CIS-1,2-SUBSTITUTED STILBENE DERIVATES AND THE USE THEREOF FOR MANUFACTURING MEDICAMENTS FOR TREATING MEDICAMENTS FOR TREATING AND/OR PREVENTING DIABETES

The present invention relates to cis-1,2-substituted stilbene derivatives, or their pharmaceutically acceptable salts, glucosides or solvates, a phamaceutical composition comprising the compound, and use of said compound for preparation of a drug for treatment and/or prevention of diabetes or improvement of diabetic complications.
This invention relates to the use of cis-1,2-substituted stilbene derivatives or their pharmaceutically acceptable salts, glucosides or solvates in preparation of drugs for treatment and/or prevention of diabetes or alleviation of diabetic complications.

Background art

Diabetes is a clinically familiar chronic metabolic disease all over the world. In recent years, the world-wide morbidity rate of diabetes is rising rapidly along with the economic development and changes in dietary structure. According to statistics, the total number of diabetic patients can be 120 millions, among which more than 30 millions are Chinese. Most of the patients are insulin-independent, i.e., type II diabetes. At present, diabetes has become the third severe disease threatening the health of humans following cardiovascular disease and cancer. The duration of illness for diabetes is long and its complications occur usually during inadequate treatment, such as chronic vascular complications (including cerebrovascular disorders, ischemic heart disease), diabetic nephropathy, and so on. The mortality due to diabetes and its complications is also elevating year after year. Therefore, treatment and prevention of diabetes and its complications have become a key research task confronting medical and pharmaceutical workers of the world.

Content of the Invention

The present inventors discovered that cis-1,2-substituted stilbene compounds, their pharmaceutically acceptable salts, glucosides or solvates all had good hypoglycemic and other functions. Therefore, they can be used in treatment and/or prevention of diabetes and improvement of diabetic complications.

The first aspect of this invention relates to cis-1,2-substituted stilbene compounds of formula I, their pharmaceutically acceptable salts, glucosides or solvates:

\[
\text{I}
\]

in which,

\(R_1 - R_{12}\), which may be same or different, each independently represent hydrogen; hydroxyl group; \(C_1-C_6\) alkyl group; \(C_1-C_6\) alkoxy group; \(C_1-C_6\) ester group; amino group; \(C_1-C_6\) alkylamino group; \(C_1-C_6\) alkyl sulfonyl group, sulfamido, sulfonylurea group, guanidino group, carboxyl group, amido group; \(C_1-C_6\) acyl group, nitro group, cyano group, halogen, \(\text{OM}_1, \text{M}_2\), or \(\text{SO}_2\text{OM}_3\) group, wherein \(\text{M}_1, \text{M}_2\) and \(\text{M}_3\), which may be same or different, each independently represent hydrogen or a cation chosen from alkali or alkaline earth metals, \(\text{NH}_4^+\), or a sugar-containing glycoside.

The second aspect of this invention relates to a pharmaceutical composition comprising, as active ingredient, the cis-1,2-substituted stilbene compounds of formula I, their pharmaceutically acceptable salts, glucosides or solvates as well as one or more pharmaceutically acceptable vehicles or excipients.

The third aspect of this invention relates to use of the cis-1,2-substituted stilbene compounds of formula I, their ...
pharmaceutically acceptable salts, glucosides or solvates for preparation of drugs for treatment and/or prevention of diabetes or improvement of diabetic complications,

in which,

R₁-R₁₂, which may be same or different, each independently represent hydrogen, hydroxyl group; C₁-C₆ alkyl group, C₁-C₆ alkoxy group; C₁-C₆ ester group, amino group; C₁-C₆ alkylamino group; C₁-C₆ alkyl sulfonyl group, sulfamido, sulfonamide, guanidino group, carboxyl group, amido group; C₁-C₆ acyl group, nitro group, cyano group, halogen, OMe, M₂, or SO₂OM₃ group, wherein M₁, M₂ and M₃, which may be same or different, each independently represent hydrogen or a cation chosen from alkali or alkaline earth metals, NH₄⁺, or a sugar-containing glycoside.

The fourth aspect of this invention relates to a method for treatment and/or prevention of diabetes and improvement of diabetic complications, which comprises administering an effective amount of the compounds of Formula I to the patients in need thereof.

In a preferred embodiment of this invention, the compounds of Formula I have the following structures represented by Formula II, Formula III and Formula IV:
In another preferred embodiment of this invention, the compounds of Formula I have the following structure represented by Formula V:

![Formula V](image)

where, R₁₃, R₁₄, which may be same or different, each independently represent hydrogen; C₁-C₇ alkyl group; C₁-C₆ alkoxyl group; C₁-C₆ ester group, amino group; C₁-C₆ alkylamino group, C₁-C₆ alkyl sulfonyl group, sulfamido group, sulfonylurea group, guanidino group.

In a further preferred embodiment of this invention, the glycoside is glucoside or mannoside, or the solvate is hydrate.

The compound of Formula I in this invention is prepared from substituted phenylacetic acid and substituted benzaldehyde via Perkin reaction.

The term "pharmaceutically acceptable salts" used herein refers to the salts formed with pharmaceutically usable inorganic acids, such as sulfate, hydrochloride, hydrobromate, phosphate, or the salts formed with pharmaceutically usable organic acids, such as acetate, oxalate, citrate, gluconate, succinate, tartrate, p-toluene sulfonate, methylsulfonate, benzoate, acetate, maleate, etc.

The present compounds can be utilized alone or in the form of pharmaceutical composition, which, according to different administration routes, can be made into intestinally or parenterally administered preparations, such as tablets, capsules, injections, suppositories, drops, or patches, etc.

When administered orally, the compound of the invention may be produced in any orally acceptable formulation forms comprising, but being not limited to, tablets, capsules, aqueous solutions or aqueous suspensions. Typically, the vehicles used for tablets include lactose and corn starch. In addition, lubricating agents such as magnesium stearate may also be added. Usually, diluents used for capsules include lactose and dried corn starch. Aqueous suspension formulations generally include mixture of the active ingredient with suitable emulsifying and suspending agents. Optionally, the oral formulation forms may further comprise sweetening agents, flavoring agents or coloring agents.

For local application, the compounds can be formulated into a suitable ointment, lotion or cream, wherein the active ingredient suspends or dissolves in one or more vehicles. The vehicles suitable for ointment include, but are not limited to, mineral oil, liquid petrolatum, white petrolatum, propylene glycol, polyoxyethylene, polyoxypropylene, emulsifying wax and water; and the vehicles suitable for lotion or cream include, but are not limited to, mineral oil, sorbitan monostearate, Tween 60, cetyl ester wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol and water.

The compounds of the present invention may be administered in the form of sterile injection preparations, for example, as sterile injection aqueous or oleaginous suspensions or sterile injection solutions. The acceptable vehicles
and solvents include water, Ringer’s solution and isotonic sodium chloride solution. In addition, sterile, fixed oils, such as mono- or di-glycerides, can be also employed as solvents or suspending mediums.

In addition, the dosage level and usage method of the present compound depend upon a variety of factors including, the age, body weight, gender, natural health condition, and nutritional status of the subject, the time of administration, the rate of metabolism, the severity of the particular disease being treated, and the subjective judgment of the doctor for diagnosis. The dosage levels on the order of about 0.01 mg to about 100 mg of the active ingredient/kg body weight/day are preferred.

Mode of carrying out the invention

[0021] The following examples are detailed further explanations for this invention, but do not intend to limit the present invention.

Example 1

Preparation of cis-1-phenyl-2-(3'-methoxy-4'-hydroxy-phenyl)ethene (compound of Formula II)

1.5 g α-3-methoxy-4-hydroxy-phenyl cinnamic acid was weighted and put into a 100 ml three-necked bottle with reflux tube and magnetic stirrer. Then, 7 ml quinoline, 0.25 g copper powder were added. The mixture was refluxed in an oil bath at 110°C for 12 hours. After completion of the reaction, the system was cooled down to room temperature, to which 20 ml ethyl acetate was added. The reaction solution was washed with water till neutral pH and dehydrated with anhydrous MgSO4. After decarboxylation, the resultant stilbene had very strong fluorescense, whereas the α-3-methoxy-4-hydroxy-phenyl cinnamic acid did not. By column chromatography (chloroform:methanol=9.5:0.5), a yellow solid was obtained. MS (FAB) m/Z: M+ 226.0. 1H NMR (deuterated DMSO) δ 6.91 (s 1H-OH), 3.84(s 3H-OCH3), 7.54(d 2H 2,6-H), 6.78(d 1H 2-H), 7.37(t 2H a, β-H), 7.35, 7.26, 7.69(arom 5H).

Example 2

Preparation of cis-2-phenyl-3-(3'-acetoxy-4'-methoxy-phenyl)acrylic acid (compound of Formula III)

13.6 g (0.1 mole) phenylacetic acid, 15.2 g (0.1 mole) isovanillin, 12 ml (0.07 mole) triethylamine, 18 ml (0.18 mole) acetic anhydride were put into a 250 ml three-necked bottle. The mixture was refluxed in an oil bath at 110°C with magnetic stirring for 12 hours. After completion of the reaction, the system was cooled down to room temperature, to which 200 ml ethyl acetate was added. Then, the reaction solution was washed with water till neutral pH and dehydrated with anhydrous Na2SO4 overnight. After removing the desiccant, the solvent was eliminated under reduced pressure. Thereafter, anhydrous ethyl ether was added to separate out 7.55 g of a white solid, with mp of 180-190°C and yield of 27.9%.

Example 3

Preparation of cis-2-phenyl-3-(3'-methoxy-4'-acetoxy-phenyl)acrylic acid (compound of Formula IV)

13.6 g (0.1 mole) phenylacetic acid, 15.2 g (0.1 mole) vanillin, 12 ml (0.07 mole) triethylamine, 18 ml (0.18 mole) acetic anhydride were put into a 250 ml three-necked bottle. The mixture was refluxed in an oil bath at 110°C with magnetic stirring for 12 hours. After completion of the reaction, the system was cooled down to room temperature, to which 200 ml ethyl acetate was added. Then, the reaction solution was washed with water till neutral pH and dehydrated with anhydrous Na2SO4 overnight. After removing the desiccant, the solvent was eliminated under reduced pressure. Thereafter, anhydrous ethyl ether was added to separate out 5.51 g of a white solid, with yield of 36.9%.

Elementary analysis: molecular formula C18H16O5; molecular weight 312.31.

<table>
<thead>
<tr>
<th>Theoretic value</th>
<th>Analytic value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>69.22%</td>
</tr>
<tr>
<td>H</td>
<td>5.13%</td>
</tr>
<tr>
<td>C</td>
<td>69.32%</td>
</tr>
<tr>
<td>H</td>
<td>5.13%</td>
</tr>
</tbody>
</table>
Example 4

Preparation of cis-2-phenyl-3-(3’-methoxy-4’-hydroxy-phenyl)acrylic acid

[0027] 100 ml anhydrous methanol and 0.5 g metallic sodium were put into a 250 ml three-necked bottle and stirred till complete dissolution of sodium. Then, 9.4 g of the compound prepared in Example 3 was added, followed by stirring at room temperature for 5 hours and heating in a water bath at 50°C for one hour. Thereafter, the reaction solution was adjusted to be acidic with 15% HCl, followed by removing the solvent under reduced pressure to get a solid. The solid was washed with water, and recrystallized with 30% ethanol to obtain 7.94 g of a white crystalline solid, with mp of 198-202°C and yield of 91%.

Example 5

Preparation of cis-2-phenyl-3-(3’-carboxy-4’-methoxy-phenyl)acrylic acid

[0028] 100 ml anhydrous methanol and 0.5 g metallic sodium were put into a 250 ml three-necked bottle and stirred till complete dissolution of sodium. 3.2 g of the compound prepared in Example 2 was added, followed by stirring at room temperature for 3 hours and heating in a water bath at 50°C for one hour. Thereafter, the reaction solution was adjusted to be acidic with 15% HCl, followed by removing the solvent under reduced pressure to get a solid. The solid was washed with water, and recrystallized with 95% ethanol to obtain 2.3 g of a white crystalline solid, with mp of 220-224°C and yield of 85.2%.

Example 6

Preparation of cis-2-phenyl-3-(3’-methoxy-4’-acetoxy-phenyl)-N-cyclohexyl acrylamide

[0030] 9.36 g (0.03 mole) cis-2-phenyl-3-(3’-methoxy-4’-acetoxy-phenyl)acrylic acid was put into a 100 ml three-necked bottle. Then, 22 ml (0.3 mole) thionyl chloride and 50 ml anhydrous toluene were added, followed by refluxing at 100-110°C with heating and stirring for 3 hours. After completion of the reaction, surplus thionyl chloride was removed by suctioning to dryness under reduced pressure. A suitable amount of toluene was added and suctioned to dryness under reduced pressure (repeating for two times) to obtain a red sticky liquid. Then, 30 ml anhydrous toluene was added to the obtained liquid, followed by stirring and dropping 6 ml (0.05 mole) cyclohexylamine at room temperature. After completion of the dropping, the reaction was carried out at 50°C with stirring for 3 hours, and then toluene was removed under reduced pressure to get a red oily substance. Thereafter, ethyl acetate was added to the obtained oily substance with stirring to precipitate a solid. The solid was collected by filtration and then washed with ethyl acetate for three times to obtain 3.6 g of a product with mp of 124-127°C and yield of 30%.

Example 7

Preparation of cis-2-phenyl-3-(3’-methoxy-4’-acetoxy-phenyl)-N-(methylene furan)acrylamide

[0031] 6.24 g (0.02 mole) cis-2-phenyl-3-(3’-methoxy-4’-acetoxy-phenyl)-acrylic acid and 20 ml (0.28 mole) thionyl chloride were put into a 50 ml three-necked bottle, before stirring and refluxing by heating for 3 hours. Thereafter, surplus thionyl chloride was removed by suctioning to dryness under reduced pressure. Ethyl ether was added, followed by dropping 6 g of 2-aminomethyl-tetrahydrofuran with stirring. After completion of the dropping, the system was continuously
stirred at room temperature for one hour to precipitate a solid. The solid was collected by filtration and recrystallized
with methanol-ethyl ether, to obtain 6.4 g of a refined product with mp of 119-121°C and yield of 80%.

Example 8

Preparation of cis-2-phenyl-3-(3'-methoxy-4'-acetoxy-phenyl)-N-(4'-methylcyclohexyl)acrylamide

According to the method stated in Example 7, cis-2-phenyl-3-(3'-methoxy-4'-acetoxy-phenyl)-N-(4-methylcyclohexyl)acrylamide was prepared with mp of 136-140°C.

Example 9

Preparation of cis-2-phenyl-3-(3', 4' -dimethoxy-phenyl)-methyl acrylate

5.4 g cis-2-phenyl-3-(3’,methoxy-4’-hydroxy-phenyl)acrylic acid, 10 g dimethyl sulfate, and 40 ml methylene chloride were put into a 50 ml three-necked bottle, to which 40 ml 10% sodium hydroxide solution was dropped with stirring at 40°C. After completion of the dropping, the reaction was continued for 4 hours, followed by standing to separate out the organic phase. Then, the organic phase was washed with water and dried with anhydrous sodium sulfate. After removing the desiccant by filtration, the filtrate was concentrated to eliminate methylene chloride, to get a white solid. The solid was then recrystallized with methanol, to obtain 2.5 g of a refined product with mp of 100-103°C and yield of 78%.

Example 10

Preparation of cis-2-phenyl-3-(3',4'-dimethoxy-phenyl)pyrrolidinyl acrylamide

According to the method stated in Example 7, cis-2-phenyl-3-(3’,methoxy-4’-acetoxy-phenyl)pyrrolidinyl acrylamide (N365) was prepared with mp of 113-116°C.

Biological activity

In the following biological experiments, the hypoglycemic activity of the above compounds was chiefly observed in hyperglycemic mice. Taking 3,3',5',trihydroxy-4'-methoxyxystilbene-3-O-β-D-glucoside (rhaponticin) as a positive control drug, the hypoglycemic activity of these compounds were preliminarily evaluated.

Kun Ming male mice (certification: Medical Animal No. D01-3023) with body weight of 21-33 g were used in the experiments. After fasting and feeding water for 16 hours, the compounds were administered to the mice. The candidate compounds were formulated with dimethyl sulfoxide (2.5 ml/kg), and administered to the mice intragastrically. After fifteen minutes, glucose (2 g/10 ml/kg) was administered orally. One hour later, one drop of blood was collected by cutting a segment of tail and the blood sugar level was monitored with a blood sugar monitor manufactured by Johnson & Johnson.
Company, USA, by using a test paper containing glucose oxidase. For the mice of the control group, dimethyl sulfoxide (205 ml/kg) and glucose (2 g/10 ml/kg) were given intragastrically. The results were listed in Table 1-3:

Table 1 Hypoglycemic effect of orally administered compounds stated in Examples 1, 2 and 3 in mice with glucose-induced hyperglycemia

<table>
<thead>
<tr>
<th>Compound</th>
<th>Dosage (mg/kg)</th>
<th>Number of mice</th>
<th>Blood sugar level one hour after administration M ± SD (mmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMSO</td>
<td>400</td>
<td>5</td>
<td>9.50 ± 1.06</td>
</tr>
<tr>
<td>rhaponticin</td>
<td>400</td>
<td>5</td>
<td>9.14 ± 1.90</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>5</td>
<td>7.62 ± 1.59</td>
</tr>
<tr>
<td>Example 1</td>
<td>400</td>
<td>5</td>
<td>7.30 ± 0.68</td>
</tr>
<tr>
<td>Example 2</td>
<td>400</td>
<td>5</td>
<td>8.20 ± 0.99</td>
</tr>
<tr>
<td>Example 3</td>
<td>400</td>
<td>5</td>
<td>7.30 ± 0.68</td>
</tr>
</tbody>
</table>

Table 2 Hypoglycemic effect of orally administered compounds stated in Examples 4, 5 and 6 in mice with glucose-induced hyperglycemia

<table>
<thead>
<tr>
<th>Compound</th>
<th>Dosage (mg/kg)</th>
<th>Number of mice</th>
<th>Blood sugar level one hour after administration M ± SD (mmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMSO</td>
<td>10</td>
<td>8</td>
<td>8.53 ± 0.76</td>
</tr>
<tr>
<td>Example 3</td>
<td>400</td>
<td>6</td>
<td>7.85 ± 0.16</td>
</tr>
<tr>
<td>Example 4</td>
<td>400</td>
<td>6</td>
<td>7.30 ± 2.21</td>
</tr>
<tr>
<td>Example 5</td>
<td>400</td>
<td>6</td>
<td>8.50 ± 1.01</td>
</tr>
<tr>
<td>Example 6</td>
<td>400</td>
<td>6</td>
<td>5.46 ± 0.86</td>
</tr>
</tbody>
</table>

Table 3 Hypoglycemic effect of orally administered compounds stated in examples 7,8 and 9 in mice with glucose-induced hyperglycemia

<table>
<thead>
<tr>
<th>Compound</th>
<th>Dosage (mg/kg)</th>
<th>Number of mice</th>
<th>Blood sugar level one hour after administration M ± SD (mmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMSO</td>
<td>6</td>
<td>7.80 ± 1.33</td>
<td></td>
</tr>
<tr>
<td>Example 7</td>
<td>400</td>
<td>6</td>
<td>6.95 ± 0.61</td>
</tr>
<tr>
<td>Example 8</td>
<td>100</td>
<td>6</td>
<td>5.61 ± 1.67</td>
</tr>
<tr>
<td>Example 9</td>
<td>400</td>
<td>6</td>
<td>8.41 ± 0.88</td>
</tr>
</tbody>
</table>

Claims

1. Cis-1,2-substituted stilbene derivative of formula I, its pharmaceutically acceptable salts, glucosides or solvates:
in which, $$R_1 - R_{12}$$, which may be same or different, each independently represent hydrogen; hydroxyl group; C$_1$-C$_6$ alkyl group; C$_1$-C$_6$ alkoxy group; C$_1$-C$_6$ ester group; amino group; C$_1$-C$_6$ alkylamino group; C$_1$-C$_6$ alkyl sulfonyl group, sulfamido, sulfonurea group, guanidino group, carboxyl group, amido group; C$_1$-C$_6$ acyl group, nitro group, cyano group, halogen, OM$_1$, M$_2$, or SO$_2$OM$_3$ group, wherein M$_1$, M$_2$, and M$_3$, which may be same or different, each independently represent hydrogen or a cation chosen from alkali or alkaline earth metals, NH$_4^+$, or a sugar-containing glycoside.

2. The compound according to Claim 1, wherein the compound of Formula I has the following structure:

![Structure II](image)

![Structure III](image)

or

![Structure IV](image)
3. The compound according to Claim 1, wherein the compound of Formula I have the following structure:

![Chemical Structure V]

in which,
R\textsubscript{13}, R\textsubscript{14}, which may be same or different, each independently represent hydrogen; C\textsubscript{1}-C\textsubscript{7} alkyl group; C\textsubscript{1}-C\textsubscript{6} alkoxy group; C\textsubscript{1}-C\textsubscript{6} ester group, amino group; C\textsubscript{1}-C\textsubscript{6} alkylamino group, C\textsubscript{1}-C\textsubscript{6} alkyl sulfonyl group, sulfamido group, sulfonylurea group, guanidino group.

4. The compound according to any of Claims 1 to 3, wherein the glycoside is glucoside or mannoside.

5. The compound according to any of Claims 1 to 3, wherein the solvate is hydrate.

6. A pharmaceutical composition, which comprises as, active ingredient, the cis-1,2-substituted stilbene compound of formula I, its pharmaceutically acceptable salts, glucosides or solvates as well as one or more pharmaceutically acceptable vehicles or excipients.

7. The pharmaceutical composition according to Claim 6, which is in the form of tablets, capsules, granules, patches, suppositories, drops or injections.

8. Use of the cis-1,2-substituted stilbene compound of formula I, its pharmaceutically acceptable salts, glucosides or solvates for preparation of a drug for treatment and/or prevention of diabetes or improvement of diabetic complications,

![Chemical Structure I]

in which,
R\textsubscript{1}-R\textsubscript{12}, which may be same or different, each independently represent hydrogen, hydroxyl group; C\textsubscript{1}-C\textsubscript{6} alkyl group, C\textsubscript{1}-C\textsubscript{6} alkoxy group; C\textsubscript{1}-C\textsubscript{6} ester group, amino group; C\textsubscript{1}-C\textsubscript{6} alkylamino group, C\textsubscript{1}-C\textsubscript{6} alkyl sulfonyl group, sulfamido, sulfonylurea group, guanidino group, carboxyl group, amido group; C\textsubscript{1}-C\textsubscript{6} acyl group, nitro group, cyano group, halogen, OM\textsubscript{1}, M\textsubscript{2}, or SO\textsubscript{2}OM\textsubscript{3} group, wherein M\textsubscript{1}, M\textsubscript{2} and M\textsubscript{3}, which may be same or different, each independently represent hydrogen or a cation chosen from alkali or alkaline earth metals, NH\textsubscript{4}+, or a sugar-containing glycoside.

9. A method for treatment and/or prevention of diabetes and improvement of diabetic complications, which comprises administering an effective amount of the compound of Formula I as claimed in claim 1 to a patient suffering from diabetes.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC: C07C15/52, 39/23, 57/04, 43/205, 69/017, 59/64, 233/01, C07H15/203, A61K31/05, 31/085, 31/22, 31/16, 31/192, 31/7034, A61P3/10

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: C07C, C07H, A61K, A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

CHINA NON-PATENT LITERATURE, CHINA PATENT DOCUMENTS

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPDOC, WPI, PAI, CA, MEDLINE, STN, CNPAT, CNKI: stilbene, toluylene, diabetes

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>CN-A-1398838 (INSTITUTE OF RADIATION MEDICINE, ACADEMY OF MILITARY MEDICAL SCIENCES, PLA), 25. Feb. 2003 (26-02-2003), see claims 1-3</td>
<td>1-8</td>
</tr>
<tr>
<td>X</td>
<td>WO-A-0069430 (CALYX THERAPEUTICS, INC.), 23. Nov. 2000 (23-11-2000), see claims 1, 19, example 1</td>
<td>1-8</td>
</tr>
<tr>
<td>X</td>
<td>CN-A-1294912 (INSTITUTE OF RADIATION MEDICINE, ACADEMY OF MILITARY MEDICAL SCIENCES, PLA), 16 May 2001 (16-05-2001), see claims 1-3</td>
<td>1-8</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. ☒ See patent annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim (S) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

& *document member of the same patent family

Date of the actual completion of the international search: 19 Oct.2005 (19/10/2005)

Date of mailing of the international search report: 17 Nov 2005 (17 . 11 . 2005)

Name and mailing address of the ISA/CN:
The State Intellectual Property Office, the P.R.China
6 Xinzheng Rd., Jinnan Bridge, Haitian District, Beijing, China 100088
Facsimile No. 86-10-62083951

Authorized officer: LIU, Qing

Telephone No. 86-10-62085248

Form PCT/ISA/210 (second sheet) (April 2005)
INTERNATIONAL SEARCH REPORT

<table>
<thead>
<tr>
<th>Box No. II</th>
<th>Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:</td>
</tr>
<tr>
<td>1. ☒ Claims Nos.: 9</td>
<td>because they relate to subject matter not required to be searched by this Authority, namely: the subject-matter of claim 9 is directed to a method of therapeutical treatment.</td>
</tr>
<tr>
<td>2. ☐ Claims Nos.:</td>
<td>because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:</td>
</tr>
<tr>
<td>3. ☐ Claims Nos.:</td>
<td>because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Box No. III</th>
<th>Observations where unity of invention is lacking (Continuation of item 3 of first sheet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This International Searching Authority found multiple inventions in this international application, as follows:</td>
</tr>
<tr>
<td>1. ☐ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.</td>
<td></td>
</tr>
<tr>
<td>2. ☐ As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.</td>
<td></td>
</tr>
<tr>
<td>3. ☐ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:</td>
<td></td>
</tr>
<tr>
<td>4. ☐ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:</td>
<td></td>
</tr>
</tbody>
</table>

Remark on protest

- ☐ The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.

- ☐ The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.

- ☐ No protest accompanied the payment of additional search fees.
INTERNATIONAL SEARCH REPORT

Information on patent family members

<table>
<thead>
<tr>
<th>Patent Documents referred in the Report</th>
<th>Publication Date</th>
<th>Patent Family</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CN-A-1545409</td>
<td>10-11-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-A1-2002323800</td>
<td>17-02-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-T-2004537561T</td>
<td>16-12-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-A-4085799</td>
<td>05-12-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN-A-1554659</td>
<td>19-06-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-T-2002544227T</td>
<td>24-12-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX-A1-2001011760</td>
<td>01-09-2003</td>
</tr>
<tr>
<td>CN-A-1294912</td>
<td>16-05-2001</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (April 2005)
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- CN 1398838 A [0003]