EUROPEAN PATENT SPECIFICATION

(12) Date of publication and mention of the grant of the patent:
03.06.2009 Bulletin 2009/23

(21) Application number: 05794807.7

(22) Date of filing: 04.10.2005

(54) TUBE MADE OF A PROFILE ROLLED METAL PRODUCT AND METHOD OF PRODUCING THE SAME
AUS EINEM PROFILGEWALZTEN METALLPRODUKT HERGESTELLTES ROHR UND HERSTELLUNGSVERFAHREN DAFÜR
TUBE EN PRODUIT METALLIQUE PROFILE ET PROCEDE DE PRODUCTION

(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

(43) Date of publication of application:
04.07.2007 Bulletin 2007/27

(73) Proprietor: Aleris Aluminum Koblenz GmbH
56070 Koblenz (DE)

(72) Inventors:
• BÜRGER, Achim
56203 Hoehr-Grenzhausen (DE)
• WITTEBROOD, Adrianus, Jacobus
NL-1991 HB Velserbroek (NL)
• SMITS, Nicole, Cornelia, Maria, Agatha
NL-2015 BA Haarlem (NL)

(51) Int Cl.:
F28D 1/03(2006.01) F28F 1/02(2006.01)
B21C 37/15(2006.01)

(86) International application number:
PCT/EP2005/010807

(87) International publication number:
WO 2006/045415 (04.05.2006 Gazette 2006/18)

(74) Representative: Müller, Frank Peter
Müller Schupfner & Partner
Patentanwälte
Bavariaring 11
80336 München (DE)

(56) References cited:
EP-A- 1 074 807
WO-A-02/100567
DE-A1- 19 518 657

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

FIELD OF THE INVENTION

[0001] The invention relates to a tube made of a profile rolled metal product, in particular for use in heat exchangers, a rolled metal product and a method for producing the same. In particular, the invention is directed to a tube including a plurality of reinforcing structures forming longitudinal passages for transporting fluid, e.g. a refrigerant, between them.

BACKGROUND OF THE INVENTION

[0002] Heat exchanges such as condensers, evaporators and the like for use in car coolers, air conditioning systems etc. usually comprise a number of heat exchange tubes arranged in parallel between two headers, each tube joined at either end to one of the headers. Corrugated fins are disposed in an airflow clearance between adjacent heat exchange tubes and are brazed to the respective tubes. The heat exchanger is typically made of aluminium or an aluminium alloy.

[0003] In the past, flat refrigerant tubes have been manufactured by folding a brazing sheet clad on the outside with a brazing material layer. The refrigerant tubes, the headers and the fins, were then assembled and heated to the brazing temperature at which the clad layer melts and joins together the fins, refrigerant tubes and headers into a brazed assembly.

[0004] It is envisaged gases such as carbon dioxide will be used as cooling medium in air-conditioning systems. The use of carbon dioxide will lead to an increase in operating temperature and pressure of the air-conditioning units. The above-described conventional brazed tubes might not withstand under all circumstances the encountered operating pressures and temperatures. For the existing carbon dioxide based prototypes, the heat exchange tubes have therefore been made of a hollow extrusion comprising flat upper and lower walls and a number of reinforcing walls connecting the upper and lower walls. A disadvantage of the extrusion technique is that the walls cannot be made as thin as desired. Further, an extruded tube cannot be clad with brazing material, so the corrugated fins must be clad in order to allow brazing to the heat exchange tubes, which is expensive due to the large surface area of the fins. In addition, a tube made of brazed sheet or plate is stronger and more resistant against corrosion than extruded tubes.

[0005] The abstract of JP 2000 074586 A pertains to flat tubes for heat exchangers and discloses a strip-like metal plate having both surfaces coated with a brazing filler metal. This metal plate is subjected to an embossing roll work and subsequent steps in order to obtain parallel protrusions in the form of trapezoids on said metal plate. When the metal plate is subsequently bent and overlapped in a width direction, slant faces of the protrusions are aligned with each other and an overlap allowance slightly shiftable in the width direction is formed.

[0006] US-5,931,226 discloses a refrigerant tube or fluid tube for use in heat exchangers comprising a flat tube having upper and lower walls and a plurality of longitudinal reinforcing walls connected between the upper and lower walls. The reinforcing walls consist of ridges projecting inward from the upper or lower wall and are joined to the flat inner surface of the other wall. The ridges are produced by rolling an aluminium sheet clad with a brazing filler metal layer over at least one of its opposite surfaces with a roll having parallel annular grooves. Parallel refrigerant or fluid passages are defined between adjacent reinforcing walls. Further, the reinforcing walls include a plurality of communication holes for causing the parallel refrigerant passages to communicate with one another. In another embodiment, each reinforcing wall is formed by a ridge projecting from the upper wall and a ridge protecting from the lower wall, joined to each other at their respective top ends. The upper and lower walls are either produced separately or in one sheet, whereby the flat refrigerant tube is manufactured by folding the sheet longitudinally at its midpoint like a hairpin.

[0007] US-5,947,365 describes a process for producing a similar flat heat exchange tube having a plurality of reinforcing walls formed of ridges projecting from the lower wall. The upper and lower walls are connected by brazing the tops of the ridges on the lower wall to the upper wall. In order to strengthen the brazed connection between the reinforcing walls and the lower surface of the upper wall and to prevent the creation of a clearance space there between, the lower surface of the upper wall is provided with smaller longitudinal ridges with which the upper surfaces of the reinforcing walls come into contact to eliminate the clearances and thereby to insure the existence of a continuous brazed connection between each reinforcing wall and lower surface of the upper wall.

[0008] A different method of producing reinforcing walls in a flat refrigerant tube for use in heat exchangers is shown in US-5,186,250. The tube comprises one or more curved lugs integral with and protruding inwardly from an inner surface of each plane wall, and the curved lugs respectively have innermost tops so that the innermost tops protruding from one plane wall bear against the inner surface of the other plane wall or against the tops of the other curved lugs protruding from the opposite plane wall. The purpose of such protruding lugs is said to improve the pressure resistance of the tube while minimizing its height and thickness.

[0009] In the production of these known tubes, it is difficult to achieve a precise alignment between the ridges on the upper and lower walls, especially in those embodiments where two ridges protruding from opposing walls have to be joined head-on. Further, the brazed connection between the ridges or between the top of a ridge and the lower surface of the opposing wall is not very strong.
SUMMARY OF THE INVENTION

[0010] It is an object of the present invention to provide a tube made of a profile rolled metal product, in particular for use in heat exchangers, made of a profiled rolled metal product, the tube comprising a first wall and a second wall forming two opposing walls of said tube, and a plurality of reinforcing structures connecting the first and second walls and forming longitudinal passages for transporting fluid between the first and the second wall, and having an improved strength and pressure resistance. It is further an object of the invention to provide a relative simple method of producing such a profiled tube.

[0011] The invention meets one or more of these objects by providing a tube made of a profiled rolled metal product according to the independent claims. Preferred embodiments are described and specified by this specification.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0012] As will be appreciated herein below, except otherwise indicated, all alloy designations and temper designations refer to the Aluminium Association designations in Aluminium Standards and Data and the Registration Records, as published by the Aluminium Association.

[0013] According to claim 1, a tube made of a profiled rolled metal product, in particular for use in heat exchangers includes a first wall and a second wall forming two opposing sides of the tube, and a plurality of reinforcing structures connecting the first and the second walls and forming longitudinal passages for transporting fluid (also referred to as fluid passages) between them. Each reinforcing structure compromises a longitudinal ridge on the first wall projecting towards the second wall and a longitudinal ridge on the second wall projecting towards the first wall, the ridges engaging each other at their sides.

The sideways engagement of the ridges has one or more of the following advantages. First, it gives a more stable and pressure resistant junction between the first and the second wall because each ridge may be connected to another ridge on either side. When assembling the two walls, the ridges on either wall will interdigitate and thereby exactly fit into one another. Therefore, this design is particularly easy to assemble. The same applies for the cone-shaped profiles mutatis mutandis.

[0014] There are several preferred embodiments of the profile geometry of the first and second walls. The ridges disposed on the first and second walls are broader at the base than at the top, though most embodiments will work with a a cone-shaped profile too. At present, a trapezoidal cross-section is most preferred.

[0015] In a preferred embodiment, the first wall has the same profile, i.e. the same ridge geometry as the second wall. This has the additional advantage that the fluid tube may be produced by folding a single sheet.

[0016] It has been found advantageous to provide the ridges with cut-outs forming communication holes or passages for causing adjacent fluid passages to communicate with one another. Thus, the ridges are not continuous over the entire length of a tube, but have gaps spaced from one another, forming the holes. Such holes are believed to cause turbulence in the refrigerant flow and thus promote the heat exchange between the tube walls and the refrigerant flowing through the tube.

[0017] Both walls have a profile of ridges which are broader at the base than at the top and spaced from one another such that a groove is formed between two neighbouring ridges. In a preferred embodiment, the two sides of a ridge engage the two sides of a groove in the opposing wall, thereby forming a longitudinal passage in the groove. This embodiment has particularly high strength, because each ridge may be connected to another ridge on either side. When assembling the two walls, the ridges on either wall will interdigitate and thereby exactly fit into one another. Therefore, this design is particularly easy to assemble. The same applies for the cone-shaped profiles mutatis mutandis.

[0018] According to the second embodiment, each ridge on one wall is joined to a ridge on the opposing wall on one side, forming a refrigerant passage on its other side. This profile will leave more open space between the ridges. The top of each ridge in one wall engages a recess in the other wall and the two walls form fit with each other. When assembling the tube, the two walls will effectively click into each other.

[0019] The ridges of the first and second walls are preferably joined to each other by one or more of friction welding, resistance welding or brazing, or by a combination of welding and brazing.

[0020] In a further aspect of the invention it provides a profiled metal product for producing the first and/or the second wall of the above-described tubes. Thus, the profiled metal product has a profile as described above and is produced by rolling a brazing sheet clad at least on one side with a brazing material.

[0021] In another aspect of the invention there is provided a method for producing a tube according to this invention, the method comprising the steps of:

- producing the first and the second wall by rolling a metal sheet clad at least on one side with a brazing material with a pair of rolls, one of the rolls having parallel annular grooves for forming ridges on one side of the sheet,
- placing the first wall on top of the second wall,
- connecting the first and second walls by clamping or rolling.

[0022] One of the problems encountered in producing heat exchangers using the tube according to the inven-
tion is to hold the first and second walls together, while assembling all components of the heat exchanger for subsequent brazing. If the first and second walls are not held together properly, a gap might open at the side or between the opposing ridges, resulting in a leaking tube and rejection of the heat exchanger as a whole. The method therefore provides a preliminary connection of the two walls, which may be achieved by clamping or rolling.

According to an embodiment, the first and second walls are clamped together by flanging the sides. One edge of a longitudinal wall is for example bent to a U-shape holding the second wall. According to a preferred embodiment, the first and second walls are joined together by rolling. Such rolling may either cause a frictional connection between the first and second walls or a friction weld between the sides of the ridges engaging each other. Such a connection may occur, for example, when the interdigitating trapezoidal ridges of the first embodiment are pressed into one another.

In another aspect to invention relates to a method of producing a heat exchanger, the heat exchanger comprising a pair of headers, a plurality of refrigerant tubes joined at each end to one of the headers, and corrugated fins disposed between adjacent refrigerant tubes, and the method comprising the steps of:

- producing the refrigerant tubes according to the method set out above,
- assembling the headers, the refrigerant tubes, and the corrugated fins,
- brazing the heat exchanger assembly.

Preferably, the tubes are made from a metal sheet, typically of an aluminium alloy, clad on one or both sides with a brazing material. If the insides of the refrigerant tubes are clad with the brazing material, the sides of the profiled ridges engaging each other are brazed together during brazing of the heat exchanger assembly. The clad layer on the outside serves to braze the corrugated fins together during brazing of the heat exchanger assembly.

The above-mentioned and further features and advantages of the invention will become apparent from the following detailed descriptions of preferred embodiments with reference to the appended drawings. The drawings show:

- Fig. 1 a schematic cross-sectional view of a tube according to a first embodiment of the invention;
- Fig. 2 a schematic perspective view of the lower wall of the embodiment of Fig. 1;
- Fig. 3 enlarged schematic cross-sectional view of the profile according to the first embodiment;
- Figs. 4 to 5 enlarged schematic cross-sectional views of profiles according to further embodiments of the invention;
- Figs. 6 to 8 enlarged schematic cross-sectional views of profiles not covered by the invention;
- Fig. 9 a and b an enlarged schematic sectional view of a ridge profile not covered by the invention before (Fig. 9a) and after (Fig. 9b) rolling of the tubes;
- Fig. 10 side view of a profile formed roll used to produce the profiled brazing sheets of the examples;
- Fig. 11 an enlarged photograph of the roll surface;
- Fig. 12 an enlarged cut image of a brazing sheet after rolling according to the first embodiment;
- Fig. 13 polished cut images of a brazing sheet after rolling according to the second embodiment;
- Fig. 14 enlarged cut images of rolled brazing sheets according to the third embodiment; and
- Fig. 15 a and b an enlarged cross-sectional view of a profile according to the first embodiment before (Fig. 15a) and after brazing (Fig. 15b).

A schematic cross-sectional view of a refrigerant tube according to a first embodiment of the invention is shown in Fig. 1. The tube is substantially flat and having a width w of up to 100 mm and typically about 15 to 50 mm, and a height h of up to 10 mm and typically about 0.5 to 5 mm. The prior art tubes made of non-profiled aluminium sheets have wall thicknesses of 0.25 to 0.4 mm, but the tube having reinforcing walls according to the invention may have thinner walls while retaining the same stability and pressure resistance, for example a = 0.1 to 0.3 mm, preferably 0.15 to 0.25 mm. The tube is made from upper wall 2 and lower wall 4 produced by folding a rolled metal sheet longitudinally like a hairpin.

The fold is indicated at 12. On the other side, upper and lower wall are held together by flange 14, which ends in this example around a ledge 15 on the lower wall and thereby produces a mechanical fixation of upper and lower wall with respect to one another. Both upper and lower walls display the same profile of trapezoidal ridges 6, 8 which interdigitate while leaving open spaces 10 as fluid passages. The fluid passages are preferably up to about 0.5 mm high.

The ridges 6, 8 need not be continuous over the whole length of the tube, but may be interrupted by gaps or cut-outs 20 forming communication holes between adjacent fluid passages 10. The arrows in Fig. 2 indicate the direction of flow, which is diverted from the leftmost passage to the adjacent passages. The cut-outs 20 may be disposed at the same longitudinal position for each ridge 8, or may be distributed along the length of the tube. In either case, the communication holes provide improved convention or turbulence of the cooling fluid between the different passages and as a resultant more heat transfer.

Figures 3 to 5 illustrate different ridge profile geometries according to the above-mentioned embodiments of the invention. Fig. 3 shows the same geometry as Fig. 1, i.e. both walls having the same profile of trapezoidal ridges 6, 8, each ridge 6 engaging the sides of two adjacent ridges 8 on the opposite wall. A connection between the contacting sides 6a and 8a may be achieved by pressing the walls 2 and 4 together to achieve either
achieved by brazing which will be described in more detail below.

Fig. 4 and 5 display ridge geometries in which two ridges 16, 18 on the first and second walls only engage each other on one side, while a refrigerant passage 10 is formed on the other side. This design allows for a larger cross-section of the fluid passages 10. Each ridge 16, 18 engages a corresponding recess 19 in the opposing wall. This embodiment may be designed either with trapezoidal ridges as in Fig. 4 or with ridges having rounded edges as in Fig. 5.

A variant not covered by the invention is shown in Fig. 6 using rectangular ridge profiles, but it may be embodied with trapezoidal profiles, too. The embodiment of Fig. 6 uses different profiles for upper and lower walls. Therefore, it might be preferable to construct a fluid tube with this design from two separate sheets rather than from one sheet folded at midpoint. The sheets could be rolled with the same roll but at different reductions. In detail, the upper wall has relatively high ridges 26, each engaging a shallow groove 30 formed between a couple of low ridges 28 on the lower wall.

A further variant is shown in Fig. 7. In this design, a rectangular or otherwise shaped ridge 38 on the lower wall 4 engages a groove 37 formed between a couple of ridges 36a, 36b, in the upper wall 2. In contrast to Fig. 6, the ridges 36a, 36b reach as far as the lower wall and a refrigerant passage 10 is formed on the outer sides of ridges 36a, 36b. Since the contact surface 39 between ridges 36 and 38 is particularly large in this embodiment, the strength of the connection between upper and lower walls is excellent.

The variant shown in Fig. 9a and 9b is particularly suited for a frictional or friction welded connection between the upper and lower wall achieved by rolling. Fig. 9a shows the profile before rolling, and Fig. 9b shows the profile after rolling. As shown in Fig. 9a, the upper wall 2 is provided with main ridges 46 each having a flat top structured in small ridges 47 and engaging the flat inner surface of the lower wall 4. When upper and lower walls are pressed together by rolling, the small ridges 47 are pressed into the inner surface of the lower wall and thus form corresponding small ridges 48 in the lower wall. This will result in a frictional connection or a friction welded connection between upper and lower walls. This connection may either be the only connection of the tube, or may be combined with brazing.

A variant of the above variant is shown in Fig. 8. In this design, trapezoidal ridges 46 on the upper wall engage the flat inner surface of the lower wall 4. All embodiments of the profiles may be produced by rolling a metal sheet or plate, preferably an aluminium alloy sheet. The sheet may either be blank, or may be clad on one or both sides with a brazing filler material. The clad layer will preferably have a thickness of 2 to 13% of the total thickness of the brazing sheet. The choice of brazing material will depend on the chosen method of "preliminary" connection of the tube walls, and on the selected brazing technique, as described below. To achieve a brazing connection between upper and lower walls, one may use a double clad sheet for one wall and a single clad sheet for the other.

Representative examples of the above-shown profiles have been produced with the profile formed roll shown in Fig. 10. The length L was 405 mm, the diameter D was 79.66 mm, and the lengths L1 to L4 of the roll profile were 15 mm, 20.4 mm, 20.8 mm and 15 mm, respectively. The sections L2 and L3 of the roll are provided with 18 and 28 parallel annular grooves, respectively, the detailed profiles of which are shown in the lower part of the drawing.

The left profile consisted of trapezoidal grooves of depth b = 0.8 mm, width at base f = 0.55 mm and width at top e = 0.85 mm. The sides were tilted at an angle of $\alpha = 11.8^\circ$ with respect to the vertical. The distance between adjacent grooves was c = 0.3 mm at the top and d = 0.6 mm at the bottom.

The smaller profile shown on the right had grooves of a depth b = 0.5 mm. The sides of the grooves were tilted $\alpha = 12.5^\circ$ with respect to the vertical, and the grooves had a bottom width of f = 0.35 mm and top width e = 0.55 mm. The distance between adjacent grooves was c = 0.2 mm at the top and d = 0.4 mm at the bottom. The length g was 2 mm. A photograph of the left profile is shown in Fig. 11.

This roll was used to roll an aluminium brazing sheet having a 5% clad layer of brazing material. The aluminium core was made of an AA3003 aluminium alloy according to the classification of the Aluminium Association, and the clad layer was made of an AA4004 aluminium alloy. The result is shown in Fig. 12. As is apparent from the figure, the roll produced an almost perfect trapezoidal profile of ridges. The clad layer accumulated mainly on the top of the ridges and the bottom of the grooves.

Another example of a brazing sheet rolled with the rough profile depicted on the left of Fig. 10 and the fine profile depicted on the right of Fig. 10 is shown in Fig. 13 and 14, respectively. In Figs. 13 and 14 the "s" stands for side and "c" stands for centre. This brazing sheet had a core of AA3003-type alloy and a 10% clad layer of an AA4045 aluminium alloy. Again, the roll produced a very regular shape of trapezoidal ridges, with the best results achieved in the centre of the roll. However, the profile at the sides of the roll was also good.

A schematic cross-sectional of a tube made from a rolled brazing sheet product is shown in Fig. 15 before (Fig. 15a) and after brazing (Fig. 15b). As shown by the examples, the clad layer 24 is pressed mainly to the top of the ridges and the bottom of the grooves during rolling. During brazing, the molten filler metal flows into the gaps between the ridges 6 and 8 and thereby forms...
fillets 25 at the contact points of the opposing ridges.

[0042] In principle all kinds of brazing technique may be used to braze the above-described tubes and the heat exchangers comprising such tubes.

[0043] One of the preferred techniques for brazing aluminium heat exchangers utilizes Nocolok® (registered trademark) flux. Nocolok® may be used with the present invention, too. However, spraying the heat exchanger with flux before brazing is a laborious and therefore expensive process. In case the profiles of the refrigerant tubes are to be brazed together, the Nocolok® process poses the problem of getting the flux inside the tubes. It is therefore more preferred to use one of the following fluxless brazing techniques.

[0044] In vacuum brazing, the parts to be brazed contain sufficient quantities of Mg as known in the art, such that, when heated in a brazing furnace under vacuum conditions, the Mg becomes sufficiently volatile to disrupt the oxide layer and permit the underlying aluminium filler metal to flow together. This brazing technique is especially suitable for the present invention, since Mg will accumulate inside the tube and will thus cause a better brazing result. The Mg content of the inner clad layer is preferably 0.2 to 1 %, for example 0.6 %.

[0045] Another fluxless brazing technique uses a thin nickel layer on top of the clad layer. Nickel reacts exothermally with the underlying aluminium alloy, thereby disrupting the oxide layer and permitting the filler metal to flow together and join. Instead of Ni, Co or Fe or alloys thereof may be used, for example as known from US-6,379,818 and US-6,391,476.

[0046] It is further contemplated to use polymer based brazing techniques. This method uses an additional polymer layer on top of the clad layer containing particles of flux material. The polymer layer acts as an adhesive layer to the clad layer. The polymer will evaporate in the heat-up cycle during brazing, leaving only the flux material on the metal surface, for example as known from US-6,753,094.

[0047] Having now fully described the invention, it will be apparent to one of ordinary skill in the art that many changes and modifications can be made without departing from the scope of the invention as hereon described.

Claims

1. A tube (1) made of a profile rolled metal product, in particular for use in heat exchangers, the tube comprising a first wall (2) and a second wall (4) forming two opposing walls of said tube, and a plurality of reinforcing structures connecting the first and second walls and forming longitudinal passages (10) for transporting fluid between the first and the second wall, and wherein each reinforcing structure comprises a longitudinal ridge (16, 18, 28) on the first wall projecting towards the first wall, the ridges engaging each other at their sides (6a, 8a), and the ridges on the first and the second walls have a profile selected from the group comprising a trapezoidal and a cone-shaped profile, wherein the ridges on the first and the second walls are broader at the base than at the top, wherein each wall has a profile of ridges (6, 8) spaced from each other such that a groove is formed between two neighbouring ridges, characterized in that the two sides (6a) of a ridge engage the two sides (8a) of a groove in the opposing wall, thereby forming a longitudinal passage (10) in the groove.

2. A tube (1) made of a profile rolled metal product, in particular for use in heat exchangers, the tube comprising a first wall (2) and a second wall (4) forming two opposing walls of said tube, and a plurality of reinforcing structures connecting the first and second walls and forming longitudinal passages (10) for transporting fluid between the first and the second wall, and wherein each reinforcing structure comprises a longitudinal ridge (16) on the first wall projecting towards the second wall, and a longitudinal ridge (18) on the second wall projecting towards the first wall, the ridges engaging each other at their sides, and the ridges (16, 18) on the first and the second walls have a profile selected from the group comprising a trapezoidal and a cone-shaped profile, wherein the ridges on the first and the second walls are broader at the base than at the top, wherein each wall has a profile of ridges (16, 18) spaced from each other such that a groove is formed between two neighbouring ridges, wherein each ridge (16) engages a ridge (18) on the opposing wall on one side, forming a fluid passage on its other side, characterized in that the top of each ridge (16, 18) in one wall engages a recess (19) formed in the other wall.

3. A tube according to claim 1 or 2, wherein the first wall (2) has the same ridge profile as the second wall (4).

4. A tube according to any one of claims 1 to 3, wherein each ridge on the first and/or second wall includes a plurality of cut-outs (20) forming communication holes for causing neighbouring longitudinal passages (10) to communicate with one another.

5. A tube according to any one of claims 1 to 4, wherein the ridges on the first and second walls are joined to each other by one or more of friction welding, resistance welding, or brazing.

6. A tube according to any one of claims 1 to 5, wherein the profile rolled metal product is made from a brazing sheet product comprising an aluminium alloy on one or both sides clad with a brazing filler material.
7. A tube according to any one of claims 1 to 6, wherein the first wall (2) and the second wall (4) are joined to each other by means of brazing.

8. A rolled metal product for producing the first and/or second wall (2,4) of the tube according to any one of claim 1 to 7, wherein it has a profile as described in claim 1 or claim 2 and is produced by rolling a brazing sheet clad at least on one side with a brazing material.

9. A method for producing a tube according to any one of claims 1 to 7, comprising the steps of

- producing the first and the second wall by rolling a metal sheet clad at least on one side with a brazing material with a pair of rolls, one of the rolls having parallel annular grooves for forming ridges on one side of the sheet, wherein the ridges on the first and the second walls are broader at the base than at the top, and wherein each wall has a profile of ridges (6,8) spaced from each other such that a groove is formed between two neighbouring ridges,
- placing the first wall (2) on top of the second wall (4),
- connecting the first and second walls by clamping or rolling, wherein the two sides (6a) of a ridge engage the two sides (8a) of a groove in the opposing wall, thereby forming a longitudinal passage (10) in the groove.

10. A method for producing a tube according to any one of claims 2 - 7, comprising the steps of

- producing the first and the second wall by rolling a metal sheet clad at least on one side with a brazing material with a pair of rolls, one of the rolls having parallel annular grooves for forming ridges on one side of the sheet, wherein the ridges on the first and the second walls are broader at the base than at the top, wherein each wall has a profile of ridges (16, 18) spaced from each other such that a groove is formed between two neighbouring ridges,
- placing the first wall (2) on top of the second wall (4),
- connecting the first and second walls by clamping or rolling, wherein each ridge (16) engages a ridge (18) on the opposing wall on one side, forming a fluid passage on its other side, and wherein the top of each ridge (16,18) in one wall engages a recess (19) formed in the other wall.

11. The method according to claim 9 or 10, wherein the first and second walls are clamped together by forming a flange (14) on one of the walls holding the other wall.

12. The method according to claim 9, 10 or 11, wherein the first and second walls are joined together by rolling, thereby causing a frictional connection and/or a friction welded connection between the sides (6a, 8a) of the ridges engaging each other.

13. A method for producing a heat exchanger comprising a pair of headers, a plurality of refrigerant tubes joined at each end to one of the headers, and corrugated fins disposed between adjacent refrigerant tubes, comprising the steps of

- producing the refrigerant tubes according to the method of any one of claim 9 to 12,
- assembling the headers, the refrigerant tubes, and the corrugated fins,
- brazing the heat exchanger assembly.

14. The method of claim 13, wherein the tubes are made from an aluminium sheet clad on at least the profiled side with a brazing material, and the first and second walls are brazed together during brazing of the heat exchanger assembly.

15. The method according to claim 14, wherein brazing the heat exchanger assembly is by means of vacuum brazing or by fluxless brazing.

Patentansprüche

1. Rohr (1) aus einem profilgewalzten Metallprodukt, insbesondere zur Verwendung in Wärmetauschern, wobei das Rohr eine erste Wand (2) und eine zweite Wand (2) umfasst, die zwei gegenüberliegende Wände des Rohrs bilden, sowie eine Vielzahl an Verstärkungsstrukturen, die die ersten und zweiten Wände verbinden und längslaufende Passagen bzw. Durchgänge (10) bilden, um ein Fluid bzw. Flüssigkeit zwischen der ersten und der zweiten Wand zu transportieren, und wobei jede Verstärkungsstruktur eine längslaufende Erhöhung, Grat bzw. Steg (6, 16, 26, 36) auf der ersten Wand, der in Richtung der zweiten Wand vorsteht, und einen längslaufenden Steg (8, 18, 28) auf der zweiten Wand, der in Richtung der ersten Wand vorsteht, umfasst, wobei die Stege an ihren Seiten (6a, 8a) ineinander eingreifen, und die Stege auf den ersten und zweiten Wänden ein Profil haben, ausgewählt aus der Gruppe, die ein trapezoides und ein konisches bzw. kegelförmiges Profil umfasst, wobei die Stege auf den ersten und den zweiten Wänden an der Basis breiter als oben sind, wobei jede Wand ein Profil aus derart voneinander beabstandeten Stegen (6, 8) hat, dass eine Nut zwischen zwei benachbarten Stegen gebildet wird, dadurch gekennzeichnet, dass die beiden Seiten (6a) eines Stegs in die beiden Seiten (8a) einer Nut in der gegenüberliegenden Wand eingrei-
2. Rohr (1) aus einem profilgewalzten Metallprodukt, insbesondere zur Verwendung in Wärmetauschnern, wobei das Rohr eine erste Wand (2) und eine zweite Wand (2) umfasst, die zwei gegenüberliegende Wände des Rohrs bilden, sowie eine Vielzahl an Verstärkungsstrukturen, die die ersten und zweiten Wände verbinden und längslaufende Durchgänge (10) bilden, um ein Fluid zwischen der ersten und der zweiten Wand zu transportieren, und wobei jede Verstärkungsstruktur einen längslaufende Steg (16) auf der ersten Wand, der in Richtung der zweiten Wand vorsteht, und einen längslaufenden Steg (18) auf der zweiten Wand, der in Richtung der ersten Wand vorsteht, umfasst, wobei die Stege auf ihren Seiten ineinander eingreifen, und die Stege (16, 18) auf den ersten und zweiten Wänden ein Profil haben, ausgewählt aus der Gruppe, die ein trapezoides und ein kegelförmiges Profil umfasst, wobei die Stege auf den ersten und den zweiten Wänden an der Basis breiter als oben sind, wobei jede Wand ein Profil aus derart voneinander beabstandeten Stegen (16, 18) hat, dass eine Nut zwischen zwei benachbarten Stegen gebildet wird, wobei jeder Steg (16) in einen Steg (18) auf der gegenüberliegenden Wand auf einer Seite eingreift, wobei ein Fluiddurchgang auf ihrer anderen Seite gebildet wird, dadurch gekennzeichnet, dass der obere Teil jedes Stegs (16, 18) in einer Wand in eine in der anderen Wand gebildete Aussparung bzw. -nehmung (19) eingreift.

3. Rohr nach Anspruch 1 oder 2, bei dem die erste Wand (2) das gleiche Stegprofil wie die zweite Wand (4) hat.

4. Rohr nach einem der Ansprüche 1 bis 3, bei dem jeder Steg auf der ersten und/oder zweiten Wand eine Vielzahl an Ausschnitten (20) enthält, die Verbindungslöcher bilden, um zu bewirken, dass benachbarte Längsdurchgänge (10) miteinander verbunden sind.

5. Rohr nach einem der Ansprüche 1 bis 4, bei dem die Stege auf den ersten und zweiten Wänden durch eines oder mehreren aus Reibungsverschweißen, Widerstandsschweißen oder Hartlöten miteinander verbunden sind.

6. Rohr nach einem der Ansprüche 1 bis 5, bei dem das profilgewalzte Metallprodukt aus einem Hartlötblechprodukt hergestellt ist, umfassend eine Aluminiumlegierung auf einer oder beiden Seiten plattiert mit einem Hartlötfüllmaterial.

7. Rohr nach einem der Ansprüche 1 bis 6, bei dem die erste Wand (2) und die zweite Wand (4) durch Ver-

8. Gewalztes Metallprodukt zum Herstellen der ersten und/oder zweiten Wand (2, 4) des Rohrs nach einem der Ansprüche 1 bis 7, wobei es ein wie in Anspruch 1 oder 2 beschriebenes Profil aufweist und durch Walzen eines Hartlötblechums hergestellt wird, das auf wenigstens einer Seite mit einem Hartlötmaterial plattiert ist.

9. Verfahren zur Herstellung eines Rohrs nach einem oder Ansprüche 1 oder 3 bis 7, umfassend die Schritte des

- Herstellens der ersten und der zweiten Wand durch Walzen eines Metallblechs, das auf wenigstens einer Seite mit einem Hartlötmaterial plattiert ist, mit einem Paar Walzen, wobei eine der Walzen parallele ringförmige Nuten hat, um Stege auf einer Seite des Blechts zu bilden, wobei die Stege auf den ersten und den zweiten Wänden an der Basis breiter als oben sind, und wobei jede Wand ein Profil aus Stegen (6, 8) hat, die voneinander beabstandet sind, so dass eine Nut zwischen zwei benachbarten Stegen gebildet wird,
- Anordnens der ersten Wand (2) oben auf der zweiten Wand (4),
- Verbindens der ersten und zweiten Wand durch Einspannen oder Walzen, wobei die beiden Seiten (6a) eines Stegs in die beiden Seiten (8a) einer Nut in der gegenüberliegenden Wand eingreifen, wodurch ein Längsdurchgang (10) in der Nut gebildet wird.

10. Verfahren zur Herstellung eines Rohrs nach einem oder Ansprüche 2 bis 7, umfassend die Schritte des

- Herstellens der ersten und der zweiten Wand durch Walzen eines Metallblechs, das auf wenigstens einer Seite mit einem Hartlötmaterial plattiert ist, mit einem Paar Walzen, wobei eine der Walzen parallele ringförmige Nuten hat, um Stege auf einer Seite des Blechts zu bilden, wobei die Stege auf den ersten und den zweiten Wänden an der Basis breiter als oben sind, und wobei jede Wand ein Profil aus Stegen (16, 18) hat, die voneinander beabstandet sind, so dass eine Nut zwischen zwei benachbarten Stegen gebildet wird,
- Anordnens der ersten Wand (2) oben auf der zweiten Wand (4),
- Verbindens der ersten und zweiten Wand durch Einspannen oder Walzen, wobei jeder Steg (16) in einen Steg (18) auf der gegenüberliegenden Wand auf einer Seite eingreift, wobei ein Fluiddurchgang auf ihrer anderen Seite gebildet wird, und wobei der obere Teil jedes Stegs
1. Tube (1) réalisé à partir d'un produit métallique galvano-plaqué, en particulier pour l'utilisation dans des échangeurs thermiques, le tube comprenant une première paroi (2) et une seconde paroi (4) formant un profil choisi parmi le groupe comprenant un profil trapézoïdal et un profil en forme de cône, dans lequel les nervures sur la première et la seconde paroi sont plus larges à la base qu'à leur sommet, et dans lequel chaque paroi présente un profil avec des nervures (6, 8) espacées les unes des autres de telle façon qu'une gorge se forme entre deux nervures voisines, caractérisé en ce que les deux côtés (6a) d'une nervure engagent les deux côtés (8a) d'une gorge dans la paroi opposée, en formant ainsi un passage longitudinal (10) dans la gorge.

2. Tube (1) réalisé à partir d'un produit métallique galvano-plaqué, en particulier pour l'utilisation dans des échangeurs thermiques, le tube comprenant une première paroi (2) et une seconde paroi (4) formant deux parois opposées dudit tube, et une pluralité de structures de renforcement qui relient la première et la seconde paroi et qui forment des passages longitudinaux (10) pour transporter un fluide entre la première et la seconde paroi, et dans lequel chaque structure de renforcement comprend une nervure longitudinale (16) sur la première paroi en projection vers la seconde paroi, et une nervure longitudinale (18) sur la seconde paroi en projection vers la première paroi, les nervures s'engagent mutuellement sur leurs côtés, et les nervures (16, 18) sur la première et la seconde paroi sont plus larges à leur sommet, dans lequel chaque paroi présente un profil avec des nervures (16, 18) espaçées les unes des autres de telle façon qu'une gorge se forme entre deux nervures voisines, dans lequel chaque nervure (16) engage une nervure (18) sur la paroi opposée, en formant ainsi un passage longitudinal (10) dans la gorge.

3. Tube selon la revendication 1 ou 2, dans lequel la première paroi (2) présente des nervures avec le même profil que la seconde paroi (4).

4. Tube selon l'une quelconque des revendications 1 à 3, dans lequel chaque nervure sur la première et/ou sur la seconde paroi inclut une pluralité de découpes (20) formant des trous de communication pour amener des passages longitudinaux voisins (10) à communiquer les uns avec les autres.

5. Tube selon l'une quelconque des revendications 1 à 4, dans lequel les nervures sur la première et la seconde paroi seront réunies les unes aux autres par une ou plusieurs techniques parmi le soudage...
par friction, le soudage résistif, ou le brasage.

6. Tube selon l’une quelconque des revendications 1 à 5, dans lequel le produit métallique galeté profilé est réalisé à partir d’un produit en tôle à braser comprenant un alliage d’aluminium sur un côté ou sur les deux côtés, revêtu d’un matériau de brasage.

7. Tube selon l’une quelconque des revendications 1 à 6, dans lequel la première paroi (2) et la seconde paroi (4) sont réunies l’une à l’autre au moyen d’un brasage.

8. Produit métallique galeté pour produire la première et/ou la seconde paroi (2, 4) du tube selon l’une quelconque des revendications 1 à 7, ce produit présentant un profil tel que décrit dans la revendication 1 ou 2, et étant produit par galetage d’une tôle à braser revêtue sur au moins côté avec un matériau de brasage.

9. Procédé pour produire un tube selon l’une quelconque des revendications 1 ou 3 à 7, comprenant les étapes consistant à :

- produire la première et la seconde paroi par galetage d’une tôle métallique revêtue sur au moins un côté avec un matériau de brasage avec une paire de galets, l’un des galets ayant des gorges annulaires parallèles pour former des nervures sur un côté de la tôle, les nervures sur la première et sur la seconde paroi étant plus larges à la base qu’à leur sommet, et dans lequel chaque paroi présente un profil avec des nervures (6, 8) espacées les unes des autres de telle façon qu’une gorge se forme entre deux nervures voisines,
- placer la première paroi (2) sur le sommet de la seconde paroi (4),
- relier la première et la seconde paroi par serrage ou par galetage, de sorte que chaque nervure (16) engage une nervure (18) sur la paroi opposée sur un côté, en formant un passage à fluide sur son autre côté, et dans lequel le sommet de chaque nervure (16, 18) dans une paroi s’engage dans un évidement (19) formé dans l’autre paroi.

10. Procédé selon la revendication 9 ou 10, dans lequel la première et la seconde paroi sont serrées ensemble en formant une bride (14) sur l’une des parois, qui tient l’autre paroi.

11. Procédé selon la revendication 9 ou 10, dans lequel la première et la seconde paroi sont réunies ensemble par galetage, en provoquant ainsi une liaison par friction et/ou une liaison soudée par friction entre les côtés (6a, 8a) des nervures qui s’engagent mutuellement.

12. Procédé pour produire un échangeur de chaleur comprenant une paire de collecteurs, une pluralité de tubes à réfrigérant réunis à chaque extrémité à l’un des collecteurs, et des ailettes ondulées disposées entre des tubes à réfrigérants adjacents, comprenant les étapes consistant à :

- produire les tubes à réfrigérant selon le procédé de l’une quelconque des revendications 9 à 12,
- assembler les collecteurs, les tubes à réfrigérants, et les ailettes ondulées, et
- braser l’ensemble de l’échangeur à chaleur.

13. Procédé selon la revendication 13, dans lequel les tubes sont réalisés à partir d’une tôle d’aluminium revêtue au moins sur le côté profilé avec un matériau de brasage, et la première et la seconde paroi sont brasées ensemble pendant le brasage de l’ensemble de l’échangeur à chaleur.

14. Procédé selon la revendication 14, dans lequel le brasage de l’ensemble de l’échangeur à chaleur a lieu au moyen d’un brasage sous vide ou d’un brasage sans flux.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• JP 2000074586 A [0005]
• US 5931226 A [0006]
• US 5947365 A [0007]
• US 5186250 A [0008]
• US 6379818 B [0045]
• US 6391476 B [0045]
• US 6753094 B [0046]