Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

BACKGROUND

[0001] The following relates to printing systems and methods. It finds particular application to structures that improve print quality. More particularly, it is directed toward structures that use viscous materials for variable data printing. However, other printing techniques are also contemplated.

[0002] Offset printing is a printing technique in which an inked image is transferred (or offset) to a rubber blanket and then to a printing surface. When used in combination with a lithographic process based on the repulsion of oil and water, the offset technique typically employs a flat (planographic) image carrier on which the image to be printed obtains ink from ink rollers, while the non-printing areas attract a film of water, keeping the nonprinting areas ink-free. In other instances, the ink can be applied with a blade or squeegee, as is practiced in the gravure printing process. The ink used for offset printing typically is a highly viscous tar-like material with excellent opacity and little tendency to wick or bleed into the fibers of the paper. The resulting image typically is associated with relatively high image quality (including a sharper and cleaner image than letterpress because the rubber blanket conforms to the texture of the printing surface) and can be formed on various printing substrates (e.g., paper, wood, cloth, metal, leather, rough paper, etc.). However, offset printers generally are inflexible in that every page typically requires a new master.

[0003] Variable data printing is a form of on-demand printing in which elements such as text, graphics and images may be changed from one printed piece to the next without stopping or slowing down the press. Thus, variable data printing enables the mass-customization of documents. For example, a set of personalized letters can be printed with a different name and address on each letter, as opposed to merely printing the same letter a plurality of times. This technique is an outgrowth of digital printing, which harnesses computer databases and digital presses to create full color documents. However, the image quality of conventional variable data printing typically is inferior to that of offset printing. This is due at least in part to the differences in the ink used. Because offset printing ink is highly viscous, it typically cannot be ejected from ink jet printers or the like.

[0004] US-B1-6 234 079 shows a reusable digital printing plate with electrodes arranged in apertures of a substrate and coupled for deflecting a membrane covering the apertures of one side.

[0005] Thus, there is an unresolved need for systems and methods that facilitate producing higher quality images with variable data printing.

BRIEF DESCRIPTION

[0006] In one aspect, the invention shows the features as set forth in claim 1. In an embodiment the one or more pistons and the one or more apertures have tapered walls that prevent the pistons from falling out of the apertures.

In a further embodiment at least one of a conductivity within the material and a conductive grease facilitates a flow of electrons between the sheet and the pistons.

In a further embodiment a direct surface-to-surface contact generates a flow of electrons between the sheet and the pistons.

In a further embodiment the pattern layer includes: an elastomer layer formed adjacent to the plurality of actuators, which are electrostatically pulled into the elastomer to form the one or more wells on the surface.

In a further embodiment the pattern layer further includes:

- a semiconductor layer formed adjacent to the elastomer layer, the semiconductor layer, when excited with an excitation signal, transfers charge to the elastomer layer, which creates an electrostatic field that selectively pulls one or more of the plurality of actuators into the elastomer, forming the one or more wells on the surface.

In a further embodiment the pattern layer further includes:

- a photoconductor, and
- an elastomer; wherein the actuators are pulled into the elastomer to form a well on the surface when the photoconductor switches an increased electric field across the elastomer. In a further embodiment the print structure further includes a conductive material formed adjacent to the photoconductor, wherein charge associated with the conductive material migrates across the photoconductor to the elastomer to create the electrostatic field.

In one embodiment of the print structure, each of the one or more pistons have a non-circular shape to prevent rotating. In a further embodiment the print structure further includes a flexible elastomer cover that protects the first layer from the environment and/or facilitates retaining a lubricant within the structure.
BRIEF DESCRIPTION OF THE DRAWINGS

[0007] FIGURE 1 illustrates an exemplary print structure for printing materials;
[0008] FIGURE 2 illustrates a cross section of the exemplary printing structure;
[0009] FIGURE 3 illustrates the exemplary print structure in an "on" state;
[0010] FIGURE 4 illustrates a method for printing with the exemplary print structure;
[0011] FIGURE 5 illustrates a portion of an exemplary print structure with a large ink volume on-off ratio; and
[0012] FIGURE 6 illustrates an exemplary technique for creating the print layer having a plurality of pistons embedded within a sheet.

DETAILED DESCRIPTION

[0013] With reference to FIGURE 1, a print structure 10 for printing various materials such as relatively viscous materials is illustrated. The print structure 10 includes a print layer 12 with a print surface 14 for transferring a material. One or more portions of the print layer 12 can be selectively deformed in order to create one or more wells 16 within the print surface 14. The one or more wells 16 pattern a structure (e.g., an image) on the print surface 14 and are subsequently filled with the material as illustrated at 18. Subsequently, the deformations can be released, which transfers the material within the wells 16 from the wells 16 to the print surface 14 as illustrated at 20. The material can then be transferred from the print surface 14 to another entity 22 as illustrated at 24.

[0014] A pattern layer 26 of the print structure 10 resides proximate to the print layer 12. The pattern layer 26 facilitates forming the pattern on the surface 14 of the print layer 12 by selectively forming the wells 16 within the print layer 12. In one instance, the pattern layer 26 includes a semiconductor (not shown) that behaves as an insulator unless exposed to energy with predefined characteristics (e.g., energy, wavelength, periodicity, phase, amplitude, etc.). Portions of the semiconductor exposed to such energy are activated and facilitate forming the wells 16 in adjacent portions of the print layer 12.

[0015] In one instance, the pattern layer 26 can include a photoconductor (not shown) that is excited by light. In this instance, optical addressing is used to form the wells on the surface 14 of the print layer 12. For example, upon receiving suitable light the pattern layer 26 can electrostatically form the pattern against the print layer 12. In this instance, an electric field causes one or more portions of the print layer 12 to deform, thus creating the one or more of the wells 16 within the surface 14. The material can then be applied to the surface 14 to fill the wells 16. Upon removing the light source the photoconductor returns to its insulating state. The electrostatic charge is retained and the deformation is maintained. The depressions may then be selectively filled by a viscous ink, for example, with a doctor blade process. The electrostatic charge can be released with a blanket light exposure of the photoconductor, whereupon the wells 16 collapse, which pushes the material to the surface 14. The material is subsequently transferred from the print surface 14 to the entity 22, which re-produces the pattern formed within the surface 14 on the entity 22.

[0016] The print structure 10 enables variable data printing using viscous inks, which, relative to comparably lower viscosity inks (e.g., those used in ejection printing), run (or bleed) less into a print substrate such as paper. Since viscous inks typically dry in relatively less time than lower viscosity inks and provide highly saturated colors (by virtue of their higher pigment content), the print structure 10 can be used to increase printing speed and/or print highly saturated colors. It is to be appreciated that the print structure 10 can be used for printing highly viscous inks, lower viscous inks, pastes containing metals, semiconductors, ceramics, etc., as well as other materials on various surface such as paper, ceramic, plastic, velum, etc.

[0017] FIGURE 2 illustrates a cross section of one configuration of the print structure 10. The print structure 10 includes the layer 12 with the surface 14 that selectively holds and transfers materials such as viscous inks. The layer 12 includes a sheet 26 with one or more pistons 28 (e.g., or similar actuators) residing within one or more apertures 30 of the sheet 26. In one instance, the sheet 26 is a thin foil and the pistons 28 are an array of co-fabricated micro-machined pistons 16. As depicted, the pistons 28 can have tapered walls that pass through tapered walls of the apertures 30. Such tapering can be used to limit the travel of each of the pistons 28 to within the sheet 26, which can prevent the pistons 28 from falling out of the sheet 26 when the layer 12 is not connected to and/or removed from the print structure 10.

[0018] Each of the pistons 28 may have a circular shape or non-circular shape, which facilitates mitigating rotation. It is to be appreciated that the pistons 28 and/or the apertures 30 can be associated with various other shapes in order to provide substantially similar and/or different characteristics. A gap 32 resides between the sheet 26 and each of the pistons 28. In some instances, the sheet 26 is held at electrical ground. In such instances, electrical charge can flow across the apertures 30 to the pistons 28 through at least one of direct surface-to-surface contact, conductivity present...
in the ink, a conductive grease, as well as through other techniques. Using a conductive grease or ink in the gap 32 can also provide lubrication that mitigates stiction.

[0019] An inside surface 34 of each of the pistons 28 resides proximate an elastomer layer 36. The elastomer layer 36 can be a flexible membrane, including a material used for macroscopic artificial muscle devices. In addition, the elastomer 36 can retain a lubricant that forms a bound monolayer. Use of such materials may form protective monolayer on exposed surfaces. In one instance, the inside surface 34 contacts the elastomer layer 36.

[0020] A photoconductor 38 is disposed between the elastomer layer 36 and a substrate 40, which can be formed as a sheet, a cylinder, etc. The photoconductor 38 may be transparent or semi transparent. In some instance, a surface 42 of the substrate 40 facing the photoconductor 38 is coated with a conductive material 44, which may also be transparent or semi transparent. The conductive material 44 typically is electrically biased with respect to the sheet 12. For example, the conductive material 44 may be biased with a positive or negative voltage potential with respect to sheet 12.

[0021] In an "off" state, the photoconductor 38 behaves as an insulator and thereby limits the electric field across the elastomer 36. Any deformation of any of the pistons 28 within the elastomer 36 due to electrostatic forces is minimal due to the limited field strength. In an "on" state, the photoconductor 38 is exposed to light through the substrate 40 and the conductive material 44. In one instance, a raster output scanner (ROS) or image bar is used to source the light. As a result, charge migrates from the conductive material 44 across the photoconductor 38 and creates an electrostatic image against the elastomer 36. The relatively higher electric field across the elastomer causes one or more of the pistons 28 to be pulled into the elastomer 36.

[0022] In the "off" state, the electric field across the elastomer 36 is a function of the following:

\[E_{e} = \frac{V k_p}{t_e k_p + t_p k_e} \]

wherein \(V \) is the applied voltage and \(k_p \) and \(k_e \) are the dielectric constants of the photoconductor 38 and the elastomer 36, respectively, and \(t_p \) and \(t_e \) are the thicknesses of the photoconductor 38 and the elastomer 36, respectively. When the photoconductor 38 is substantially discharged, the field across the elastomer is a function of the following:

\[E_{e} = \frac{V}{t_e} \]

[0023] In order to have a large switching ratio for the electric field applied to the elastomer 36, the photoconductor 38 is formed to be relatively thick with a small dielectric constant. The deflection of each of the pistons 28 has a super-linear dependence on the electric field across the elastomer 36. In the "off" state, the deflection can be a fraction of a micron, and in the "on" state, it can be many microns. The photoconductor 38 provides a very compact form of high voltage switch with a suitable on-off ratio.

[0024] FIGURE 3 illustrates the print structure 10 in the "on" state. As depicted, a light source 46 is transmitted through the substrate 40 and the conductive material 44. Charge 48 migrates from the conductive material 44 through the photoconductor layer 38 to the elastomer layer 38. In this example, the charge 48 pulls a piston 28N (where \(N \) is an integer equal to or greater then one) through an aperture 30M (where \(M \) is an integer equal to or greater then one) through the sheet 12, creating a well 50.

[0025] In one instance, when the elastomer 36 flexes, its volume does not change appreciably. A consequence of this is that in order for the piston 28 to move down when it is pulled by an electrostatic force, the elastomer 36 must gain volume to the sides of the piston by contracting or bulging. In some artificial muscle actuators, this is accomplished by pre-tensioning the elastomer. A similar approach can be employed in this invention by stretching the elastomer 36 over the print surface.

[0026] Once the piston 28N is pulled into the elastomer 36, a material such as a viscous ink can be applied (e.g., via a squeegee, a roller, etc.) over the surface 14, including the well 50. The mechanism used to apply the material exerts a pressure that pushes the ink into the well 50. In some, but not all, instances, the pressure additionally moves one or more of the other pistons 28, creating more wells 50 that fill with the material. This could occur, for example, if the pressure is high enough and the applicator is deformable enough to push the pistons 28 down and load them with the material as it passes.

[0027] The ink volume delivered is a monotonic function of the applied voltage across the elastomer 36. The above discussion relates to a substantially insulating photoconductor. However, a partially conducting photoconductor enables
writing of varied amounts of charge onto the elastomer 36. This can be achieved by varying light intensity in order to achieve a desired voltage level on the elastomer 36.

[0028] The pressure applied to a surface of each of the pistons 38 is a function of the following:

\[P = -\varepsilon_0 k_0 E^2, \]

where \(\varepsilon_0 \) is the permittivity of free space. This expression is valid for strains of up to approximately 20%. By expressing the strain as a change in the initial thickness of the elastomer 36, the expression for the thickness of the elastomer 36 is a function of the following:

\[t^1_\varepsilon - t_\varepsilon^2 + c = 0, \]

wherein

\[c = \frac{\varepsilon_0 k_0 t_\varepsilon^2 V^2}{Y}, \]

\(t_{\varepsilon^0} \) is the initial thickness of the elastomer 36 in zero applied field, and \(Y \) is the elastic modulus of the elastomer 36. The constant \(c \) is the strain predicted if one does not allow for the field enhancement stemming from the change in elastomer thickness.

[0029] After the material is applied to the surface 14 and the charge is removed, the pistons 28 will substantially return to their initial position, pushing any material associated therewith up as they recoil. This results in a surface with material above those areas where the pistons 28 were actuated. The material can then be transferred to another surface, substrate, or the like. In one instance, the surface 14 may be covered with a flexible elastomer to prevent dirt, dust, ink, etc. from clogging the mechanism and/or facilitate cleaning of the print surface 14. This material may be, for instance, induction welded or laser welded to the metal surface. In these methods, the gap between the pistons and the support grid can stay clean.

[0030] It is to be appreciated that the print structure 10 can accommodate a constant volume. Several features of the print structure 10 that facilitate accommodation of the constant volume include, but are not limited to, electrodes that slip, the gaps 32 around the pistons 28, and/or a shape of the heads of the pistons 28. For example, using a dome shaped piston head (as illustrated in FIGURES 2 and 3) can increase the area of electrode contact as the piston 28 is pulled into the elastomer 36. This can enhance a non-linear actuation, which can be leveraged to improve the on-off ratio of the structure. In another example, the elastomer 36 can be formed from one or more adhesive based acrylics in which the slipping capability is enabled with a surface treatment or lubricious coating. A carbon grease substantially similar to that used for making artificial muscle can also be used with the structure. Using such carbon grease and/or a comparable conducting lubricant facilitates maintaining electrical conductance between the sheet 12 and the pistons 28. Additionally or alternately, a thin layer of dielectric lubricant can be used. The thin layer can be associated with a relatively high dielectric constant that would have negligible affect on the overall electric field applied across the elastomer 36.

[0031] A photoconductor-elastomer interface 52, volume conservation can be enhanced by providing a dielectric lubricant at the interface 52 in order to allow it to slip. Although the elastomer 36 can be designed to slip with respect to the photoconductor 38, which typically is solidly attached to the substrate 40, it can be held in place by various mechanism in order to hold the structure together. For example, in one instance the elastomer 36 is stretched and clamped or bonded outside of an active area. Incorporation of a lubricant can facilitate the stretching. The sheet 12 and/or the pistons 28 can be attached by adhered dielectric standoffs and/or other mechanisms. The structure can also be held together through the compressive Maxwell stress that actuates the pistons 28. A typical force on the sheet 12 and/or the elastomer 36 is less than the localized force on the pistons 28, but is on the order of a couple of PSI when the structure is in an unswitched state. For a printing device with an area of 12 inches by 12 inches, a total force on the order of about 300 lbs typically holds the sheet 12 and/or the pistons 28 against the elastomer 36 and/or the photoconductor 38. Another technique is to apply a voltage to hold the sheet 12 and subsequently spot-weld the edges of the sheet 12 together to hold it in place.

[0032] Gaps around the pistons 28 provide the elastomer 36 somewhere to go as the thickness under the pistons 28
is reduced. In one instance, pretension on the elastomer 36 is used to facilitate accommodating the volume around the electrodes. For example, the elastomer 36 can be stretched and clamped at the edges before it is incorporated into the structure. This can also facilitate establishing a suitable thickness for the structure. In one instance, the elastomer 36 is about 0.5 to 1.0 mm thick and is stretched about 4x in an x and/or y direction, which can results in a thickness of about 30 to 60 μm. The elastomer 36 may also be fabricated using a molding technique, e.g., from a silicone or an acrylic material. When using molding, the surface of the elastomer 36 facing the pistons may be patterned with gaps to allow for lateral expansion of the elastomer 36 when the pillars are pulled into the elastomer 36.

[0033] Optical addressing is described herein. However, other address schemes such as an active matrix backplane of high voltage thin film transistors may also be used for addressing the elastomer-actuated pistons described herein.

[0034] FIGURE 4 illustrates a method for printing with the print structure 10. At reference numeral 54, a portion of the surface 14 is deformed to create the one or more wells 50 that form a pattern on the surface 14. This can be achieved through electrostatic charge or other mechanism. For instance, light can be directed through the substrate 40 and the conductive material 44 to the photoconductor 38. The light can be sourced from a raster output scanner (ROS) or image bar. The light can induce charge associated with the conductive material 44 to migrate across the photoconductor layer 38 and form an electrostatic image against the elastomer layer 36, which creates an electric field that pulls one or more of the pistons 28 into the elastomer layer 36.

[0035] At 56, a material such as a viscous ink can be applied (e.g., via a squeegee, a roller, etc.) over the surface 12 and the wells 50. The mechanism used to apply the material exerts a pressure the pushes the material into the wells 50. The pistons 28 return to about their initial position, pushing any material associated therewith up as they recoil. Any extraneous or excess material can be eliminated by running a cleaning blade or the like over the surface 14. At reference numeral 58, the applied voltage is discharged, allowing all of the pistons 28 to return to about their initial positions. This results in a surface that is inked in those areas where the pistons 28 were actuated. At 60, the material can be transferred to another surface.

[0036] FIGURE 5 illustrates a portion of the print structure 10 with a large ink volume on-off ratio. For this example, the print structure 10 has a plurality of pistons 28 arrayed at approximately 1000 dots per inch (DPI). The pistons 28 are designed to have a taper of about 5 degrees over a 25 micron length as illustrated at 62. On the surface 14, the pistons 28 have a diameter of about 10 microns and, on an opposing surface located proximate the elastomer 36, the pistons 28 have a diameter of about 5 microns, as illustrated at 64. The gaps 32 between each of the pistons 28 and the sheet 12 is about 0.25 microns. This provides a vertical flexibility of about 3 microns.

[0037] The volume displaced by each of the pistons 28 over its range of travel is about 200 cubic microns (0.2 picoliters). The flexibility of each of the pistons 28 can optionally be designed to be greater than the range of motion that each of the pistons 28 will ever encounter during printing operations. The drag on each of the pistons 28 is inversely proportional to the gaps 32. An optional patterned dielectric spacer layer 66 is disposed between the sheet 12 and the elastomer 36. The patterned dielectric spacer layer 66 minimizes interactions between neighboring pistons 28. This facilitates mitigating pulling portions of the sheet 12 into the elastomer 36 by actuated pistons 28 when an extended area is written with charge. This pixel-wise support structure allows the structure to faithfully reproduce low spatial frequency content of an electrostatic image.

[0038] In instances where the pistons 28 are made out of electroformed nickel or permalloy, the expansion rate of the pistons 28 typically will range from about 7 to about 13.4 ppm/°C. Over a 12 inch wide drum, a 10 °C temperature change may elicit about a 30 μm change in a size of an array of the pistons 16 across the substrate 40. In instances where the body of the substrate 40 is formed with an expansivity of about 10 ppm/°C, the run-out between a body of the substrate 40 and the pistons 28 will be only a few microns over 12 inches. The relative run out between the pistons 28 and the substrate 40 typically is an amount that the elastomer 36 can accommodate. With suitable materials selection, a nearly exact thermal expansion match can be achieved. In instances where there is only one patterned element (e.g., the sheet 12 with the embedded pistons 28), there is no misalignment of fine features due to temperature changes.

[0039] The printing structure described herein may include millions (e.g., more than 100 million) functioning pistons 28 in order to produce high resolution images. In one instance, an electroforming technique can be used to create the sheet 12 and the pistons 28 of the printing structure. FIGURE 6 illustrates an exemplary electroforming technique for creating the sheet 12 with the embedded pistons 28.

[0040] At reference numeral 68, an array of posts is fabricated onto a smooth substrate that is metallized with an electroplating seed layer. The posts can be constructed from a photoresist layer or the like in which portions of the photoresist layer are exposed with a dose that fully develops the portions, leaving behind the posts, which may be relatively narrower at an end farthest away from the substrate. The seed layer can be formed from a thin Ti layer with a thin cladding of gold or otherwise.

[0041] At 70, a sheet of metal (e.g., nickel, copper, permalloy, etc.) with one or more apertures is plated up from the substrate. This can be achieved by providing an electroplating seed layer on the substrate prior to fabricating the posts and using this seed layer as a cathode during electroplating. Typically, the metal is formed in a space filling layer everywhere except where it is blocked by the posts. Once the sheet of metal is formed, it can optionally be flattened by...
a chemical mechanical polishing (CMP) technique. A dielectric spacer layer may be introduced by a technique such as spinning and patterning a dielectric such as polyimide or the like. The purpose of this dielectric spacer layer is to prevent the entire foil from getting pulled into the elastomer and thereby limit actuation to the piston. The posts are then removed, for example, by dissolving the posts in a resist stripper.

At reference numeral 72, a mask can be applied to introduce a pattern to define heads for the pistons. In one instance, a negative acting resist is used to introduce a re-entrant sidewall to the resist so that the heads that are formed will be wider at the end closest to the substrate and narrower at the end farthest from the substrate. Such structure may better accommodate a deforming elastomer as described previously. The resulting structure, with its re-entrant holes is coated with a conformal sacrificial layer. A suitable technique for applying the sacrificial layer is electroplating. For example, gold can be electroplated onto the exposed conducting surfaces. At reference numeral 74, electroforming can be used to plate up metal to define the pistons. The second resist mask and the release layers are removed, separating the pistons from the sheet and separating the sheet and the pistons from the substrate.

Table 1 illustrates various input parameters and results (e.g., strains, thicknesses, deflections, etc.) predicted in design calculations based on the known values for the materials employed and reasonable dimensions for the elastomer 36 and/or the photoconductor 38. In this case, the photoconductor 38 can be a multilayer active matrix (AMAT) type. A typical example is a combination of a generator layer, such as benzimidazole perylene (BZP), and a thick hole transport layer such as triphenyl diamine derivative (TPD).

From Table 1, the dielectric constant of the photoconductor 38 can be on the order of 2.9. A vertical displacement of the piston 28 on the order of 5 microns can be achieved with an applied voltage of about 2000 Volts. For a piston 28 about 5 microns in diameter, this represents a volume of ink of about 100 µm³, which is equal to about 0.1 pico-liters. Ink jet delivery systems have drop sizes that are typically much larger. Thus, the print structure 10 can provide for variable data printing at higher resolution and with higher quality inks than current ink printers and laser printers. The piston length can be designed such that it is slightly longer than a thickness of the sheet 12 in order to produce a well of zero volume in the off state.

It is to be appreciated that the printing structure 10 described herein can be adapted for offset printing, wherein an inked impression from a plate is first made on a rubber-blanketed cylinder and then transferred to the paper being printed. The offset printing technique can be leveraged in instances where paper fibers have an undesirable affect on
the pistons 28. In such instances, an intermediate rubber cylinder may extend the service life of the pistons 28.

[0046] The methods described above in FIGURES 4 and 6 illustrate as a series of acts; however, it is to be understood that in various instances, the illustrated acts can occur in a different order. In addition, in some instance, the one or more of the acts can concurrently occur with one or more other acts. Moreover, in some instance more or less acts can be employed.

Claims

1. A print structure for transferring materials, comprising:

 a first layer (12), including;
 a foil sheet (26),
 one or more apertures (30) embedded within the foil sheet (26), and
 one or more pistons (28) that move within the one or more apertures (30) to form one or more wells (50) for holding a material on a surface of the foil sheet (26);
 an elastomer layer (36) in which the one or more pistons are pulled into when forming the one or more wells (50); and
 a photoconductor layer (38) that switches an electric field across the elastomer layer (36).

2. The print structure as set forth in claim 1, wherein the one or more pistons (28) include an array of co-fabricated micro-machined pistons.

3. The print structure as set forth in claim 1, wherein the foil sheet (26) is held at electrical ground potential.

4. The print structure as set forth in claim 1, further including a spacer disposed between the elastomer layer (36) and the first layer (12) to minimize interactions between neighboring pistons.

5. A method of printing using the print structure according to claim 1, the method comprising:

 exposing said photoconductor layer (38) to light to provide an electrostatic field to move the one or more pistons (28) within the one or more apertures (30) to form the one or more wells (50) in a surface of the foil sheet (26);
 applying a material to the surface of the foil sheet (26);
 using pressure to push the material into the wells (50);
 removing charge from the photoconductor layer (38) to substantially returning said one or more pistons (28) to an initial position;
 transferring the material to another surface.

6. The method as set forth in claim 5, wherein the material is a highly viscous ink.

7. The method as set forth in claim 5, wherein the material includes a paste having at least one of metal, a semiconductor, and a ceramic.

8. The method as set forth in claim 5, wherein the print structure is used for variable data printing with highly viscous inks.

Patentansprüche

1. Druckstruktur zum Übertragen von Materialien, umfassend:

 eine erste Lage (12), beinhaltend:
 einen Folienbogen (26),
 eine oder mehrere Öffnungen (30), die in den Folienbogen (26) eingebettet sind, und
 einen oder mehrere Kolben (28), die sich innerhalb der einen oder der mehreren Öffnungen (30) bewegen, um einen oder mehrere Durchgänge (50) zum Halten eines Materials an einer Oberfläche des Folienbobens (26) zu bilden;
 eine elastomere Lage (36), in die hinein die eine oder die mehreren Kolben bei der Bildung des einen oder
2. Druckstruktur nach Anspruch 1, wobei der eine oder die mehreren Kolben (28) eine Feldanordnung von gemeinsam hergestellten, mikrogefeiigten Kolben beinhalten.

3. Druckstruktur nach Anspruch 1, wobei der Folienbogen (26) auf elektrischem Massepotential gehalten wird.

4. Druckstruktur nach Anspruch 1, des Weiteren beinhaltend einen Abstandshalter, der zwischen der elastomeren Lage (36) und der ersten Lage (12) angeordnet ist, um Wechselwirkungen zwischen benachbarten Kolben zu minimieren.

5. Verfahren zum Drucken unter Verwendung der Druckstruktur nach Anspruch 1, wobei das Verfahren umfasst:

 Belichten der Fotoleiterlage (38) mit Licht, um ein elektrostatisches Feld zum Bewegen des einen oder der mehreren Kolben (28) innerhalb der einen oder der mehreren Öffnungen (30) zur Bildung des einen oder der mehreren Durchgänge (50) in einer Oberfläche des Folienbogens (26) bereitzustellen;
 Aufbringen eines Materials auf die Oberfläche des Folienbogens (26);
 Einsetzen von Druck zum Schieben des Materials in die Durchgänge (50);
 Entfernen von Ladung von der Fotoleiterschicht (38), damit der eine oder die mehreren Kolben (28) im Wesentlichen in die Anfangsposition zurückkehren;
 Übertragen des Materials auf eine andere Oberfläche.

6. Verfahren nach Anspruch 5, wobei das Material eine hochviskose Tinte ist.

8. Verfahren nach Anspruch 5, wobei die Druckstruktur zum variablen Datendrucken mit hochviskosen Tinten verwendet wird.

Revendications

1. Structure d'impression pour transférer des matériaux, comprenant :

 une première couche (12), qui comporte ;
 une feuille (26),
 une ou plusieurs ouvertures (30) intégrées dans la feuille (26), et
 un ou plusieurs pistons (28) qui se déplacent dans la ou les nombreuses ouvertures (30) pour former un ou plusieurs puits (50) afin de maintenir un matériau sur une surface de la feuille (26) ;
 une couche élastomère (36) dans laquelle est/sont ramenés le ou les nombreux pistons lors de la formation du ou des nombreux puits (50) ;
 une couche photoconductrice (38) qui commute un champ électrique à travers la couche élastomère (36).

2. Structure d'impression selon la revendication 1, dans laquelle le ou les nombreux pistons (28) comportent une matrice de pistons co-fabriqués et micro-usinés.

3. Structure d'impression selon la revendication 1, dans laquelle la feuille (26) est maintenue à un potentiel de masse électrique.

4. Structure d'impression selon la revendication 1, comportant en plus une entretoise disposée entre la couche élastomère (36) et la première couche (12) pour minimiser les interactions entre les pistons avoisinants.

5. Procédé d'impression utilisant la structure d'impression selon la revendication 1, le procédé comprenant le fait :

 d'exposer ladite couche photoconductrice (38) à de la lumière pour fournir un champ électrostatique afin de déplacer le ou les nombreux pistons (28) dans la ou les nombreuses ouvertures (30) pour former le ou les
nombreux puits (50) dans une surface de la feuille (26) ;
d’appliquer un matériau à la surface de la feuille (26) ;
d’utiliser une pression pour pousser le matériau dans les puits (50) ;
de retirer une charge de la couche photoconductrice (38) pour renvoyer essentiellement lesdits un ou plusieurs pistons (28) à une position initiale ;
de transférer le matériau à une autre surface.

6. Procédé selon la revendication 5, dans lequel le matériau est une encre hautement visqueuse.

7. Procédé selon la revendication 5, dans lequel le matériau comporte une pâte ayant au moins l’un d’un métal, d’un semi-conducteur, et d’une céramique.

8. Procédé selon la revendication 5, dans lequel la structure d’impression est utilisée pour imprimer des données variables avec des encres hautement visqueuses.
FIG. 3

FIG. 4

1. **FORM WELLS IN PRINT SURFACE**
2. **APPLY MATERIAL TO PRINT SURFACE**
3. **RELEASE WELLS**
4. **TRANSFER MATERIAL TO A SURFACE**
FIG. 5

FIG. 6

FABRICATE POSTS ON SUBSTRATE
FORM SHEET WITH APERTURES
DEFINE PISTON HEADS
FORM SHEET WITH PISTONS
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 6234079 B1 [0004]