Memory device with improved writing capabilities

The memory device comprises a memory element (101) for storing a first information value being represented by a first potential or a second information value being represented by a second potential, a bit line (105) for writing either the first information value or the second information value to the memory element (101), and a potential controller (111) coupled to the bit line (105), the potential controller being configured to apply a third potential to the bit line (105), which is less than the first potential when writing the first information value to the memory element (101).
The invention provides a memory device comprising a memory element (e.g. an SRAM) for storing either the first information value which is represented by the first potential (e.g. VSS) and for storing a second information value which is represented by a second potential (e.g. VDD), with the second potential being greater than the first potential. The memory device further comprises a bit line for writing either the first or the second information value to the memory element.

According to the invention, a potential controller is configured to provide a third potential, which may be coupled to the bit line and configured to generate the third potential in response to a control signal provided by the potential controller. For example, the control signal comprises a pulse applied to the bit line. The potential controller is configured to apply a third potential to the bit line, the third potential being less than the first potential when writing the information value to the memory element. In other words, the potential controller is configured to apply a third potential to the bit line, the third potential being less than the first potential when writing the information value to the memory element.

It is the object of the invention to provide a concept for reliably writing to the memory cell. This object is achieved by the features of the independent claims.

According to an aspect of the invention, the memory element is a volatile memory element which is configured to store either the first or the second information value when e.g. the first potential is applied to a first power supply terminal and the second potential is applied to a second power supply terminal of the memory element. According to the invention, the potential controller is configured to undershoot the lowest potential applied to a power terminal of the memory element when writing an information value which is represented by the lowest potential applied to the memory element.

According to an aspect of the invention, either the first information value (e.g. a "0") or a second information value (e.g. a "1") are written to a memory cell via a bit line coupled to the memory cell via e.g. an access transistor. The first information value may be represented by a first potential (e.g. VSS or ground) and the second information value may be represented by a second potential (e.g. VDD). Thus, one unique information unit that can have two values either a low value "0" or an high value "1", corresponding to the first potential (e.g. VSS or ground) or the second potential (e.g. VDD), respectively, can be stored in the inventive memory cell.
line. For example, the potential circuit may be configured to reduce the potential of the bit line from e.g. VDD to VSS during a first time interval. Subsequently, the potential circuit may apply the third potential to the bit line (i.e. to reduce the potential of the bitline from VSS to the third potential) during a subsequent second time interval in response to a falling edge of the pulse. Thus, the length of the time interval during which the potential of the bit line is reduced to the first potential (e.g. VSS) is determined by the length of the pulse. The length of the subsequent second interval during which the third potential is applied to the bit line may further be determined by the potential controller. For example, the potential controller is configured to apply another pulse to the potential circuit, the rising edge of the other pulse determining the beginning of the first interval, the falling edge of the other pulse determining the end of the second interval during which the third potential is applied to the bit line. After the second interval, the potential applied to the bit line may return to the initial potential, e.g. to VDD.

[0016] In order to generate the third potential, the potential circuit may comprise a charge injection capacitor, which introduces the desired effect of undershooting the first potential.

[0017] According to an aspect, the memory element may be accessed to differentially for writing either the first or the second information value to the memory element (e.g. SRAM or DSRAM). In order to provide for differentially accessing to the memory element, the memory device may comprise a further bit line (e.g. a complementary bit line or bit line bar) for accessing to the memory element. The bit line may be coupled to a further access node of the memory element via e.g. a further activable switch.

[0018] According to the invention, the potential controller is also coupled to the further bit line so that either the first or the second information value may differentially be transferred to the memory element during a writing operation. More specifically, the potential controller may be configured to apply the second potential to the bit line (e.g. VDD) and to apply the third potential to the further bit line when writing the second information value to the memory element. Thus, the difference between the potential of the bit line and the potential of the further bit line is increased when compared to the conventional accessing methods by the amount of the third potential undershooting the first potential. Correspondingly, the potential controller may apply the third potential to the bit line and the second potential to the further bit line in order to store the first information value in the memory element.

[0019] According to the invention, the controller may comprise a further potential circuit coupled to the further bit line for generating the third potential to be applied to the further bit line. For example, the controller may be configured to activate only the potential circuit coupled to the bit line or to activate only the further potential circuit coupled to the further bit line during the same write operation. Thus, the potential circuit and the further potential circuit may simultaneously receive complementary control signals from the potential controller. If the potential circuit is deactivated, then e.g. the second potential (for example VDD) is continuously applied to the bit line.

[0020] The inventive concept may also be applied when writing the second information value to the memory element. More specifically, the invention provides a memory device comprising a memory element for storing the first or the second information value, a bit line coupled to the memory element and a potential controller coupled to the bit line, the potential controller being configured to apply a third potential to the bit line when writing the second information value represented by the second potential to the memory element, the third potential exceeding the second potential. In other words, the potential controller may be configured to increase the potential of the bit line above the second potential in order to mitigate the influence of e.g. negative voltage variations across e.g. an access transistor to increase the potential transmitted through the access transistor.

[0021] In order to generate the third potential above the second potential or in order to increase the second potential, the potential controller may comprise a potential circuit with a capacitor for injecting a positive charge when writing the second information value to the memory element. However, the second potential may be generated from the (positive) third potential using e.g. a voltage divider. The potential circuit may have exactly the same structure as one of the potential circuits described below. Generally, the descriptions relating the reducing the potential of the bitline also apply to the aspect related to increasing the potential of the bitline.

[0022] In either case, the direct (e.g. capacitive) boosting of the bit line has the advantage that an additional voltage generator or regulator is not necessary. Thus, the inventive approach is efficient with respect to area occupation and to static and dynamic power consumption. Moreover, the inventive approach does not impact the timing of the writing operation since the inventive boost of the bit line (i.e. overshot or undershot) is performed during the write operation.

[0023] In order to improve the write operation, e.g. a wordline boosting can be used which, however, may degrade the stability of the selected cells. The inventive bit line boosting does not negatively affect the stability of the memory cell.

[0024] Moreover, the inventive concept may be applied for low voltage applications since a boost of e.g. 100 mV recovers 200 mV in low voltage functionality limit.

[0025] Another solution is to decrease the VDD supply of the column to which the cell to be written pertains. The cells which are not accessed are not influenced by this change. The benefit is that the drive of the PMOS pull-up of the memory cell is decreased and therefore the access transistor can more easily force a "0". However, the drive of e.g. a PMOS driving the complementary node of the bit cell is also decreased and consequently establishing VDD on this node is made more difficult. Moreo-
ver, one VDD vertical track per memory cell column has to be built in the layout which increases an area demand which e.g. make more difficult a robust VDD power mesh.

[0026] The principle of the intention is to boost under VSS the bit line that forces the "0" into the bitcell. Since the bit line is the source of the access transistor, this increases significantly the drive current of that transistor so that the pull-up can efficiently be mitigated. This is a good lever since the access transistor is by far (3 times) the most sensitive transistor of the bitcell with respect to the write operation.

[0027] Further embodiments of the invention will be described with respect to the following figures, in which:

Fig. 1 shows a memory device according to an embodiment of the invention;

Fig. 2 demonstrates the inventive bit line boosting;

Fig. 3 demonstrates the influence of the negative bit line level onto the yield gain;

Fig. 4a shows a potential circuit;

Fig. 4b shows a potential circuit with bit line boosting according to the invention;

Figs. 5a to 5f show potential circuits according to the invention;

Fig. 6 shows a memory device for a differential write operation; and

Fig. 7 shows signal diagrams associated with the embodiment of Fig. 6.

[0028] The memory device shown in Fig. 1 comprises a memory element 101 coupled via a transistor 103 to a bit line 105. The memory element 101 is further coupled by a further switch 107 to a further bit line 109.

[0029] The switches 103 and 107 are formed by transistors having control gates coupled to a wordline WL. The memory device further comprises a potential controller 111 having a first terminal coupled to the bit line 105 (BL) and a second terminal coupled to the further bit line 109 (BLB).

[0030] As depicted in Fig. 1, across the transistor 103 a threshold voltage variation +δVt may be present, which may increase the absolute threshold voltage Vt when writing a "0" from the bit line 105 to the memory cell by e.g. a weak N access device. Correspondingly, the varying voltage across the transistor 103 may contribute to a reduction of the absolute voltage Vt when e.g. writing a "0" via the bit line 105 for the case of a strong P load.

[0031] The memory element 101 is accessed to via the bit lines 105 and 109 and the transistors 103 and 107. As depicted in Fig. 1, the memory element 101 is coupled between VSS (e.g. first potential) and VDD (e.g. second potential). Thus, when writing VSS to the memory element for e.g. storing a logical zero ("0"), the potential of the bit line 105 is usually reduced to VSS. However, the positive threshold voltage variation of transistor 103 increases the potential arriving at the memory element 101. Depending on the variation of the threshold voltage of transistor 103, the potential arriving at the memory element 101 may exceed a threshold (e.g. half the difference between VDD and VSS) and may hence introduce an impossibility of writing the memory element 101.

[0032] According to the invention, the potential controller 111 is configured to reduce the potential at the bit line 105 below VSS and to maintain the potential at the further bit line 109 at e.g. VDD in order to store a "0" in the memory element 101. Correspondingly, the potential controller 111 may be configured to reduce the potential at the further bit line 109 below VSS (e.g. to apply a third potential which is less than VSS) and to maintain the potential of the bit line 105 at its initial state (e.g. the second potential, VDD) in order to store a "1" in the memory element 101.

[0033] The memory element 101 may comprise four transistors forming a latch wherein the transistor 103 couples the bit line 105 to the memory element 101 via the access node S and wherein the transistor 105 couples the further bit line 109 to a further access node SB.

[0034] The transistors 103 and 107 are activated upon receiving an activation signal via the wordline WL. The activation signal may be applied to the wordline WL by the potential controller 111.

[0035] According to another aspect, a second potential is applied to the bit line 105 (e.g. VDD) and is reduced by the amount of a negative voltage variation through transistor 103 so that the potential arriving at the memory element 101 via the access node S is less than VDD which may introduce an impossibility of writing the memory element 101. In this case, the potential controller 111 may be configured to increase the potential of the bit line 105 in order to compensate the negative voltage variation. In this case, the potential controller 111 applies a third potential to the bit line 105 which is greater than e.g. VDD for writing to the memory element 101. Simultaneously, the potential controller 111 may reduce the potential of the bit line 109 to VSS or may even reduce the potential of the bit line 109 below VSS in order to increase the effective potential difference between the bit lines 105 and 109 for reliably writing e.g. a "1" to the memory element 101.

[0036] For the sake of brevity, the following embodiments will be described with respect to the negative bit line boost. It shall, however, be noted that the inventive concept also applies to the case of the positive bit line boost.

[0037] According to an aspect of the invention, the bit line is boosted under VSS during the write operation. This recovers the voltage Vgs of an access transistor (e.g. transistor 103 or 107) suffering from large Vt fluctuations.
The access transistor is the most sensitive element with respect to voltage variation during a write operation.

Fig. 2 demonstrates the effect of the negative bit line boost on the potentials at the nodes S and SB.

Upon activating the wordline WL, the potential at the access node S decreases and the potential at the access node SB increases. The potential at the bit line 109 (BLB) remains at the level 0.75 V (VDD). Simultaneously, the potential at the bit line 105 (BL) is reduced from 0 V (VSS) to a third potential which is approximately -0.1 V. For example, while the bitline is not below VSS, the cell is not written because node S doesn't decrease enough toward VSS. Then, the bitline reduction under VSS enables to trigger the writing of the cell.

Fig. 3 demonstrates the translation of the benefits of the negative bit line boost into yield gain. The negative boost, which is to be performed, is in the order of e.g. 10 to 200 mV. Consequently, the potential controller providing the negative boost may be embedded inside the memory device without any additional voltage generator since a capacitive boosting of the bit line may be employed.

According to an aspect, the inventive controller may comprise a potential circuit (a buffer) for applying the third potential to the bit line (i.e. for reducing the potential of the bit line from e.g. VDD to e.g. -10 mV). The inventive potential circuit may be formed upon a basis of a conventional write potential circuit shown in Fig. 4a with a transistor 401 and a transistor 403 arranged in series. In particular, a first terminal of the first transistor 401 is connected to the bit line BL. The second terminal of the first transistor 401, the node 407 connecting the first terminal of the transistor 401 and a control terminal 409 of the transistor 401 are disconnected. The transistors 401 and 403 may be e.g. MOSFET transistors.

In order to achieve the negative bit line boost, a pulse WRP is applied to the control terminal 411 of the transistor 403. The transistor 403 is then activated again upon receiving a falling edge of the pulse WRP, which causes the potential of the bit line BL to rise to the initial potential VDD. In this respect, VSS represents the first potential, VDD represents the second potential and the potential below VSS represents the third potential.

Figs. 5a to 5f show several potential circuits for applying the third potential to a bitline according to the invention.

Fig. 5a shows a potential circuit comprising a transistor T having a first terminal 501 and a second terminal coupled to VSS or to ground. The first terminal 501 is connected via a capacitor CB to a control terminal (e.g. to a gate) of the transistor T. The first terminal 501 is connected to the bit line BL.

The transistor T as shown in Fig. 5a may be an NMOS transistor of a write potential circuit with the boosting capacitor CB. The transistor T and the capacitor CB have a common control net WRN.

The potential controller is configured to apply the pulse WRN shown in Fig. 4b to the control terminal of the transistor T in order to apply the third potential to the bit line BL, i.e. in order to reduce the potential of the bit line BL below VSS. The capacitor CB introduces a charge injection in response to the falling edge of the pulse WRN, which generates a potential below VSS.

The potential circuit shown in Fig. 5b additionally comprises a delay element 503 (e.g. a buffer) coupled between the control terminal of the transistor T and the capacitor CB. The delay element 503 delays the boosting capacitor control signal WRN with respect to the transistor control signal. Therefore, the transistor T is off during the whole boosting phase which increases the efficiency of the boost.

Fig. 5c shows a potential circuit additionally having a resistor R coupled in parallel to the transistor T. The resistor R controls the amplitude of the boost. Another advantage is that the output impedance can be tuned independently on the boost amplitude.

Fig. 5d shows a potential circuit comprising a diode D coupled in parallel to the resistor R. The cathode of the diode D is coupled to the capacitor CB and to the first terminal 501 of the transistor T. The diode D shown in Fig. 5d limits the boost amplitude to a predetermined threshold.

Fig. 5e shows a potential circuit comprising a transistor T2 being arranged to form a capacitor. The potential circuit further comprises a transistor T3 coupled in parallel to the transistor T. The transistor T3 is arranged to form a resistor in response to a control voltage U_T3 applied to a control terminal of the transistor T3. Thus, the value of the resistance is variable depending on the voltage U_T3 so that a different attenuation of the negative potential may be adjusted. The potential circuit further comprises a resistor T4 coupled in parallel to the transistor T3. The transistor T4 is arranged to form a diode and limits the amplitude of a negative potential peak.
at the bitline BL. The transistor T and the transistor T4 forming a diode shown in Fig. 5e may be MOS transistors, wherein the diode D may be a N-P diode. The transistor T3 that is used as a resistor has its gate dynamically controlled to activate it only during the write operation.

[0052] Fig. 5f shows a potential circuit comprising a transistor T5 coupled in parallel to the transistor T3. The transistor T5 is arranged to form a resistor with variable resistance depending on a control voltage U T4 applied to a control terminal of the transistor T5 (e.g. to the gate). The transistor T5 limits the amplitude of a negative potential peak applied to the bit line 501. In Fig. 5f, the MOS diode is replaced by a MOS transistor T4 a gate of which is controlled by signal U T4 with a voltage dV4. The advantage is that the diode starts to pass when the bit line goes below (-Vt4 + dV4). This has to be compared to the MOS diode with VSS on its gate where the activation level was fixed to -V4.

[0053] In the embodiments shown in Figs. 5a to 5f, the second terminals of the transistors T, T2, T3, T4 or T5 are connected to the first potential (e.g. ground or VSS). Furthermore, all control signals may be generated by the potential controller 111.

[0054] Fig. 6 shows an embodiment of the potential controller arranged to differentially control the potentials of the bit lines BL and BLB during a write operation.

[0055] The potential controller comprises a first potential circuit with a transistor 601 and a transistor 603 coupled in parallel to the transistor 601. The transistor 603 is arranged to form a diode. The first potential circuit further comprises a transistor 605 forming a capacitor, the transistor 605 being coupled between a first node 607 and a control terminal of the transistor 601. The first potential circuit further comprises a transistor 609 having a first terminal for receiving e.g. VDD and a second terminal of the transistors T, T2, T3, T4 or T5 are connected to the first potential (e.g. ground or VSS). Furthermore, all control signals may be generated by the potential controller 111.

[0056] The potential controller further comprises an inverter 621 having an input 623 and an output coupled to a gate 625. An output of the gate 625 is coupled to a control terminal of the transistor 611 of the second potential circuit. The input 623 of the inverter 621 is coupled to an input of a gate 627 and to an input of a gate 628. The output of the inverter 621 is coupled to an input of the gate 629.

[0057] An output of the gate 629 is coupled to a control input of the transistor 619, an output of the gate 627 is coupled to a control input of the transistor 609, an output of the gate 628 is coupled to a control input of the transistor 601. An input of the gate 627 and an input of the gate 629 are connected via a node 630. An input of the gate 628 and an input of the gate 625 are connected to the node 630. Other inputs of the gates 628 and 625 are connected to a node 631.

[0058] In operation, the potential controller is coupled to the bit line BL via the node 607 and to the further bit line BLB via the node 617. The gates 628 and 625 generate the signals WBL, WBLB, WBLB, and WBLB. The signal WBL activates the transistor 601 and the signal WBLB activates the transistor 611. Correspondingly, the gates 627 and 629 output control signals WBL and WBLB activating the transistors 609 and 619, respectively.

[0059] The signals WBL, WBLB, WBL, and WBLB are generated in response to a data signal DB applied to the input 623 of the inverter 621 in dependence on a control signal WE applied to the node 630 and a control signal BSTB applied to the node 631. It shall be noted that the first potential circuit and the second potential circuit are based on the potential circuit shown in Fig. 5b with the transistors 603 and 613 being arranged to form diodes. The capacitor is directly connected to the net driving the gate of the NMOS pull-down. No resistor is used on the bit lines. The diode is a MOS diode built with an NMOS.

[0060] Although there is no resistor for regulation and no delay to control the capacitor (intended to improve the efficiency of the boost), the structure performs a regulation of the boost amplitude. Indeed, while the capacitor is injecting charges on the bit line, the NMOS pull-down is being switched off at the same time. Consequently, during the charge injection, the NMOS pull-down is partially on, thus performing a regulation.

[0061] The write operation within an SRAM memory is improved by the inventive circuit which is pulling down at a negative voltage all the selected bit lines. This negative boost of the bit line increases significantly the drive current of the access transistors of the core cell and therefore eases the write of the zero into the cell, especially at low voltage. The boosting circuit is added to the write potential circuit and comprises a capacitive element having its first node coupled to the bit line and its second node coupled to a dynamic signal of the memory. The bit line boost has the maximum amplitude when the boost signal has the negative transition after the complete discharge to VSS of the bit line.

[0062] One of the most efficient ways to make the capacitive element is a MOS transistor with the gate being connected to the boost signal and the drain-source to the bit line. Some other devices like a resistor or a diode arranged in parallel to the pull-down device of the write potential circuit allow to control the amplitude of the bit line boost more efficiently.

[0063] Fig. 7 shows signal diagrams associated with operating the write stage shown in Fig. 6. Due to the differential operation, the potential at the bit line BLB remains unchanged when the potential at the bit line BL is reduced and vice versa. Bit lines are initially charged to e.g. VDD.

[0064] The advantage of the inventive negative bit line boosting is that the write operation is strongly improved without any counter effect. The access transistor, which is the most sensitive one, is much strengthened. Further-
more, there is no degradation of the drive of the pull-up transistors. Consequently, establishing the complementary value VDD remains easy. Simultaneously, the stability of the cells selected by the wordline is not affected. The invention operates thanks to a dedicated management of the bitline. Consequently, a further advantage over solutions acting on the memory cell supply is that no additional net, like a local VDD dedicated to the column, has to be built in the memory cell array.

Claims

1. A memory device comprising:

 a memory element (101) for storing a first information value being represented by a first potential or a second information value being represented by a second potential; a bit line (105) for writing either the first information value or the second information value to the memory element (101); and a potential controller (111) coupled to the bit line (105), the potential controller being configured to apply a third potential to the bit line (105), which is less than the first potential when writing the first information value to the memory element (101).

2. The memory device according to claim 1, the memory element (101) being a volatile memory element storing either the first or the second information value when the first potential is applied to a first power supply terminal of the memory element (101) and the second potential is applied to a second power supply terminal of the memory element (101).

3. The memory device according to claim 1 or 2, the potential controller (111) comprising a potential circuit coupled to the bit line (105), the potential circuit being configured to generate the first potential in response to a control signal.

4. The memory device according to claim 3, the control signal comprising a pulse, the potential circuit being configured to generate the third potential in response to a falling edge of the pulse.

5. The memory device according to claim 4, the potential circuit being configured to reduce the potential of the bit line to the first potential in response to a rising edge of the pulse during a first time interval and to apply the third potential to the bit line during a subsequent second time interval in response to a falling edge of the pulse.

6. The memory device according to one of the claims 1 to 5, the potential controller (111) comprising a potential circuit coupled to the bit line for generating the third potential, the potential circuit comprising a transistor and a capacitor, the capacitor being coupled between a first terminal of the transistor and a control terminal of the transistor, the first terminal being coupled to the bit line.

7. The memory device according to claim 6, the potential circuit comprising a delay element coupled between the control terminal of the transistor and the capacitor.

8. The memory device according to claim 6 or 7, the potential circuit comprising a resistive element coupled in parallel to the transistor.

9. The memory device according to claim 8, the resistive element being formed by a transistor.

10. The memory device according to one of the claims 6 to 9, the potential circuit comprising a diode coupled in parallel to the transistor, a cathode of the diode being coupled to the first terminal of the transistor.

11. The memory device according to one of the claims 6 to 10, comprising a further transistor coupled in parallel to the transistor, the further transistor being arranged to form a diode.

12. The memory device according to one of the claims 6 to 11, comprising a further transistor coupled in parallel to the transistor, the further transistor being arranged to form a resistive element.

13. The memory device according to one of the claims 6 to 12, the potential controller (111) being configured to apply a pulse to the control terminal of the transistor, the potential circuit being configured to generate the third potential in response to the pulse.

14. The memory device according to claim 13, the potential circuit comprising a further transistor having a first terminal, a second terminal and a control terminal, the second terminal of the further transistor being coupled to the first terminal of the transistor, the potential controller (111) being configured to apply a further pulse to the control terminal, the further pulse being longer than the pulse.

15. The memory device according to one of the claims 1 to 14, comprising a further bit line (109) for writing either the first information value or the second information value to the memory element, the potential controller (111) being further coupled to the further bit line (109), the potential controller (111) being configured to apply the third potential to the further bit
16. The memory device according to claim 15, the potential controller (111) comprising a potential circuit coupled to the bit line for generating the third potential when writing the first information value to the memory element and a further potential circuit coupled to the further bit line (109) for generating the third potential.

17. The memory device according to claim 15 or 16, the potential controller (111) being configured to activate only the potential circuit or to activate only the further potential circuit at the same time.

18. The memory device according to one of the claims 15 to 17, the potential controller (111) being configured to apply the third potential to the bit line (105) and to apply the second potential to the further bit line (109) when writing the first information value to the memory element (101), and to apply the second potential to the bit line (105) and the third potential to the further bit line (109) when writing the second information value to the memory element (101).

19. The memory device according to one of the claims 1 to 18, the potential controller (111) being configured to apply the second potential to the bit line (105) when writing the second information value to the memory element (101).

20. The memory device according to one of the claims 1 to 19, the potential controller (111) being configured to apply a fourth potential to the bit line (105) when writing the second information value to the memory element (101), the fourth potential being greater than the second potential.

21. A memory device, comprising:

- a memory element (101) for storing a first information value being represented by a first potential or a second information value being represented by a second potential, the first potential being less than the second potential;
- a bit line (105) for writing either the first information value or the second information value to the memory element (101); and
- a potential controller (111) coupled to the bit line (105), the potential controller being configured to apply a third potential to the bit line (105), which is greater than the second potential when writing the second information value to the memory element (101).

22. A method for writing either a first information value or a second information value via a bit line to a memory element, the first information value being represented by a first potential, the second information value being represented by a second potential, the method comprising:

apply a third potential to the bit line when writing the first information value to the memory element, the third potential being less than the first potential.

23. A method for writing either a first information value or a second information value via a bit line to a memory element, the first information value being represented by a first potential, the second information value being represented by a second potential, the method comprising:

apply a third potential to the bit line when writing the second information value to the memory element, the third potential being greater than the second potential.
FIG 2
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 4 404 661 A (NAGAYAMA ET AL) 13 September 1983 (1983-09-13) column 2, lines 4-42; figure 2 *</td>
<td>21,23</td>
<td>G11C11/419</td>
</tr>
<tr>
<td>A</td>
<td>US 4 493 056 A (MAO ET AL) 8 January 1985 (1985-01-08) abstract * column 9, lines 4-31; figure 4 *</td>
<td>21,23</td>
<td>G11C11/419</td>
</tr>
<tr>
<td>A</td>
<td>EP 0 632 462 A (INTERNATIONAL BUSINESS MACHINES CORPORATION) 4 January 1995 (1995-01-04) column 1, lines 8-15 - column 3, lines 11-37; figures 1,2 *</td>
<td>1-20,22</td>
<td>G11C</td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims.

Category of cited documents:
- **X:** particularly relevant if taken alone
- **A:** technological background
- **P:** intermediate document
- **T:** theory or principle underlying the invention
- **E:** earlier patent document, but published on, or after the filing date
- **D:** document cited in the application
- **L:** document cited for other reasons
- **&:** member of the same patent family, corresponding document

Place of search: Munich
Date of completion of the search: 22 March 2006
Examiner: Gaertner, W
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

22-03-2006

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>JP 56065396 A</td>
<td>03-06-1981</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 62026117 B</td>
<td>06-06-1987</td>
</tr>
<tr>
<td>US 4493056 A</td>
<td>08-01-1985</td>
<td>DE 3380578 D1</td>
<td>19-10-1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0097839 A2</td>
<td>11-01-1984</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 1305360 C</td>
<td>28-02-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 59009960 A</td>
<td>19-01-1984</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 60028143 B</td>
<td>03-07-1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7065573 A</td>
<td>10-03-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5504702 A</td>
<td>02-04-1996</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82