Perforating unit having reduced heat deformation effect and image forming system using the same

A perforator (121) for use with a sheet includes a first frame (312) and a blade (301). The first frame (312) includes a first main face (312a) having a first hole (313), and is located in use under a sheet transport path. There may also be a second frame (310), located in use over the sheet transport path, including a second main face (310a) and having a second hole (311) aligned with the first hole (313) in the first main face (312a). The blade (301) is moved into the first hole (313) and second hole (311), if present, to perforate the sheet (P) transported along the sheet transport path. The bending strength of the first main face (312) or second main face (310) in a direction vertical with respect to the transport path is set smaller than the bending strength of the first main face (312) or second main face (310) in a direction parallel with respect to the sheet transport path.
Description

TECHNICAL FIELD

[0001] The present disclosure generally relates to an image forming system having an image forming unit and finishing unit, and more particularly to a finishing unit, which processes a sheet transported from an image forming unit.

BACKGROUND

[0002] An image forming apparatus such as printer, copier, facsimile, and MFP (multi-functional peripherals) may be attached with a finishing unit, to which a sheet having an image thereon is ejected from the image forming apparatus.

[0003] The finishing unit may include a perforator to perforate a hole on the sheet ejected from the image forming apparatus.

[0004] The perforator includes a reciprocal type unit having a die frame, a guide frame, and a blade, for example.

[0005] The die frame includes a die hole, and is placed under a transport path of sheet. The guide frame includes a guide hole, and is placed over the transport path of sheet.

[0006] The die hole and guide hole are aligned in a same axial direction so that the blade can be moved in a reciprocal direction through the guide hole and die hole.

[0007] The blade is moved in the reciprocal direction through the guide hole and die hole to perforate a hole on the sheet, transported between the die frame and guide frame.

[0008] In order to conduct such perforation process on the sheet, the blade may be supported by the guide frame with a given allowance such as 10 micrometers, for example.

[0009] Furthermore, the blade and die frame are designed in a manner so that the blade and die hole have a given amount of clearance between the blade and die hole such as 10 to 20 micrometers, for example.

[0010] Such perforator may be affected by heat generated in the image forming unit, wherein the heat may be generated when the image forming unit conducts an image transfer process, for example.

[0011] Such heat may affect a plurality of parts in the perforator, and may cause a temperature variation between the plurality of parts in the perforator.

[0012] In case of reciprocal type perforator, a sheet is temporarily stopped and then pressed to the die frame to perforate a hole on the sheet with a reciprocal movement of the blade through the die hole of the die frame, wherein the sheet may have some heat energy received during image forming process in the image forming unit.

[0013] Accordingly, the die frame may become into a relatively higher temperature condition compared to the guide frame. In addition, the die frame and guide frame may be firmly fixed with each other by a rivet or the like to maintain a preciseness of perforation.

[0014] Therefore, if a temperature variation occurs between the die frame and guide frame, one of the die frame and guide frame may be deflected.

[0015] Such deflection may be observed as an elongation of the die frame due to a temperature increase of the die frame. Such elongation may occur to the die frame because the die frame and guide frame are fixed firmly as above-mentioned.

[0016] Such deflection may occur in either one of two directions depending on a shape of the guide frame and die frame. One direction is a parallel direction with respect to the transport direction of sheet, and another direction is a vertical direction with respect to the transport direction of sheet.

[0017] If the die frame deflects in a parallel direction with respect to the transport direction of sheet, the guide hole and die hole may be deviated from the aligned condition.

[0018] If such deviation may occur significantly, such deflection may hinder a pass-through of the blade in the die hole, and may degrade a perforation quality.

[0019] Furthermore, if the blade may not pass through the die hole smoothly, the blade may become into an overloaded condition, by which the image forming system may stop the movement of blade, and then an operation of the image forming system may be stopped.

SUMMARY

[0020] The present disclosure relates to a perforator for use with a sheet, comprising:

- a first frame including a first main face having a first hole, the first frame being located in use under a sheet transport path; and
- a blade configured to be moved into the first hole to perforate a sheet transported along the sheet transport path,

characterised in that the bending strength of the first main face in a direction vertical with respect to the sheet transport path is set smaller than the bending strength of the first main face in a direction parallel with respect to the sheet transport path.

[0021] The present disclosure also relates to a perforator for use with a sheet, comprising:

- a first frame, located in use under a sheet transport path, and including a first main face having a first hole;
- a second frame, located in use over the sheet transport path, including a second main face having a second hole aligned with the first hole in the first main face of the first frame; and
- a blade configured to be moved into the second hole and first hole to perforate a sheet transported along

EP 1 762 348 A1

2
the sheet transport path,
characterised in that the bending strength of the second main face in a direction vertical with respect to the sheet transport path is set smaller than the bending strength of the second main face in a direction parallel with respect to the sheet transport path.

A more complete appreciation of the disclosure and many of the attendant advantages and features thereof can be readily obtained and understood from the following detailed description with reference to the accompanying drawings, wherein:

FIG. 1 is a schematic view of an image forming system having an image forming unit and a finishing unit according to an example embodiment;
FIG. 2 is a schematic cross sectional view of a perforator according to an example embodiment;
FIG. 3 is a schematic view of a perforator according to an example embodiment when viewed from a sheet entrance side;
FIG. 4 is a schematic sequence view explaining a perforation process of sheet by a perforator;
FIG. 5A and 5B are perspective views of a guide frame and a die frame, in which a die frame has no cut-off area;
FIG. 6A and 6B are perspective views of a guide frame and a die frame, in which a die frame has a cut-off area;
FIG. 7 is a schematic cross sectional view of a perforator according to another example embodiment;
FIG. 8 is a schematic cross sectional view of a perforator according to another example embodiment when viewed from a sheet entrance side;
FIGs. 9A and 9B are perspective views of a guide frame and a die frame, in which a guide frame has no cut-off area; and
FIG. 10A and 10B are perspective views of a guide frame and a die frame, in which a guide frame has a cut-off area.

Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views, an image forming system according to an example embodiment is described with particular reference to FIGs. 1 to 6.

FIG. 1 is a schematic configuration of an image forming system including an image forming apparatus 100 and finishing unit 200.

FIG. 2 is a schematic cross sectional view of a perforator according to another example embodiment:

FIG. 3 is a schematic view of a perforator according to an example embodiment;
FIG. 4 is a schematic sequence view explaining a perforation process, and ejects the sheet outside of the finishing unit 200 after conducting processing operations to the sheet.

FIG. 5 is a schematic view of a perforator according to another example embodiment:

FIG. 6A and 6B are perspective views of a guide frame and a die frame, in which a die frame has no cut-off area;
FIG. 7 is a schematic cross sectional view of a perforator according to another example embodiment:
FIG. 8 is a schematic cross sectional view of a perforator according to another example embodiment when viewed from a sheet entrance side;
FIGs. 9A and 9B are perspective views of a guide frame and a die frame, in which a guide frame has no cut-off area; and
FIG. 10A and 10B are perspective views of a guide frame and a die frame, in which a guide frame has a cut-off area.

As shown in FIG. 1, the image forming apparatus 100 transports a sheet to the finishing unit 200 via a sheet transport route 2R.

As shown in FIG. 1, the sheet transport route 2R is surrounded by an entrance sensor 36, the perforator 121 (e.g., reciprocal type unit), an entrance roller 2, and separation claws 8a and 8b, for example.

The entrance sensor 36 detects a front edge of sheet transported from the image forming apparatus 100.

The entrance sensor 36 detects a front edge and rear edge of sheet transported from the image forming apparatus 100.

Each of the separation claws 8a and 8b is controlled by a solenoid (not shown) and spring (not shown).

By adjusting a position of the separation claws 8a and 8b, the sheet transported from the image forming apparatus 100 can be transported to a first sheet tray 12, a second sheet tray 14, or to a stapler 11, as required.

As shown in FIG. 1, a sort/stack route 12R extends from the sheet transport route 2R to the first sheet tray 12.

The sort/stack route 12R includes a transport roller 2, a sheet ejection sensor 38, an ejection roller 3, an adjust roller 7, a sheet detection lever 13, and sheet detection sensors 32 and 33, for example.

The sheet ejection sensor 38 detects a sheet. The ejection roller 3 includes a drive roller 3a and a driven roller 3b. The adjust roller 7 adjusts a lateral edge of sheets to one side on the first sheet tray 12.

The sheet detection lever 13 moves in a vertical direction depending on a number of sheets stacked on the first sheet tray 12.
The sheet detection sensors 32 and 33 detect a height of sheets stacked on the first sheet tray 12.

As for the ejection roller 3, the driven roller 3b is normally biased and contacted to the drive roller 3a with a self-weight of the driven roller 3b or spring force, for example.

Sheets or stapled sheets can be ejected to the first sheet tray 12 through a nip between the drive roller 3a and driven roller 3b.

As shown in FIG. 1, a transport route 14R extends from the sheet transport route 2R to the second sheet tray 14, and a plurality of transport rollers are disposed along the transport route 14R.

The second sheet tray 14 stacks sheets printed by facsimile or printer function of the image forming apparatus 100, wherein such facsimile or printer function may be conducted by interrupting another function such as copying.

As shown in FIG. 1, a staple transport route 11R extends from the sheet transport route 2R to the stapler 11 in a staple unit 15, and a plurality of transport rollers 4a, 4b, and 4c are disposed along the staple transport route 11R.

The staple unit 15 includes a sheet ejection sensor (not shown), and a sheet feed roller 6 having a brush, for example.

The transport rollers 4a, 4b, and 4c can be driven by a transport motor (not shown).

The staple unit 15 includes a staple tray (not shown) and a staple motor (not shown), wherein the staple tray is used to support parts used for staple unit 15, and the stapler 11 is provided under the staple tray.

The staple tray is attached with a jogger fence 9, a return roller 5, and an ejection belt 10.

The jogger fence 9 collates sheets. The ejection belt 10 is provided next to the jogger fence 9 to eject stapled sheets.

The ejection belt 10 includes an ejection claw 10a fixed on the ejection belt 10, wherein the ejection claw 10a can support a rear edge of stapled sheets stapled by the stapler 11.

The jogger fence 9 can be moved in a width direction of the sheet by a jogger motor (not shown) and jogger belt (not shown).

The return roller 5 can be driven with a solenoid (not shown), and can contact a surface of sheet.

As shown in FIG. 1, a rear fence 19 is disposed under the jogger fence 9, wherein the rear fence 19 can be abutted to a rear edge of sheets.

The stapler 11 can be driven by a stapler motor (not shown) and a stapler belt (not shown), and can be moved in a front and rear direction of the finishing unit 200.

The rear edge of the stapled sheets, stapled by the stapler 11, is supported by the ejection claw 10a fixed on the ejection belt 10.

When, with a traveling of the ejection belt 10 driven by an ejection motor (not shown), the stapled sheets are ejected to the first sheet tray 12 with a guide effect of the guide plate 20.

The first sheet tray 12 can be hanged by a lift belt (not shown), for example, wherein the lift belt can be driven by a lift motor (not shown) and a gear system having a worm gear and a timing belt.

The lift belt can be moved in a vertical direction (i.e., upward or downward direction) by adjusting a rotation direction of the lift motor.

The first sheet tray 12 can be moved in a horizontal direction with a shift motor (not shown), as required.

The sheet detection lever 13 and sheet detection sensors 32 and 33 are used to detect a home position and height of the first sheet tray 12.

When the first sheet tray 12, moveable in vertical and horizontal direction, is filled with sheets such as stapled sheets, a limit sensor (not shown) detects such condition.

If the adjust roller 7 is pushed by the first sheet tray 12 when the first sheet tray 12 moves in a upward direction, a limit switch (not shown) becomes an OFF state to stop a rotation of the lift motor, by which a mechanical damage caused by overrunning of the first sheet tray 12 can be prevented.

Hereinafter, the perforator 121 and its surrounding are explained with reference to FIGs. 2 and 3.

FIG. 2 is a schematic cross sectional view of the perforator 121 according to an example embodiment.

FIG. 3 is a schematic view of the perforator 121 when viewed from a sheet entrance side. FIG. 2 corresponds to a cross-section view cut at line A-A in FIG. 3.

As shown in FIGs. 2 and 3, the perforator 121 may include a blade 301, a guide frame 310, and a die frame 312. The perforator 121 may also include a motor 302, a belt 303, a drive pulley 304, a shaft 305, a home position sensor 306, a cam 307, a holder 308, a hopper 309, a heat insulating member 314, a spacer 315, a rivet 316, and a transport guide member 317, for example.

The blade 301 can perforate a hole on a sheet P when the blade 301 moves in a vertical direction with respect to a transport direction of sheet P.

As shown in FIG. 2, the blade 301 has an edge formed in wedge shape so that the blade 301 can easily perforate a hole on the sheet P.

The motor 302 can drive the drive pulley 304 via the belt 303. The motor 302 can transmit a driving force to the drive pulley 304 because the belt 303 connects the motor 302 and drive pulley 304.

The drive pulley 304 can drive the blade 301 in a vertical direction with respect to a transport direction of sheet P via the shaft 305, cam 307, and holder 308.

The home position sensor 306 detects an initial position of blade 301 in the perforator 121.

The holder 308 can regulate a position of the blade 301. The blade 301 can be moved in an upward and downward direction when the cam 307 makes a given rotational movement around the shaft 305 with a
movement of the drive pulley 304.

[0074] The hopper 309 recovers cuttings of the sheet P, which are produced when the blade 301 perforates a hole on the sheet P.

[0075] As shown in FIGs. 2 and 3, the die frame 312 may be provided under the transport path of sheet P, and guides the sheet P from the downward direction.

[0076] The die frame 312 includes a first main face 312a and a first inclined corner 312b, for example. The first inclined corner 312b is extended along the first main face 312a (see FIG. 6A).

[0077] The die frame 312 also includes a die hole 313 on the first main face 312a, through which the blade 301 moves in the vertical direction with respect to the transport direction of the sheet P.

[0078] The first main face 312a can be used to guide the sheet P from the downward direction, and the first inclined corner 312b is inclined with respect to the transport direction of sheet P as shown in FIG. 2.

[0079] As shown in FIGs. 2 and 3, the guide frame 310 may be provided over an upper area of the transport path of sheet P, and guides the sheet P from the upward direction.

[0080] The guide frame 310 includes a second main face 310a and a second inclined corner 310b, for example. The second inclined corner 310b is extended along the second main face 310a (see FIG. 6A).

[0081] The guide frame 310 also includes a guide hole 311 on the second main face 310a, through which the blade 301 moves in the vertical direction with respect to the transport direction of the sheet P.

[0082] The second main face 310a can be used to guide the sheet P from the upward direction, and the second inclined corner 310b is inclined with respect to the transport direction of the sheet P as shown in FIG. 2.

[0083] By forming the first inclined corner 312b and the second inclined corner 310b as shown in FIG. 2, the sheet P can be easily guided between the first main face 312a and second main face 310a.

[0084] The die frame 312 may include a cut-off area C apart from the first main face 312a and first inclined corner 312b, which face the perforator 121 through which the blade 301 moves in the vertical direction with respect to the guide frame 310 and die frame 312, and considering other parts around the die frame 312.

[0085] The cut-off area C may be cut in a rectangular shape from a face, which has no specific function in the die frame 312, as shown in FIG. 6.

[0086] However, such cut-off area C can be cut in any shape depending on an entire shape of the die frame 312, and considering other parts around the die frame 312.

[0087] The heat insulating member 314 can be made of material having lower heat conductivity compared to a material for the die frame 312.

[0088] As shown in FIGs. 2 and 3, the heat insulating member 314 may be disposed along the first inclined corner 312b.

[0089] The sheet P may absorb some heat energy when a fixing process is conducted in the image forming apparatus 100. Such heated sheet P is transported to the perforator 121 through the first inclined corner 312b, and then the sheet P passes through a transport path in the perforator 121.

[0090] The heat insulating member 314 may contact the sheet P when the sheet P passes through the first inclined corner 312b, by which the heat insulating member 314 may suppress heat conduction from the heated sheet P to the first inclined corner 312b.

[0091] Accordingly, the heat insulating member 314 may suppress heat conduction from the heated sheet P to the die frame 312.

[0092] As shown in FIG. 2, the heat insulating member 314 includes an edge portion 314a, which protrudes from the first main face 312a with some length.

[0093] The die frame 312 and guide frame 310 have a given space between the first main face 312a and second main face 310a. For example, such space may be approximately 2 mm.

[0094] Therefore, if the edge portion 314a may protrude from the first main face 312a within a range of 0.5 mm to 1 mm, for example, such edge portion 314a may not hinder a transportation of the sheet P.

[0095] The heat insulating member 314 is preferably made of elastic material such as polyester film to reduce hindering of transportation of sheet P by the heat insulating member 314.

[0096] As shown in FIG. 3, the spacer 315 is disposed at each lateral side of the transport path in the perforator 121. The spacer 315 is used to effectively secure the given space between the guide frame 310 and die frame 312.

[0097] The rivet 316 is used to firmly fix the guide frame 310 and die frame 312 each other to maintain a positional relationship of the guide frame 310 and die frame 312.

[0098] With such configuration for the guide frame 310 and die frame 312, the perforator 121 may conduct sheet perforation precisely.

[0099] As shown in FIG. 2, the transport guide member 317 is provided in an upstream of transport direction of sheet P with respect to the guide frame 310 and die frame 312, and guides the sheet P to the given space between the guide frame 310 and die frame 312.

[0100] The transport guide member 317 includes an upper guide member 318 and a lower guide member 319, wherein the upper guide member 318 guides the sheet P from the upward direction and the lower guide member 319 guides the sheet P from the downward direction.

[0101] The upper guide member 318 includes an upper guide face 318a, which guides the sheet P from the upward direction.

[0102] The lower guide member 319 includes a lower guide face 319a, which guides the sheet P from the downward direction.

[0103] As shown in a configuration in FIG. 2, the upper guide face 318a of the upper guide member 318 may be positioned below the second main face 310a of the guide...
frame 310 (refer to a dotted line M in FIG. 2), and the lower guide face 319a of the lower guide member 319 may be positioned below the first main face 312a of the die frame 312 (refer to a dotted line L in FIG. 2).

[0104] With such arrangement, the sheet P may more likely to contact with the die frame 312 compared to the guide frame 310 in a configuration shown in FIG. 2.

[0105] Accordingly, the die frame 312 may be more affected by the heated sheet P compared to the guide frame 310.

[0106] Therefore, a design work for coping with temperature change in the perforator 121 may be mainly considered for the die frame 312, but not for the guide frame 310, by which the design work can be conducted with fewer amount of time or steps. Accordingly, a total amount of design works can be reduced.

[0107] FIG. 4 shows schematic sequential views for explaining a process of perforation on the sheet P by the perforator 121. With reference to FIG. 4, a process of perforation on the sheet P by the perforator 121 is explained.

[0108] In a configuration shown in FIG. 2, the upper guide face 318a of the upper guide member 318 may be positioned below the second main face 310a of the guide frame 310 (refer to a dotted line M in FIG. 2), and the lower guide face 319a of the lower guide member 319 may be positioned below the first main face 312a of the die frame 312 (refer to a dotted line L in FIG. 2).

[0109] With such arrangement, the sheet P may be transported from the transport guide member 317 to the first inclined corner 312b of the die frame 312.

[0110] The heat insulating member 314 overlays the first inclined corner 312b as above-mentioned, therefore, the sheet P may contact with the heat insulating member 314.

[0111] Accordingly, the sheet P may not contact the first inclined corner 312b directly, by which the heat insulating member 314 may suppress heat conduction from the sheet P to the first inclined corner 312b.

[0112] Therefore, a temperature increase of the die frame 312 may be suppressed.

[0113] Furthermore, the edge portion 314a may effectively prevent a contact of the sheet P to the die frame 312 as below explained.

[0114] In general, the sheet P in a transport path may not be strictly parallel to the transport path, but the sheet P in the transport path may be somehow curled in a downward direction, for example.

[0115] If the edge portion 314a is not provided, the curled portion of sheet P may contact the first main face 312a when the sheet P enters the perforator 121, by which the sheet P may transmit heat to the die frame 312.

[0116] However, by providing the edge portion 314a, the curled portion of the sheet P may not contact the first main face 312a at an entrance of the die frame 312, by which a temperature increase of the die frame 312 may be suppressed.

[0117] The sheet P transported from the image forming apparatus 100 with such manner is stopped temporarily in the perforator 121 to receive a perforation operation.

[0118] The sheet P is perforated by moving the blade 301 in an upward/downward direction with the motor 302, and passing the blade 301 through the guide hole 311 and die hole 313.

[0119] The motor 302 drives the drive pulley 304 and shaft 305 via the belt 303.

[0120] The home position sensor 306 detects a rotation of the drive pulley 304 and shaft 305.

[0121] A control unit transmits a signal to the motor 302 to stop the rotation of the drive pulley 304 and shaft 305 after rotating the shaft 305 for one rotation.

[0122] When the shaft 305 rotates, the cam 307 rotates with a rotation of the shaft 305 and moves the holder 308 in an upward/downward direction, wherein the shaft 305 is eccentrically engaged to the cam 307 as shown in FIG. 2 and 3.

[0123] FIG. 4(a) shows an initial position of the holder 308 in the perforator 121, in which the shaft 305 contacts the holder 308.

[0124] In FIG. 4(b), the cam 307 rotates in a clockwise direction with a rotation of the shaft 305 to move the blade 301 in a downward direction.

[0125] In FIG. 4(c), the cam 307 further rotates, and the shaft 305 contacts the holder 308 at an upper portion of the holder 308. At this position, the blade 301 is moved to the lowest position to perforate the sheet P.

[0126] In FIG. 4(d), the cam 307 further rotates in a clockwise direction and moves the blade 301 in an upward direction.

[0127] In FIG. 4(e), the shaft 305 and cam 307 return to the initial position shown in FIG. 4(a) and one cycle of perforation operation has completed, and the motor 302 is stopped temporarily until a next perforation operation.

[0128] As such, when the holder 308 moves in an upward/downward direction, the blade 301 moves in an upward/downward direction, and then the blade 301 passes through the guide hole 311 of the guide frame 310 and the die hole 313 of the die frame 312.

[0129] After perforating holes on the sheet P, the finishing unit 200 may conduct another processing operation to the sheet P, as required.

[0130] During such perforation operation, the hopper 309 recovers cuttings of perforated sheet cut from the sheet P.

[0131] The die frame 312 can include a cut-off area C on a first side face perpendicular to the first main face 312a, which will be explained later with FIGs. 6A and 6B.

[0132] If the cut-off area C is set to the die frame 312 as shown in FIGs. 6A and 6B, the die frame 312 may have a smaller face area in the first side face perpendicular to the first main face 312a of the die frame 312.

[0133] In such a case, a bending strength of the first main face 312a in a vertical direction with respect to the transport path of sheet P may become smaller than a bending strength of the first main face 312a in a parallel direction with respect to the transport path of sheet P.
Hereinafter, such bending strength is explained with reference to FIGs. 5 and 6.

FIGs. 5A and 5B are perspective views of the guide frame 310 and die frame 312, in which the die frame 312 has no cut-off area.

FIG. 6A and 6B are perspective views of the guide frame 310 and die frame 312, in which the die frame 312 has a cut-off area C.

In FIG. 5A, the sheet P has not yet transmitted heat to the die frame 312. In such a case, the die frame 312 is in a lower temperature condition, and thereby the die frame 312 may not deflect.

Accordingly, the guide hole 311 and die hole 313 are aligned on a same axis direction, by which the blade 301 can pass through the guide hole 311 and die hole 313 smoothly.

However, if the sheet P is transported in the perforator 121 and only the die frame 312 may become into a higher temperature condition, the die frame 312 may deflect significantly compared to the guide frame 310.

A deflection caused by such heated sheet P may be observed as warping of plane having a smaller bending strength in the die frame 312.

In case of the die frame 312 having no cut-off area (refer to FIG. 5A), a bending strength of the first main face 312a in a parallel direction with respect to the transport path of sheet P may become smaller than a bending strength of the first main face 312a in a vertical direction with respect to the transport path in the perforator 121.

Therefore, the heat insulating member 314 may be overlaid on the die frame 312 as above-mentioned, by which the sheet P may contact the heat insulating member 314 before the sheet P enters a sheet transport path in the perforator 121.

Accordingly, a contact time of the sheet P and die frame 312 may be reduced when the sheet P enters and passes through the perforator 121, by which a temperature increase of die frame 312 may be suppressed.

Therefore, the heat insulating member 314 may suppress a temperature change of the die frame 312, by which the deflection of the first main face 312a in a vertical direction with respect to the transport path of sheet P may be suppressed.

Accordingly, the alignment deviation of the guide hole 311 and die hole 313 may be suppressed.

Although the cut-off area C and heat insulating member 314 are provided for the die frame 312 in the above explained example embodiment, the cut-off area C and heat insulating member 314 may be provided for the guide frame 310 as below explained with reference to FIGs. 7 and 8.

FIG. 7 is a schematic cross sectional view of the perforator 121 according to another example embodiment.

FIG. 8 is a schematic view of the perforator 121 according to another example embodiment when viewed from a sheet entrance side. FIG. 7 corresponds to a cross-section view cut at line A-A in FIG. 8.

The perforator 121 shown in FIGs. 7 and 8 may employ similar components shown in FIGs. 2 and 3, but some of them may have different arrangement or shape as below explained.

The guide frame 310 may include a cut-off area C except the second main face 310a and second inclined corner 310b, which face the transport direction of sheet P as shown in FIGs. 7 and 8. Such cut-off area C will be explained later with FIG. 10.
The cut-off area C may be cut in a rectangular shape from a face, which has no specific function in the guide frame 310, as shown in FIG. 10. However, such cut-off area C can be cut in any shape depending on an entire shape of the guide frame 310, and considering other parts around the guide frame 310.

On one hand, the die frame 312 has no cut-off area C in another example embodiment shown in FIGs. 7 and 8.

The heat insulating member 314 can be made of material having lower heat conductivity compared to a material for the guide frame 310.

As shown in FIGs. 7 and 8, the heat insulating member 314 may be disposed along the second inclined corner 310b, which is different from a configuration in FIGs. 2 and 3.

The sheet P may absorb some heat energy when a fixing process is conducted in the image forming apparatus 100. Such heated sheet P is transported to the perforator 121 through the second inclined corner 310b, and then the sheet P passes through a transport path in the perforator 121.

The heat insulating member 314 may contact the sheet P when the sheet P passes through the second inclined corner 310b, by which the heat insulating member 314 may suppress heat conduction from the heated sheet P to the second inclined corner 310b.

Accordingly, the heat insulating member 314 may suppress heat conduction from the heated sheet P to the guide frame 310.

As shown in FIG. 7, the heat insulating member 314 includes the edge portion 314a, which protrudes from the second main face 310a with some length.

The die frame 312 and guide frame 310 have given space between the first main face 312a and the second main face 310a for example, such space may be approximately 2 mm.

Therefore, if the edge portion 314a may protrude from the second main face 310a within a range of 0.5 mm to 1 mm, for example, such edge portion 314a may not hinder a transportation of the sheet P.

The heat insulating member 314 is preferably made of elastic material such as polyester film to reduce hindering of transportation of sheet P by the heat insulating member 314.

As shown in FIG. 7, the transport guide member 317 is provided in an upstream of transport direction of sheet P with respect to the guide frame 310 and die frame 312, and guides the sheet P to the given space between the guide frame 310 and die frame 312.

The transport guide member 317 includes the upper guide member 318 and the lower guide member 319, wherein the upper guide member 318 guides the sheet P from the upward direction and the lower guide member 319 guides the sheet P from the downward direction.

The upper guide member 318 includes the upper guide face 318a, which guides the sheet P from the upward direction.

The lower guide member 319 includes the lower guide face 319a, which guides the sheet P from the downward direction.

In a configuration shown in FIG. 7, the upper guide face 318a of the upper guide member 318 may be positioned above the second main face 310a of the guide frame 310 (refer to a dotted line O in FIG. 7), and the lower guide face 319a of the lower guide member 319 may be positioned above the first main face 312a of the die frame 312 (refer to a dotted line N in FIG. 7).

With such arrangement, the sheet P may more likely to contact with the guide frame 310 compared to the die frame 312.

Accordingly, the guide frame 310 may be more affected by the heated sheet P compared to the die frame 312.

Therefore, a design work for coping with the temperature change in the perforator 121 may be mainly considered for the guide frame 310, but not for the die frame 312, by which the design work can be conducted with fewer amount of time or steps. Accordingly, a total amount of design works can be reduced.

The perforator 121 shown in FIG. 7 can perforate a hole on the sheet P in a similar manner explained with FIG. 4. However, the sheet P is transported in a different manner in the perforator 121 as below explained.

In a configuration shown in FIG. 7, the upper guide face 318a of the upper guide member 318 may be positioned above the second main face 310a of the guide frame 310 (refer to a dotted line O in FIG. 7), and the lower guide face 319a of the lower guide member 319 may be positioned above the first main face 312a of the die frame 312 (refer to a dotted line N in FIG. 7).

With such arrangement, the sheet P may be transported from the transport guide member 317 to the second inclined corner 310b of the guide frame 310.

The heat insulating member 314 overlays the second inclined corner 310b as above-mentioned, therefore, the sheet P may contact with the heat insulating member 314.

Accordingly, the sheet P may not contact the second inclined corner 310b directly, by which the heat insulating member 314 may suppress heat conduction from the sheet P to the second inclined corner 310b.

Therefore, a temperature increase of the guide frame 310 may be suppressed.

Furthermore, the edge portion 314a may effectively prevent a contact of the sheet P to the guide frame 310 as below explained.

In general, the sheet P in a transport path may not be strictly parallel to the transport path, but the sheet P in the transport path may be somehow curled in an upward direction, for example.

If the edge portion 314a is not provided, the curled portion of sheet P may contact the second main
face 310a when the sheet P enters the perforator 121, by which the sheet P may transmit heat to the guide frame 310.

[0191] However, by providing the edge portion 314a, the curled portion of the sheet P may not contact the second main face 310a at an entrance of the guide frame 310, by which a temperature increase of the guide frame 310 may be suppressed.

[0192] The sheet P transported from the image forming apparatus 100 with such manner is stopped temporarily in the perforator 121 to receive a perforation operation.

[0193] The guide frame 310 can include a cut-off area C on a second side face perpendicular to the second main face 310a, which will be explained later with FIGs. 10A and 10B.

[0194] If the cut-off area C is set to the guide frame 310 as shown in FIGs. 10A and 10B, the guide frame 310 may have a smaller face area in the second side face perpendicular to the second main face 310a.

[0195] In such a case, a bending strength of the second main face 310a in a vertical direction with respect to the transport path of sheet P may become smaller than a bending strength of the second main face 310a in a parallel direction with respect to the transport path of sheet P.

[0196] Hereinafter, such bending strength is explained with reference to FIGs. 9 and 10.

[0197] FIGs. 9A and 9B are perspective views of the guide frame 310 and die frame 312, in which the guide frame 310 has no cut-off area.

[0198] FIG. 10A and 10B are perspective views of the guide frame 310 and die frame 312, in which the guide frame 310 has a cut-off area C.

[0199] In FIG. 9A, the sheet P has not yet transmitted heat to the guide frame 310. In such a case, the guide frame 310 is in a lower temperature condition, and thereby the guide frame 310 may not deflect.

[0200] Accordingly, the guide hole 311 and die hole 313 are aligned on a same axis direction, by which the blade 301 can pass through the guide hole 311 and die hole 313 smoothly.

[0201] However, if the sheet P is transported in the perforator 121 and only the guide frame 310 may become into a higher temperature condition, the guide frame 310 may deflect significantly compared to the die frame 312.

[0202] A deflection caused by such heated sheet P may be observed as warping of plane having a smaller bending strength in the guide frame 310.

[0203] In case of the guide frame 310 having no cut-off area (refer to FIG. 9A), a bending strength of the second main face 310a in a parallel direction with respect to the transport path of sheet P may become smaller than a bending strength of the second main face 310a in a vertical direction with respect to the transport path of sheet P.

[0204] Therefore, as shown in FIG. 9B, the guide frame 310 having no cut-off area may warp in a parallel direction with respect to the transport path of sheet P.

[0205] With such warping, the guide hole 311 may deviate from an original position, and the guide hole 311 and die hole 313 may not align on the same axis direction, which is indicated by a positional deviation S2 in FIG. 9B.

[0206] In a condition shown in FIG. 9B, the blade 301 may not pass through the guide hole 311 and die hole 313 smoothly or the blade 301 cannot pass through the guide hole 311 and die hole 313.

[0207] In view of such drawback, a configuration having a cut-off area C shown in FIG. 10 is employed for the guide frame 310.

[0208] FIG. 10A shows the guide frame 310 in lower temperature condition.

[0209] The guide frame 310 can include a cut-off area C on a second side face 310c perpendicular to the second main face 310a as shown in FIG. 10A.

[0210] If the cut-off area C is set to the guide frame 310 as shown in FIGs. 10A and 10B, the guide frame 310 may have a smaller face area in the second side face 310c, which is perpendicular to the second main face 310a of the guide frame 310.

[0211] By providing the cut-off area C in the guide frame 310 as shown in FIG. 10A, a bending strength of the second main face 310a in a vertical direction with respect to the transport path of sheet P may become smaller than a bending strength of the second main face 310a in a parallel direction with respect to the transport path of sheet P.

[0212] Therefore, as shown in FIG. 10B, the guide frame 310 may warp in a vertical direction with respect to the transport path of sheet P.

[0213] If the second main face 310a, indicated by an area F, may warp in a vertical direction with respect to the transport path of sheet P, the guide hole 311 may not substantially deviate from the original position, and the guide hole 311 and die hole 313 may still align on the same axis direction substantially as shown in FIG. 10B.

[0214] In a condition shown in FIG. 10B, the blade 301 may pass through the guide hole 311 and die hole 313 smoothly.

[0215] As such, a condition shown in FIG. 10B may reduce a temperature effect to the guide frame 310, and may suppress the deflection of the second main face 310a in a parallel direction with respect to the transport path of sheet P, which may affect the alignment of the guide hole 311 and die hole 313. Accordingly, an alignment deviation of the guide hole 311 and die hole 313 may be suppressed.

[0216] Furthermore, the heat insulating member 314 may be overlaid on the guide frame 310 as above-mentioned, by which the sheet P may contact the heat insulating member 314 before the sheet P enters a sheet transport path in the perforator 121.

[0217] Accordingly, a contact time of the sheet P and guide frame 310 may be reduced when the sheet P enters and passes through the perforator 121, by which a temperature increase of guide frame 310 may be suppressed.

[0218] Therefore the heat insulating member 314 may
such as printer, copier, facsimile, and MFP (multi-functional peripherals), for example.

1. A perforator (121) for use with a sheet (P), comprising:

- a frame (310, 312) including a main face (310a, 312a) having a hole (311, 313), the frame (310, 312) being provided adjacent a transport path of a sheet; and
- a blade (301) configured to be moved through or into the hole (311, 313) to perforate a sheet (P) transported in the transport path,

characterized in that the bending strength of the main face (310a, 312a) in a direction normal to the transport path of a sheet and normal to the plane of a sheet to be perforated is set smaller than the bending strength of the main face (310a, 312a) in a parallel direction with respect to the transport path of a sheet.

2. The perforator (121) according to claim 1, comprising:

- a first frame (312) including a first main face (312a) having a hole (313), the first main face (312a) being located in use under a sheet transport path; and
- a blade (311) configured to be moved into the first hole (313) to perforate a sheet (P) transported along the sheet transport path,

characterised in that the bending strength of the first main face (312a) in a direction vertical with respect to the sheet transport path is set smaller than the bending strength of the first main face (312a) in a direction parallel with respect to the sheet transport path.

3. The perforator (121) according to claim 2, wherein the first frame (312) includes a first side face (312c), which is perpendicular to the first main face (312a) of the first frame (312) and has a cut-off area (C).

4. The perforator (121) according to claim 2, wherein the first frame (312) further includes a first inclined corner (312b) extended along the first main face (312a), the first inclined corner (312b) being configured to receive a sheet (P) when the sheet (P) enters the perforator (121).

5. The perforator (121) according to claim 4, wherein the first inclined corner (312b) is overlaid with a heat insulating member (314) having lower heat conductivity compared to the first frame (312).

6. The perforator (121) according to claim 5, wherein the heat insulating member (314) overlays the first inclined corner (312b), an edge portion (314a) of the heat insulating member (314) protruding from the first main face (312a).

7. The perforator (121) according to claim 2, further comprising a second frame (310) located in use over the sheet transport path, including a second main face (310a) having a second hole (311) aligned with the first hole (313) in the first main face (312a) of the first frame (312), and wherein the blade (301) is configured to be moved into the second hole (311) and first hole (313) to perforate a sheet (P).

8. The perforator (121) according to claim 7, further comprising a transport guide member (317) for guiding the sheet into a space between the first frame (312) and second frame (310), the transport guide member (317) comprising:

- an upper guide member (318) including an upper guide face (318a); and
A perforator (121) according to claim 1, comprising:

a first frame (312), located in use under a sheet transport path, and including a first main face (312a) having a first hole (313);
a second frame (310), located in use over the sheet transport path, including a second main face (310a) having a second hole (311) aligned with the first hole (313) in the first main face (312a) of the first frame (312); and
a blade (301) configured to be moved into the second hole (311) and first hole (313) to perforate a sheet (P) transported along the sheet transport path,

characterised in that the bending strength of the second main face (310a) in a direction vertical with respect to the sheet transport path is set smaller than the bending strength of the second main face (310a) in a direction parallel with respect to the sheet transport path.

10. The perforator (121) according to claim 9, wherein the second frame (310) includes a second side face (310c), which is perpendicular to the second main face (310a) of the second frame (310) and has a cut-off area (C).

11. The perforator (121) according to claim 9, wherein the second main face (310a) further includes a second inclined corner (310b) extended along the second main face (310a), the second inclined corner (310b) being configured to receive a sheet (P) when the sheet (P) enters the perforator (121).

12. The perforator (121) according to claim 11, wherein the second inclined corner (310b) is overlaid with a heat insulating member (314) having lower heat conductivity compared to the second frame (310).

13. The perforator (121) according to claim 12, wherein the heat insulating member (314) overlays the second inclined corner (310b), an edge portion (314a) of the heat insulating member (314) protruding from the second main face (310a).

14. The perforator (121) according to claim 9, further comprising a transport guide member (317) for guiding a sheet (P) into a space between the first frame (312) and second frame (310), the transport guide member (317), comprising:

an upper guide member (318) including an upper guide face (318a); and
a lower guide member (319) including a lower guide face (319a),

wherein the upper guide face (318a) of the upper guide member (318) is positioned in use above the second main face (310a) of the second frame (310), and the lower guide face (319a) of the lower guide member (319) is positioned in use above the first main face (312a) of the first frame (312).

15. A finishing unit (200) for use with an image forming unit (100) for forming an image on a sheet (P), the finishing unit (200) comprising:

a perforator (121) according to any preceding claim, and
a processing unit (11) configured to conduct a processing operation for the sheet (P) other than perforating the sheet (P).

16. The finishing unit (200) according to claim 15, wherein the processing unit (11) conducts a stapling process on the sheet (P).
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
</table>

The present search report has been drawn up for all claims

Place of search	Date of completion of the search	Examiner
Munich | 8 December 2006 | Canelas, Rui Feist |

CATEGORY OF CITED DOCUMENTS

X: particularly relevant if taken alone
Y: particularly relevant if combined with another document of the same category
A: technological background
D: document cited in the application
O: non-written disclosure
P: intermediate document
T: theory or principle underlying the invention
E: earlier patent document, but published on, or after the filing date
I: document cited for other reasons
J: member of the same patent family, corresponding document
This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on 08-12-2006. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 4527473 A</td>
<td>09-07-1985</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• JP 2005263896 A [0225]
• JP 2006163562 A [0225]