requesting the client certificate (hereinafter referred to as "Mode 1"), and Fig. 3B is a rudder chart showing steps in SSL handshake in the case of requesting the client certificate.

[0032] As shown in Figs. 3A and 3B, SSL handshake is started by transmitting a ClientHello message from the PC 30 (client) to the MFP 10 (server). By this transmitting of the ClientHello message, the start of communication is to be notified to the MFP 10, and necessary information for the MFP 10 to communicate with PC 30 using SSL is to be also notified.

[0033] Upon receiving the ClientHello message, the MFP 10 responds with a ServerHello message which contains necessary information for the PC 30 to communicate with the MFP 10 itself using SSL to the PC 30, and transmits a Certificate message which contains the server certificate to the PC 30. Also, the MFP 10 transmits a ServerHelloDone message to the PC 30 as necessary.

[0034] If the mode of SSL communication is set in "Mode 2", the MFP 10 transmits a CertificateRequest message for requesting the client certificate to the PC 30 (see Fig. 3B). Thus, when transmission of these messages is completed, the MFP 10 is to transmit a ServerHelloDone message which indicates termination of the message transmission sequence to the PC 3.

[0035] On the other hand, upon receiving the ServerHelloDone message, if the PC 30 has already received the CertificateRequest message in advance, the PC 30 transmits a Certificate message which contains its own client certificate to the MFP 10 in responding to the request, and also transmits a ClientKeyExchange message which contains a premaster-secret necessary for generating a session key to the MFP 10. In this regard, at the transmission of the ClientKeyExchange message, the PC 30 encrypts the message by the notified server public key and transmits it. And also, the PC 30 transmits a CertificateVerify message.

[0036] Contrary, upon receiving the ServerHelloDone message without having been receiving the CertificateRequest message, the PC 30 transmits only ClientKeyExchange message without transmitting aforementioned Certificate message and CertificateVerify message to the MFP 10.

[0037] When this step is completed, the PC 30 is to
transmit a ChangeCipherSpec message which notifies change of ciphers to the MFP 10, and also transmits a Finished message which notifies termination of the encrypted handshake using the session key to the MFP 10.

[0038] On the other hand, upon receiving the Finished message from the PC 30, the MFP 10 is to transmit the ChangeCipherSpec message which notifies change of ciphers to the PC 30, and also transmits a Finished message which notifies termination of the encrypted handshake using the session key to the PC 30. Thus the server certificate and the client certificate are transmitted and received between the MFP 10 and the PC 30 of the embodiment so that the SSL communication is to be achieved.

[0039] Besides, the PC 30 according to the embodiment is configured similarly to a general personal computer, and the SSL communication and other functions are achieved in the CPU 31 by executing various programs. Specifically, the PC 30 is provided with a CPU 31, a RAM 32 as a working memory, a ROM 33 which is stored with various programs including a boot program, a hard disk drive (HDD) 34, a communication I/F 35 which is connected to TCP/IP network, an operating unit 37 which includes various devices such as a keyboard and a pointing device, and a display unit 39 which includes a display instrument such as LCD monitor.

[0040] The PC 30 stores a CA certificate for server certificate verification, its own client certificate and a client secret key which were issued from the MFP 10, and a password for submitting to the MFP 10 at the client authentication, herewith, at the SSL communication, authenticates the server certificate using the CA certificate stored in the HDD 34 and transmits its own client certificate to the MFP 10 as necessary. Also, if the SSL handshake was executed in "Mode 1", the PC 30 is to accept the client authentication steps by transmitting the password stored in the HDD 34 to the MFP 10.

[0041] Specifically, the PC 30 has a browser which is the software to utilize the web server function of the MFP 10 and a printer driver to utilize the printing function of the MFP 10, in the HDD 34, and the SSL communication is used by the browser and the printer driver.

[0042] Fig. 4 is a flowchart showing a cipher printing process to be executed by the CPU 31 in the PC 30 based on the printer driver when a cipher print command is inputted by an operation of a user through the operating unit 37.

[0043] At the start of the cipher printing process, the CPU 31 executes the SSL handshake with the MFP 10 in the methods described above (S110). If the CPU 31 was successful in the SSL handshake, judges as NO in the step S120, and control proceeds to the step S130. On the other hand, if the CPU 31 was unsuccessful in the SSL handshake, the CPU 31 judges as YES in the step S120 and stops communication with the MFP 10 (S125), then terminates the cipher printing process. In this regard, at the time of cipher printing process, the CPU 31 accesses a port for cipher printing of the MFP 10.

[0044] In the step S130, the CPU 31 judges in which mode the SSL handshake was executed between "Mode 1" and "Mode 2", and if it is judged that the SSL handshake was executed in "Mode 1", the CPU 31 encrypts the password which is stored in the HDD 34 and transmits it to the MFP 10 (S140).

[0045] After the end of the step, the CPU 31 judges whether the client authentication based on the transmitted password was successful in the MFP 10 (S150). If the authentication in the MFP 10 is judged as successful (S150: YES), control proceeds to the step S160 where the CPU 31 encrypts print data which was designated by the cipher print command and transmits it. And then the cipher printing process is to be terminated. On the other hand, if the authentication in the MFP 10 is judged as unsuccessful, (S150: NO), the cipher printing process is to be terminated without transmitting print data.

[0046] If it is judged in step S130 that the SSL handshake was executed in "Mode 2", control proceeds to the step S160 without transmitting aforementioned password, and the CPU 31 encrypts print data which was designated by the cipher print command and transmits it (S160). And then the cipher printing process is to be terminated. Thus, the CPU 31 encrypts print data and transmits it by SSL communication so that information having high confidentiality of the print data is not to be leaked from the network, and operates the MFP 10 to form printing images on paper based on this print data.

[0047] By executing a MFP process shown in Fig. 5, the MFP 10 accepts the print data which is transmitted in the cipher printing process mentioned above, and also accepts various types of web access. Herein, Fig. 5 is a flowchart showing a MFP process that the CPU 11 in the MFP 10 starts executing at the activation.

[0048] At the start of the MFP process, the CPU 11 judges if any event has occurred such as an access to the HTTPS port (cipher web access), an access to the HTTP port (non-cipher web access), an access to the port for cipher printing, and an access to the port for non-cipher printing (S210). If it is judged that an event has occurred (S210: YES), control proceeds to the step S230. If it is judged that no event has occurred (S210: NO), control proceeds to the step S220 where the CPU 11 executes a server certificate valid period check process shown in Fig. 6. Herein, Fig. 6 is a flowchart showing a server certificate valid period check process to be executed by the CPU 11.

[0049] At the start of the server certificate valid period check process, the CPU 11 calculates elapsed time from the time the server certificate was checked by the administrator based on the last viewing time of the server certificate which is stored in the flash memory 13. Specifically, difference between the current time and the last viewing time is calculated as the elapsed time (S221). Then, after the end of the step, control proceeds to the step S222 where the CPU 11 judges whether the calculated elapsed time mentioned above is within the number of predetermined days L1. If the elapsed time is judged
to be within the number of predetermined days L1 (S222: YES), the server certificate valid period check process is to be terminated without executing the steps S224-S229.

[0050] On the other hand, if the elapsed time is judged to be within the number of predetermined days L1 (S222: NO), the CPU 11 calculates remaining time to the period of validity (time to expiration) of its own server certificate which is stored in the flash memory 13 (S224). To put it plainly, difference between the expiration time of the valid period which is indicated by valid period information of the server certificate and the current time is calculated.

[0051] Then, after the end of the step, the CPU 11 judges whether the remaining time mentioned above is within the number of predetermined days L2 (S225: YES), control proceeds to the step S227. If the remaining time is judged to be over the number of predetermined days L2 (S225: NO), the server certificate valid period check process is to be terminated without executing the steps S227-S229.

[0052] On the other hand, if the process progressed to the step S227, the CPU 11 creates an e-mail (hereinafter referred to as "warning mail") which is written with link information of the server certificate creating page (see Fig. 11A) which its own MFP 10 may provide through the web server function and is written with a message to notify that the period of validity of the server certificate is getting close, then sets the destination of the warning mail to the administrator e-mail address which is stored in the flash memory 13 (S228). After the end of the step, by transmitting aforementioned warning mail to the mail server 3, the warning mail is to be transmitted to the administrator through the mail server 3 (S229). And then, the server certificate valid period check process is to be terminated.

[0053] Therefore, after the end of the server certificate valid period check process in the step S220, control proceeds to the step S210. There, if aforementioned event has occurred, control proceeds to the step S230 where the CPU 11 judges whether the occurred event is cipher web access. If it is judged that the occurred event is cipher web access (S230: YES), the CPU 11 executes a cipher communication start process shown in Fig. 7 (S240). Herein, Fig. 7 is a flowchart showing a cipher communication start process to be executed by the CPU 11.

[0054] At the start of the cipher communication starting process, the CPU 11 judges whether the web access of the current time is a valid web access from the PC 30 that has been already authenticated successfully in the cipher communication starting process (S400), and if the web access is judged as the valid web access from the PC 30 which has been authenticated successfully (S400: YES), the cipher communication starting process is to be terminated. On the other hand, if the web access is judged as not the valid web access from the PC 30 which has not been authenticated successfully (S400: NO), the CPU 11 reads out the mode configuration information from the flash memory 13 (S410), and executes SSL handshake based on the mode which is indicated by the mode configuration information ("Mode 1" or "Mode 2" shown in Fig. 3) (S415).

[0055] If it was successful in the SSL handshake, the CPU 11 judges as NO in the step S420, and control proceeds to the step S430. On the other hand, if it was unsuccessful in the SSL handshake, the CPU 11 judges as YES in the step S420, and stops communication with the access source PC 30 (S425), then terminates this cipher communication starting process.

[0056] If it was successful in the SSL handshake and the process progressed to the step S430, the CPU 11 judges in which mode the SSL handshake was executed between "Mode 1" and "Mode 2", and if it is judged that the SSL handshake was executed in "Mode 1", the CPU 11 receives the password which was transmitted in the step S140 from the access source PC 30 (S440), and decrypts the received password (S445).

[0057] And the CPU 11 verifies the decrypted password with the password stored in the flash memory 13 (S450), and if both of the passwords were matched successfully in the client (the PC 30) identification, the CPU 11 judges it as successful in the client (the PC 30) authentication (S455: YES), and terminates the cipher communication starting process without stopping communication. On the other hand, if both of the passwords were unmatched, the CPU 11 judges it as unsuccessful in the client authentication (S455: NO), and stops communication with the access source (S425), then terminates this cipher communication starting process.

[0058] If it is judged in step S430 that the SSL handshake was executed in "Mode 2", the CPU 11 identifies the client of the access source (the PC 30) by the received client certificate (S460). Then, after the end of the step, the CPU 11 executes a client certificate valid period check process shown in Fig. 8 (S470). Herein, Fig. 8 is a flowchart showing a client certificate valid period check process to be executed by the CPU 11.

[0059] At the start of the client certificate valid period check process, the CPU 11 calculates remaining time (time to expiration) to the period of validity (expiration date and time of effective term) of the received client certificate (S471), and judges whether the remaining time is within the number of predetermined days L3 (S473). And if the remaining time is judged to be within the number of predetermined days L3 (S473: YES), control proceeds to the step S475. If the remaining time is judged to be over the number of predetermined days L3 (S473: NO), the client certificate valid period check process is to be terminated without executing the steps S475-S479.

[0060] On the other hand, if the process progressed to the step S475, the CPU 11 creates an e-mail (warning mail) which is written with link information of the client certificate saving page (see Fig. 12B) (which is acceptable of updating operation of the client certificate) and is written with a message to notify that the period of validity
of the client certificate is getting close, and then sets the destination of the warning mail to an e-mail address which is indicated by the subject information of the client certificate (S477). After the end of the step, by transmitting aforementioned warning mail to the mail server 3, the warning mail is to be transmitted to an e-mail address which is used by the main user of the access source PC 30 through the mail server 3 (S479). Then, the client certificate valid period check process is to be terminated.

[0061] After the end of the client certificate valid period check process in the step S470, control proceeds to the step S480. If it was successful in the client (the PC 30) identification in the step S460, the CPU 11 judges it as successful in the client (the PC 30) authentication (S480: YES), and terminates the cipher communication starting process without stopping communication. If it was not successful in the client (the PC 30) identification, the CPU 11 judges it as unsuccessful in the client authentication (S480: NO), and stops communication with the access source (S425), then terminates the cipher communication starting process.

[0062] Referring back to Fig. 5, after the end of the cipher communication starting process in the step S240, control proceeds to the step S250 where the CPU 11 judges whether communication was interrupted in the previous cipher communication starting process. And if it is judged that the communication was interrupted (S250: YES), control proceeds to the step S210. If it is judged that the communication was not interrupted (S250: NO), the CPU 11 receives a valid HTTP request from the PC 30 that has been already authenticated successfully (S260), and decrypts the received HTTP request (S265).

[0063] After the end of the step, the CPU 11 executes a request acceptance process in the step S270, and generates a HTTP response corresponding to the HTTP request as shown in Fig. 9. And then, the CPU 11 encrypts the HTTP response which was generated in the request acceptance process (S280), and transmits the HTTP response to the access source PC 30 (S285). Then, control returns to the step S210.

[0064] Fig. 9 is a flowchart showing a request acceptance process to be executed by the CPU 11 of the MFP 10. At the start of the request acceptance process, the CPU 11 judges whether the received HTTP request is the HTTP request for requesting a certificate setting page (S510), and if it is judged as the HTTP request for requesting the certificate setting page (S510: YES), the CPU 11 generates a HTTP response which contains the certificate setting page that is a web page for displaying the certificate setting screen (S515). And then, the request acceptance process is to be terminated.

[0065] Fig. 10 illustrates a schematic view showing a certificate setting screen "Configuration of the Certificate". By the transmission of the HTTP response, the certificate setting screen, shown in Fig. 10, is to be displayed on the display unit 39 of access source PC 30. Specifically, the components of the certificate setting screen according to the embodiment include "DISPLAY" button A1 which is provided with a link to a server certificate viewing page, a character string A2 "Creation of Self-signed Server Certificate" which is provided with a link to a server certificate creation page (see Fig. 11A), a character string A3 "Import of Server Certificate and Server Secret Key" which is provided with a link to a server certificate import operating page (not shown in the figure) which is a web page acceptable of the import operation of the server certificate and the server secret key, a character string A4 "Issue of Client Certificate" which is provided with a link to a client certificate creation page (see Fig. 12A).

[0066] Specifically, by a user, when a selecting operation on the "DISPLAY" button A1 in the certificate setting screen is executed, an HTTP request for requesting the server certificate viewing page is to be transmitted from the PC 30 to the MFP 10, and when a selecting operation on the character string A2 in the certificate setting screen is executed, an HTTP request for requesting the server certificate creation page is to be transmitted from the PC 30 to the MFP 10. When a selecting operation on the character string A3 in the certificate setting screen is executed, an HTTP request for requesting the server certificate import operating page is to be transmitted from the PC 30 to the MFP 10, and when a selecting operation on the character string A4 in the certificate setting screen is executed, an HTTP request for requesting the client certificate creation page is to be transmitted from the PC 30 to the MFP 10.

[0067] If the CPU 11 judges that the received HTTP request is not the HTTP request for requesting the certificate setting page (S510: NO), control proceeds to the step S520 where the CPU 11 judges whether the received HTTP request is the HTTP request for requesting aforementioned server certificate viewing page, and if the received HTTP request is judged as the HTTP request for requesting the server certificate viewing page (S520: YES), control proceeds to the step S523 where the CPU 11 judges whether the received HTTP request is the HTTP request for requesting the client certificate viewing page, a character string A1 which is provided with a link to a certificate setting page (S521: YES), and decrypts the received HTTP response (S525). Then, control returns to the step S210.

[0068] If the CPU 11 judges that the received HTTP request is not the HTTP request for requesting the server certificate viewing page (S520: NO), the CPU 11 judges whether the received HTTP request is the HTTP request for requesting the server certificate creation page (S530).
If the received HTTP request is judged as the HTTP request for requesting the server certificate creation page (S530: YES), the CPU 11 generates the HTTP response which contains the server certificate creation page that is a web page for displaying the server certificate creation screen (S535). And then, the request acceptance process is to be terminated.

If the CPU 11 judges that the received HTTP request is not the HTTP request for requesting the client certificate creation page (S540: NO), control proceeds to the step S550 where the CPU 11 judges whether the received HTTP request is the HTTP request for requesting the client certificate import operating page. And if the received HTTP request is judged as the HTTP request for requesting the client certificate import operating page (S550: YES), the CPU 11 generates the HTTP response which contains the client certificate creation page, as shown in Fig. 12B, the CPU 11 judges whether the received HTTP request is the HTTP request for requesting the client certificate creation page (S560). If the received HTTP request is judged as the HTTP request for requesting the client certificate creation page (S560: YES), the CPU 11 generates an HTTP response which contains the client certificate creation page that is a web page for displaying the client certificate creation page (S565). And then, the request acceptance process is to be terminated.

More specifically, upon pressing the "OK" button of this server certificate creation screen, an HTTP request for requesting creation of the server certificate which contains aforementioned input values for respective input objects is to be transmitted from the PC 30.

If the CPU 11 judges the received HTTP request is not the HTTP request for requesting the client certificate creation page (S540: NO), control proceeds to the step S540 where the CPU 11 judges whether the received HTTP request is the HTTP request for requesting creation of the server certificate. If the received HTTP request is judged as aforementioned HTTP request for requesting creation of the server certificate (S540: YES), control proceeds to the step S543 where the CPU 11 creates the responding server certificate based on aforementioned values for respective input objects which are indicated by the received HTTP request. In this case, the server certificate is to be generated by signing with a digital signature using its own server secret key. And after the end of the step, the CPU 11 generates an HTTP response which contains the server certificate saving page that is a web page for saving (upload) the server certificate (S547), and terminates this request acceptance process.

If the CPU 11 judges that the received HTTP request is not the HTTP request for requesting the server certificate import operating page (S550: NO), the CPU 11 judges whether the received HTTP request is the HTTP request for requesting the client certificate creation page (S560). If the received HTTP request is judged as the HTTP request for requesting the client certificate creation page (S560: YES), the CPU 11 generates an HTTP response which contains the client certificate creation page that is a web page for displaying the client certificate creation page (S565). And then, the request acceptance process is to be terminated.

Specifically, the components of the client certificate creation screen include a text box which is for accepting input of an e-mail address of the owner is to be transmitted from the PC 30 to the MFP 10. Besides, at the time of uploading, the server secret key which is corresponding to the server public key indicated by the server certificate is also encrypted and uploaded onto the access source PC 30. And then, the received HTTP request is to be transmitted from the PC 30 to the MFP 10.
for requesting creation of the client certificate. If the received HTTP request is judged as aforementioned HTTP request for requesting creation of the client certificate (S570: YES), control proceeds to the step S573 where the CPU 11 creates the client certificate signed with the server secret key which is stored in the flash memory 13 and the client secret key, and generates an HTTP response which contains the client certificate saving page that is a web page for saving (upload) the client certificate (S577). And then, this request acceptance process is to be terminated.

If the CPU 11 judges that the received HTTP request is not the aforementioned HTTP request for requesting the administrator (S570: NO), control proceeds to the step S580 where the CPU 11 checks whether the received HTTP request is the HTTP request for requesting the administrator setting page (S580: YES). If the CPU 11 judges that the event occurred in the step S230 is not a cipher web access (S290: NO), control proceeds to the step S320 where the CPU 11 judges whether the communication with the access source PC 30 is maintained without interruption in the cipher communication start process, the CPU 11 judges as NO in the step S340, and control returns to the step S210. On the other hand, when communication with the access source PC 30 is maintained without interruption in the cipher communication start process, the CPU 11 judges as YES in the step S340, and control proceeds to the step S380 where the CPU 11 executes a printing process on the received print data (S350) transmitted from the access source PC 30 in the step S160, then decrypts the received print data (S355). And then, control proceeds to the step S380 where the CPU 11 executes a cipher communication starting process shown Fig. 7 in the step S330. If communication was interrupted in the cipher communication start process, the CPU 11 judges as YES in the step S340, and control returns to the step S210.

If the CPU 11 judges the received HTTP request is not the HTTP request for requesting the administrator setting page (S580: NO), control proceeds to the step S590 where the CPU 11 judges whether the received HTTP request is aforementioned HTTP request for requesting setting of the administrator. If the received HTTP request is judged as the HTTP request for requesting setting of administrator (S590: YES), control proceeds to the step S593 where the CPU 11 updates the administrator e-mail address stored in the flash memory 13 to be the administrator e-mail address stored in the HTTP request. After the end of the step, control proceeds to S597 where the CPU 11 transmits the HTTP response for notifying successful of setting to the access source PC 30. And then, the request acceptance process is to be terminated.

If the CPU 11 judges that the received HTTP request is not the aforementioned HTTP request for requesting setting of the administrator (S590: NO), the CPU 11 executes a step to generate other HTTP responses corresponding to the HTTP request (S510), and responds with the generated HTTP response to the access source PC 30 (S515). Then, control returns to the step S210.

If the CPU 11 judges as also not a non-cipher web access (S290: NO), control proceeds to the step S300 where the CPU 11 judges whether the occurred event is a non-cipher web access. If the occurred event is judged as a non-cipher web access (S290: YES), the CPU 11 receives the HTTP request transmitted from the access source PC 30 (S300), and generates a HTTP response corresponding to the received HTTP request (S310), and responds with the generated HTTP response to the access source PC 30 (S315). Then, control returns to the step S210.

If communication was interrupted in the cipher communication start process, the CPU 11 judges as YES in the step S340, and control returns to the step S210. On the other hand, when communication with the access source PC 30 is maintained without interruption in the cipher communication start process, the CPU 11 judges as NO in the step S340, and receives encrypted print data (S350) transmitted from the access source PC 30 in the step S160, then decrypts the received print data (S355). And then, control proceeds to the step S380 where the CPU 11 executes a printing process on the received print data, thus forms printing images on paper based on the print data through the printing unit 17. And then, control returns to the step S210.

If the event occurred in the step S320 is judged as not an access to a port for the cipher printing. If the occurred event is judged as an access to a port for a cipher printing (S320: YES), the CPU 11 executes a cipher communication starting process shown Fig. 7 in the step S330. If communication was interrupted in the cipher communication start process, the CPU 11 judges as YES in the step S340, and control returns to the step S210. On the other hand, when communication with the access source PC 30 is maintained without interruption in the cipher communication start process, the CPU 11 judges as NO in the step S340, and receives encrypted print data (S350) transmitted from the access source PC 30 in the step S160, then decrypts the received print data (S355). And then, control proceeds to the step S380 where the CPU 11 executes a printing process on the received print data, thus forms printing images on paper based on the print data through the printing unit 17. And then, control returns to the step S210.
11 judges whether the occurred event is an access to a port for the non-cipher printing. If the occurred event is judged as an access to a port for the non-cipher printing (S360: YES), control proceeds to the step S370 where the CPU 11 receives not encrypted print data from the access source PC 30 (S370), then, executes a printing process on the received print data in the step S380, thus, forms printing images on paper based on the print data through the printing unit 17. After the end of the step, control returns to the step S210.

[0085] Furthermore, if the event occurred in the step S360 is judged as also not an access to a port for the non-cipher printing (S360: NO), control proceeds to the step S390 where the CPU 11 executes a step corresponding to the occurred event. Then, control returns to the step S210.

[0086] Hereinabove, the communication system 1 according to the first embodiment has been described, and according to the communication system 1, the CPU 11 in the MFP 10 judges whether transmission conditions on a warning mail are satisfied based on the period of validity which is written in its own server certificate (S221-S225: corresponding to a transmission condition judgment unit). If the transmission conditions are judged as satisfied (S225: YES), the MFP 10 generates a warning mail which is provided with link information to the server certificate creation page where updating operation on the server certificate is acceptable (S227: corresponding to a mail generating unit). Also, the MFP 10 sets an administrator e-mail address as the destination of the warning mail (S228: corresponding to an destination setting system), then transmits the warning mail to the administrator e-mail address (S229: corresponding to a mail transmission unit).

[0087] Further, according to the embodiment, the CPU 11 in the MFP 10 judges whether transmission conditions on a warning mail are satisfied based on the period of validity which is written in the client certificate at receiving the client certificate (S471-S473: corresponding to a transmission condition judgment unit). If the transmission conditions are judged as satisfied (S473: YES), the MFP 10 generates a warning mail which is provided with link information to the server certificate creation page where updating operation on the server certificate is acceptable (S475). Also, the MFP 10 sets an owner e-mail address which is written in the client certificate as the destination of the warning mail (S477: corresponding to a destination setting unit), then transmits the warning mail to the owner e-mail address (S479: corresponding to a mail transmission unit).

[0088] In the communication system 1 according to the embodiment, when the period of validity of the server certificate is getting close, a warning mail, which is provided with link information to the server certificate creation page, is transmitted to the administrator of the MFP 10. Such a configuration makes it possible to prompt the administrator effectively to update the server certificate. Also, according to the embodiment, the warning mail is provided with link information so that the server certificate creation screen can be displayed easily, that allows the administrator to carry out the updating operation on the server certificate easily. Thus, according to the embodiment, workload concerning the updating operation of the server certificate will be reduced so that expiration of the server certificate may be prevented effectively.

[0089] Furthermore, in the communication system 1 according to the embodiment, when the period of validity of the client certificate is getting close, a warning mail, which is provided with link information to the client certificate saving page, is transmitted to the owner. Such a configuration makes it possible to prompt the owner effectively to update the client certificate and also workload concerning the updating operation of the client certificate will be reduced so that expiration of the client certificate may be prevented effectively.

[0090] Moreover, the MFP 10 according to the embodiment has a function for causing the PC 30 to display the server certificate viewing page which indicates the contents of the server certificate in accordance with the request signal (HTTP request) of the server certificate viewing page inputted through the communication IF 15 (S523, S280, S285: corresponding to a certificate displaying unit). Therefore, in the case that the remaining time which is written in the server certificate is not over the number of predetermined days L2 and the elapsed time from the last viewing time of the server certificate is over the number of predetermined days L1, the CPU 11 transmits aforementioned warned mail concerning the server certificate. In other cases, the CPU 11 does not transmit aforementioned warning mail concerning the server certificate.

[0091] Thus, according to the communication system 1, transmission of the warning mail is switched between "to transmit" and "not to transmit" depending on the server certificate viewing situation by the administrator that allows to transmit the warning mail aggressively to administrators having low ability on time-limit administration while allows to prevent annoying administrators by the warning mail which is delivered regardless of the administrator who already checked information relating to the server certificate.

SECOND EMBODIMENT

[0092] Incidentally, according to the first embodiment, when the period of validity of the digital certificate is getting close, the user with the corresponding e-mail address is given a warning about it by e-mail, however, when the period of validity of the digital certificate is getting close, a digital certificate may be newly generated and transmitted being attached to an e-mail as described below in a second embodiment.

[0093] Fig. 14 is a flowchart showing a server certificate valid period check process to be executed in the step S220 by the CPU 11 in the MFP 10 of the communication system 1 according to a second embodiment.
After the end of the step S670, by transmitting aforementioned e-mail to the mail server 3, the CPU 11 transmits aforementioned e-mail to the e-mail address of the administrator through the mail server 3 (S680). And then, this server certificate valid period check process is to be terminated.

[0100] As shown in Fig. 15, at the start of client certificate valid period check process, the CPU 11 calculates remaining time (time to expiration) to the period of validity (expiration date and time of effective term) of the received client certificate (S710), and judges whether the remaining time is within the number of predetermined days L3 (S720). If the remaining time is judged to be within the number of predetermined days L3 (S720: YES), control proceeds to the step S730. If the remaining time is judged to be over the number of predetermined days L3 (S720: NO), the client certificate valid period check process is to be terminated without executing the steps S730-S760.

[0101] In the step S730, the CPU 11 newly creates a client certificate in the form of extending the period of validity of the received client certificate. At the time, also a client secret key is to be generated as necessary. After the end of the step, the newly created client certificate is encrypted together with the client secret key to generate a certificate file, and thus an e-mail attached with the certificate file is to be created (S740). In this regard, at the time of encrypting client certificate, the client certificate is to be encrypted by using a predetermined password for the client certificate encryption.

[0102] After the end of the step S740, the e-mail address of owner, which is indicated by the subject information of the received client certificate, is set for the destination of the e-mail (S750). Then, after the end of the step S750, by transmitting aforementioned e-mail to the mail server 3, the CPU 11 transmits aforementioned e-mail to the e-mail address of the main user of the access source PC 30 through the mail server 3 (S760). And then, this client certificate valid period check process is to be terminated.

[0103] Hereinabove, the communication system 1 according to the second embodiment has been described, and according to the communication system 1, the CPU 11 in the MFP 10 judges whether update conditions of the server certificate are satisfied based on the period of validity which is written in its own server certificate (S610-S640: corresponding to an update condition judgment unit). If the update conditions are judged as satisfied (S640: YES), the MFP 10 newly creates a server certificate of which period of validity is updated (S650: corresponding to a certificate updating unit), and generates an e-mail which is attached with this server certificate (S660: corresponding to a mail generating unit). Also, the MFP 10 sets an administrator e-mail address as the destination of this e-mail (S670: corresponding to a destination setting unit), and then transmits aforementioned e-mail to the administrator e-mail address (S680: corre-
Further, according to the second embodiment, the CPU 11 in the MFP 10 judges whether update conditions of the client certificate are satisfied based on the period of validity which is written in the client certificate at receiving the client certificate (S710-S720: corresponding to an update condition judgment unit). If the update conditions are judged as satisfied (S720: YES), the MFP 10 newly creates a client certificate of which period of validity is updated (S730: corresponding to a certificate updating unit), and generates an e-mail which is attached with this client certificate (S740: corresponding to a mail generating unit). Also, the MFP 10 sets an owner e-mail address which is written in the received client certificate as the destination of this e-mail (S750: corresponding to a destination setting unit), then transmits aforementioned e-mail to the owner e-mail address (S760: corresponding to a mail transmission unit).

Therefore, in the communication system 1 according to the second embodiment, when the period of validity of the server certificate is getting close, the validity-extended server certificate is newly created, and the e-mail attached with the validity-extended server certificate is transmitted to the administrator, so that the administrator side can use the validity-extended server certificate incorporated into the MFP 10 by importing the server certificate attached to the e-mail. Thus, according to the embodiment, workload concerning the updating operation of the server certificate will be reduced so that expiration of the server certificate may be prevented effectively.

Moreover, in the communication system 1 according to the second embodiment, when the period of validity of the client certificate is getting close, a client certificate of which period of validity is updated is newly created, and the e-mail attached with it is transmitted to the owner, so that the owner side can use the validity-extended client certificate for communication by importing the client certificate attached to the e-mail into software such as browser. Thus, according to the second embodiment, workload concerning the updating operation of the client certificate will be reduced so that expiration of the client certificate may be prevented effectively.

As thus far described, embodiments according to the present invention has been explained, however, the management apparatus and program thereof of the present invention is not to be limited to the embodiments described above, and further various aspects may be adopted. For example, the MFP 10 shown in Fig. 6 and Fig. 14 may also have a configuration that the operation in steps S222 and S620 are not to be executed in the server certificate valid period check process. That means the steps S222 and S620 in the server certificate valid period check process shown in Fig. 6 and Fig. 14 can be replaced by an equivalent process to be always judged as NO in the steps S222 and S620.

1. A management apparatus for managing a digital certificate which is written with a period of validity, comprising:

 an update condition judgment unit which is adapted to refer to a target digital certificate and judge whether a predetermined update condition is satisfied based on a period of validity written in the target digital certificate; and a certificate updating unit which is adapted to update the target digital certificate, wherein the updated target digital certificate has an updated period of validity and is self-signed by the management apparatus (10), characterized in that the target digital certificate is owned by the management apparatus; the certificate updating unit is adapted to update the target digital certificate if the predetermined update condition is judged as satisfied by the update condition judgment unit; and the management apparatus further comprises:

 a mail generating unit which is formed for generating an e-mail attached with the updated target digital certificate when the target digital certificate is updated by the certificate updating unit; a destination setting unit which is adapted to set an destination e-mail address of the e-mail generated by the mail generating unit; and a mail transmission unit which is adapted to transmit the e-mail generated by the mail generating unit to the destination e-mail address set by the destination setting unit.

2. The management apparatus according to claim 1, wherein:

 the target digital certificate is written with an e-mail address of an owner of the target digital certificate; and the destination setting unit is adapted to set the e-mail address of the owner which is written in the updated target digital certificate as the destination e-mail address when the target digital certificate is updated by the certificate updating unit.

3. The management apparatus according to claim 1, further comprising a certificate displaying unit (39) which is adapted to display information relating to the target digital certificate responding to a viewing request signal inputted through an interface from a user; wherein the update condition judgment unit is con-
figured to judge whether the predetermined update condition is satisfied based on the elapsed time from the last displaying time of information relating to the target digital certificate by the certificate displaying unit and the period of validity written in the target digital certificate.

4. A method to be implemented on a management apparatus for managing a digital certificate which is written with a period of validity, comprising:

judging (S630, S640) whether a predetermined update condition is satisfied based on a period of validity written in a target digital certificate; and

updating (S650) the target digital certificate wherein the updated target digital certificate has an updated period of validity and is self-signed by the management apparatus;

characterized in that the target digital certificate is owned by the management apparatus (10); the updating step (S650) is performed if the predetermined update condition is judged as satisfied; and the method further comprises:

generating (S660) an e-mail attached with the updated target digital certificate if the target digital certificate is updated;

setting (S670) a destination e-mail address of the generated e-mail; and

transmitting (S680) the e-mail to the destination e-mail address.

5. A computer readable medium having computer readable instructions stored thereon, which, when executed by a computer functioning as a management apparatus for managing a digital certificate which is written with a period of validity, are configured to execute the steps of the method according to claim 4.

Patentansprüche

1. Verwaltungsvorrichtung zum Verwalten eines digitalen Zertifikats, in das eine Geltungsdauer geschrieben ist, aufweisend:

 eine Aktualisierungsbedingungs-Beurteilungseinheit, die dafür ausgelegt ist, auf ein angezeigtes digitales Zertifikat zuzugreifen und auf Basis einer Geltungsdauer, die in das angezeigte digitale Zertifikat geschrieben ist, zu beurteilen, ob eine vorgegebene Aktualisierungsbedingung erfüllt ist; und

 eine Zertifikataktualisierungseinheit, die dafür ausgelegt ist, das angezeigte digitale Zertifikat zu aktualisieren, wobei das aktualisierte angezeigte digitale Zertifikat eine aktualisierte Geltungsdauer hat und von der Verwaltungsvorrichtung (10) selbst signiert ist,

 dadurch gekennzeichnet, dass das angezeigte digitale Zertifikat Eigentum der Verwaltungsvorrichtung ist;

 die Zertifikataktualisierungseinheit dafür ausgelegt ist, das angezeigte digitale Zertifikat zu aktualisieren, wenn von der Aktualisierungsbedingungs-Beurteilungseinheit gesagt wird, dass die Aktualisierungsbedingung erfüllt ist; und

 die Verwaltungsvorrichtung ferner aufweist:

 eine Mail-Erzeugungseinheit, die so ausgebildet ist, dass sie eine E-Mail erzeugt, an welche das aktualisierte angezeigte digitale Zertifikat angefügt ist, wenn das angezeigte digitale Zertifikat von der Zertifikataktualisierungseinheit aktualisiert wird;

 eine Zieladressen-Einstellungseinheit, die dafür ausgelegt ist, eine E-Mail-Zieladresse für die E-Mail, die von der E-Mail-Erzeugungseinheit erzeugt wird, einzustellen; und

 eine Mail-Sendeeinheit, die dafür ausgelegt ist, die E-Mail, die von der Mail-Erzeugungseinheit erzeugt wird, an die E-Mail-Zieladresse, die von der Zieladressen-Einstellungseinheit eingestellt wird, zu versenden.

2. Verwaltungsvorrichtung nach Anspruch 1, wobei:

 in das angezeigte digitale Zertifikat eine E-Mail-Adresse eines Eigentümers des angezeigten digitalen Zertifikats geschrieben ist; und

 die Zieladressen-Einstellungseinheit dafür ausgelegt ist, die E-Mail-Adresse des Eigentümers, die in das aktualisierte digitale Zertifikat geschrieben ist, als E-Mail-Zieladresse einzustellen, wenn das aktualisierte digitale Zertifikat von der Zertifikataktualisierungseinheit aktualisiert wird.

3. Verwaltungsvorrichtung nach Anspruch 1, ferner eine ZertifikatsanzeigeEinheit (39) aufweisend, die dafür ausgelegt ist, als Antwort auf ein Betrachtungsanfragesignal, das von einem Nutzer über eine Schnittstelle eingegeben wird, Informationen in Bezug auf das angezeigte digitale Zertifikat anzuzeigen;

 wobei die Aktualisierungsbedingungs-Beurteilungseinheit so gestaltet ist, dass sie auf Basis der Zeit, die vergangen ist, seit von der ZertifikatsanzeigeEinheit das letzte Mal Informationen in Bezug auf das angezeigte digitale Zertifikat angezeigt wurden, und der Geltungsdauer, die in das angezeigte digitale Zertifikat geschrieben ist, beurteilt, ob die vorgegebene
4. Verfahren zur Anwendung in einer Verwaltungsvorrichtung zum Verwalten eines digitalen Zertifikats, in das eine Geltungsdauer geschrieben ist, umfassend:

Beurteilen (S630, S640), ob eine vorgegebene Aktualisierungsbedingung erfüllt ist, auf Basis einer Geltungsdauer, die in ein angezieltes digitales Zertifikat geschrieben ist; und Aktualisieren (S650) des angezielten digitalen Zertifikats, wobei das angezielte digitale Zertifikat eine aktualisierte Geltungsdauer aufweist und von der Verwaltungsvorrichtung selbst signiert wird; dadurch gekennzeichnet, dass das angezielte digitale Zertifikat Eigentum der Verwaltungsvorrichtung (10) ist; der Aktualisierungsschritt (S650) durchgeführt wird, wenn geurteilt wird, dass die vorgegebene Aktualisierungsbedingung erfüllt ist; und das Verfahren ferner umfasst:

Erzeugen (S660) einer E-Mail, an die das aktualisierte angezielte digitale Zertifikat angefügt ist, wenn das angezielte digitale Zertifikat aktualisiert wird; Einstellen (S670) einer E-Mail-Zieladresse für die erzeugte E-Mail; und Versenden (S680) der E-Mail an die E-Mail-Zieladresse.

5. Computerlesbares Medium, in dem computerlesbare Anweisungen gespeichert sind, die so konfiguriert sind, dass die Schritte des Verfahrens gemäß Anspruch 4 ausgeführt werden, wenn sie durch einen Computer ausgeführt werden, der als Verwaltungsvorrichtung dient, um ein digitales Zertifikat, in das eine Geltungsdauer geschrieben ist, zu verwalten.

Revidications

1. Appareil de gestion pour gérer un certificat numérique qui est écrit avec une période de validité, comprenant :

une unité de jugement de condition de mise à jour qui est adaptée pour se référer à un certificat numérique cible et juger si une condition de mise à jour prédéterminée est satisfaite sur la base d’une période de validité écrite dans le certificat numérique cible ; et une unité de mise à jour de certificat qui est adaptée pour mettre à jour le certificat numérique cible, où le certificat numérique cible mis à jour a une période de validité mise à jour et est auto-signé par l’appareil de gestion (10), caractérisé en ce que le certificat numérique cible est détenus par l’appareil de gestion ; l’unité de mise à jour de certificat est adaptée pour mettre à jour le certificat numérique cible si la condition de mise à jour prédéterminée est jugée comme étant satisfaite par l’unité de jugement de condition de mise à jour ; et l’appareil de gestion comprend en outre :

2. Appareil de gestion selon la revendication 1, dans lequel :

le certificat numérique cible est écrit avec une adresse de courriel d’un détenteur du certificat numérique cible ; et l’unité d’établissement de destination est adaptée pour établir l’adresse de courriel du détenteur qui est écrite dans le certificat numérique cible mis à jour comme l’adresse de courriel de destination lorsque le certificat numérique cible est mis à jour par l’unité de mise à jour de certificat.

3. Appareil de gestion selon la revendication 1, comprenant en outre une unité d’affichage de certificat (39) qui est adaptée pour afficher des informations relatives au certificat numérique cible répondant à un signal de demande de visualisation entré par l’intermédiaire d’une interface en provenance d’un utilisateur ; dans lequel l’unité de jugement de condition de mise à jour est configurée pour juger si la condition de mise à jour prédéterminée est satisfaite sur la base d’un temps écoulé depuis le dernier temps d’affichage d’informations relatives au certificat numérique cible par l’unité d’affichage de certificat et de la période de validité écrite dans le certificat numérique cible.

4. Procédé devant être mis en œuvre sur un appareil de gestion pour gérer un certificat numérique qui est écrit avec une période de validité, comprenant :

auto-signé par l’appareil de gestion (10), caractérisé en ce que le certificat numérique cible est détenus par l’appareil de gestion ; l’unité de mise à jour de certificat est adaptée pour mettre à jour le certificat numérique cible si la condition de mise à jour prédéterminée est jugée comme étant satisfaite par l’unité de jugement de condition de mise à jour ; et l’appareil de gestion comprend en outre :

2. Appareil de gestion selon la revendication 1, dans lequel :

le certificat numérique cible est écrit avec une adresse de courriel d’un détenteur du certificat numérique cible ; et l’unité d’établissement de destination est adaptée pour établir l’adresse de courriel du détenteur qui est écrite dans le certificat numérique cible mis à jour comme l’adresse de courriel de destination lorsque le certificat numérique cible est mis à jour par l’unité de mise à jour de certificat.

3. Appareil de gestion selon la revendication 1, comprenant en outre une unité d’affichage de certificat (39) qui est adaptée pour afficher des informations relatives au certificat numérique cible répondant à un signal de demande de visualisation entré par l’intermédiaire d’une interface en provenance d’un utilisateur ; dans lequel l’unité de jugement de condition de mise à jour est configurée pour juger si la condition de mise à jour prédéterminée est satisfaite sur la base d’un temps écoulé depuis le dernier temps d’affichage d’informations relatives au certificat numérique cible par l’unité d’affichage de certificat et de la période de validité écrite dans le certificat numérique cible.

4. Procédé devant être mis en œuvre sur un appareil de gestion pour gérer un certificat numérique qui est écrit avec une période de validité, comprenant :

auto-signé par l’appareil de gestion (10), caractérisé en ce que le certificat numérique cible est détenus par l’appareil de gestion ; l’unité de mise à jour de certificat est adaptée pour mettre à jour le certificat numérique cible si la condition de mise à jour prédéterminée est jugée comme étant satisfaite par l’unité de jugement de condition de mise à jour ; et l’appareil de gestion comprend en outre :
le jugement (S630, S640) de si une condition de mise à jour prédéterminée est satisfaite sur la base d’une période de validité écrite dans un certificat numérique cible ; et la mise à jour (S650) du certificat numérique cible, où le certificat numérique cible mis à jour a une période de validité mise à jour et est auto-signé par l’appareil de gestion ;

caractérisé en ce que le certificat numérique cible est détenu par l’appareil de gestion (10) ; l’étape de mise à jour (S650) est effectuée si la condition de mise à jour prédéterminée est jugée comme étant satisfaite ; et le procédé comprend en outre :

la génération (S660) d’un courriel joint avec le certificat numérique cible mis à jour si le certificat numérique cible est mis à jour ; l’établissement (S670) d’une adresse de courriel de destination du courriel généré ; et la transmission (S680) du courriel à l’adresse de courriel de destination.

5. Support lisible par ordinateur ayant des instructions lisibles par ordinateur stockées dessus, qui, lorsqu’elles sont exécutées par un ordinateur fonctionnant comme un appareil de gestion pour gérer un certificat numérique qui est écrit avec une période de validité, sont configurées pour exécuter les étapes du procédé selon la revendication 4.
FIG. 4
FIG. 5
SERVER CERTIFICATE VALID PERIOD CHECK PROCESS

CALCULATE ELAPSED TIME FROM THE LAST VIEWING TIME OF THE SERVER CERTIFICATE S221

IS THE ELAPSED TIME WITHIN THE NUMBER OF PREDETERMINED DAYS L1? S222

YES

NO

CALCULATE REMAINING TIME TO THE PERIOD OF VALIDITY OF THE SERVER CERTIFICATE S224

IS THE REMAINING TIME WITHIN THE NUMBER OF PREDETERMINED DAYS L2? S225

YES

NO

GENERATE WARNING MAIL (E-MAIL) CONTAINING LINK INFORMATION OF THE SERVER CERTIFICATE CREATING PAGE S227

SET THE DESTINATION OF WARNING MAIL TO THE ADMINISTRATOR E-MAIL ADDRESS S228

TRANSMIT THE WARNING MAIL S229

END

FIG. 6
Cipher communication starting process

YES

CLIENT AUTHENTICATED?

NO

READ OUT THE MODE CONFIGURATION INFORMATION

SSL HANDSHAKE IN THE MODE INDICATED BY THE MODE CONFIGURATION INFORMATION

ERROR?

YES

STOP COMMUNICATION

NO

END

MODE?

Mode 1

Mode 2

CLIENT AUTHENTICATION BY THE RECEIVED CLIENT CERTIFICATE

CLIENT CERTIFICATE VALID PERIOD CHECK PROCESS

AUTHENTICATION OK?

NO

AUTHENTICATION OK?

YES

RECEIVE ENCRYPTED PASSWORD

DECRYPT PASSWORD

VERIFY PASSWORD

FIG. 7
(MFP)

CLIENT CERTIFICATE VALID PERIOD CHECK PROCESS

CALCULATE REMAINING TIME TO THE PERIOD OF VALIDITY OF THE CLIENT CERTIFICATE

S471

IS THE REMAINING TIME WITHIN THE NUMBER OF PREDETERMINED DAYS L3?

S473

NO

YES

GENERATE WARNING MAIL (E-MAIL) CONTAINING LINK INFORMATION OF THE CLIENT CERTIFICATE SAVING PAGE

S475

SET THE DESTINATION OF WARNING MAIL TO THE OWNER E-MAIL ADDRESS INDICATED BY THE CLIENT CERTIFICATE

S477

TRANSMIT THE WARNING MAIL

S479

END

FIG. 8
FIG. 10
<table>
<thead>
<tr>
<th>CREATION OF SELF-SIGNED SERVER CERTIFICATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMON NAME: BRN 220099 (UP TO 64 CHARACTERS)</td>
</tr>
<tr>
<td>ORGANIZATION: (UP TO 64 CHARACTERS; OMISSION ALLOWED)</td>
</tr>
<tr>
<td>DEPARTMENT: (UP TO 64 CHARACTERS; OMISSION ALLOWED)</td>
</tr>
<tr>
<td>CITY: (UP TO 64 CHARACTERS; OMISSION ALLOWED)</td>
</tr>
<tr>
<td>PREFECTURE: (UP TO 64 CHARACTERS; OMISSION ALLOWED)</td>
</tr>
<tr>
<td>COUNTRY: (2 CHARACTERS; OMISSION ALLOWED)</td>
</tr>
<tr>
<td>VALIDITY (COMMENCEMENT): 2005/9/14 LOCAL TIME</td>
</tr>
<tr>
<td>VALIDITY (EXPIRATION): 2005/9/14 LOCAL TIME</td>
</tr>
</tbody>
</table>

FIG.11A

SELF-SIGNED SERVER CERTIFICATE

```
BEGIN CERTIFICATE REQUEST
MIIBwDCCAKCAqAwUDEemMCQGAlUEAxMdTIBJ
QzRCvEJCkFwLmJyb3RoZXJncm91Ce5uZXQzF
TAT8qNVBAstTDDawMzA2RUM0QjFCQjEPM4A0GA
1UECwMGs5NDJBMiiGfMA0GCsQGSIbQDQEBQ
UA44MDCAQIKKgQDJH4oQ2skqQjw3dh8C00I1b
89qBAQEHSIEOS+vRaz7oxjngOBm3bO0lAloigc
T5YFytwZFXm2w+ZHzAIWIOjw=
END CERTIFICATE REQUEST
```

FIG.11B
FIG. 12A

CLIENT CERTIFICATE

--- BEGIN CERTIFICATE REQUEST ---
MIIBwDCCASKCAQwUDEmMCQGA1UEAxMDTIBJ
QzRCNEJCLmFwLmJyj3RzXjcm91cGuZXQxf
TATBgNVBAoSTDAwMzA2RUMCMQJRCQJEPMA0GA
1UECmGSCJc5NDJBMIGfMA0GCSqGSIb3DQEBAQ
UAA4GNADCBKQgDQH4eQ2skq6Vjx3dh80001b
89ojBAQEHS/SIE06+VRaz7oxjgO8m3/b001AtIoigc
T5p1YFyfw2FXm2W+ZhAIWIOjw=
--- END CERTIFICATE REQUEST ---

FIG. 12B

CONFIGURATION OF ADMINISTRATOR INFORMATION

E-Mail

FIG. 13
SERVER CERTIFICATE VALID PERIOD CHECK PROCESS

CALCULATE ELAPSED TIME FROM THE LAST VIEWING TIME OF THE SERVER CERTIFICATE S610

IS THE ELAPSED TIME WITHIN THE NUMBER OF PREDETERMINED DAYS L1?

YES

NO

CALCULATE REMAINING TIME TO THE PERIOD OF VALIDITY OF THE SERVER CERTIFICATE S630

IS THE REMAINING TIME WITHIN THE NUMBER OF PREDETERMINED DAYS L2?

YES

CREATE SELF-SIGNED SERVER CERTIFICATE S650

CREATE E-MAIL ATTACHED WITH THE SELF-SIGNED SERVER CERTIFICATE S660

SET THE DESTINATION OF E-MAIL TO THE ADMINISTRATOR E-MAIL ADDRESS S670

TRANSMIT THE E-MAIL S680

NO

END

FIG. 14
(MFP)

CLIENT CERTIFICATE VALID PERIOD CHECK PROCESS

CALCULATE REMAINING TIME TO THE PERIOD OF VALIDITY OF THE CLIENT CERTIFICATE

S710

IS THE REMAINING TIME WITHIN THE NUMBER OF PREDETERMINED DAYS L3?

S720

NO

YES

CREATE THE CLIENT CERTIFICATE

S730

CREATE E-MAIL ATTACHED WITH THE CLIENT CERTIFICATE

S740

SET THE DESTINATION OF E-MAIL TO THE OWNER E-MAIL ADDRESS INDICATED BY THE CLIENT CERTIFICATE

S750

TRANSMIT THE E-MAIL

S760

END

FIG. 15
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 2002184493 A1 [0002]
• JP 2005269558 A [0005]