NEW METHODS AND KITS PERTAINING TO THE DETECTION, IDENTIFICATION AND QUANTIFICATION OF YEAST IN WINE, BEER AND JUICES

VERFAHREN UND KITS ZUR DETEKTION, IDENTIFIZIERUNG UND QUANTIFIZIERUNG VON HEFEN IN WEIN, BIER UND SÄFTEN

NOUVEAUX PROCEDES ET TROUSSES SE RAPPORTANT A LA DETECTION, A L'IDENTIFICATION ET A LA QUANTIFICATION DE LEVURES DANS LE VIN, LA BIERE ET LES JUS

Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR

Priority: 21.06.2004 EP 04014518

Date of publication of application: 14.03.2007 Bulletin 2007/11

Proprietor: ETS Laboratories
St. Helena, CA 94574 (US)

Inventors:
- BRODMANN, Peter, D.
 CH-4410 Liestal (CH)
- FEHLMANN, Marc.
 CH-1352 Agiez (CH)
- GAFNER, Jürg
 CH-8820 Wädenswil (CH)
- PORRET, Naomi
 CH-8003 Zürich (CH)
- SCHMID, Sergio
 CH-3902 Glis (CH)
- SEYFARTH, Ralf
 CH-4102 Binningen (CH)
- SIEVERS, Martin
 CH-8820 Wädenswil (CH)
- TERRETTAZ, Anne
 CH-3960 Sierre (CH)
- UERMÖSI, Christina
 CH-5507 Mellingen (CH)

Representative: Rentsch Partner AG
Rechtsanwälte und Patentanwälte
Fraumünsterstrasse 9
Postfach 2441
8022 Zürich (CH)

References cited:

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
• DATABASE EMBL 13 July 1992 (1992-07-13), XP002304942 retrieved from EBI Database accession no. D12534
• DATABASE EMBL 31 July 1991 (1991-07-31), XP002304943 retrieved from EBI Database accession no. L00026
The determination of germs, desired and undesired micro-organisms via microscopy occurred after cultivation on suitable media and by conventional microscopically counting of germs. The use of a microscopy permits to distinguish between micro-organisms and turbidity (e.g. tanning agent), a morphological identification of the micro-organism and a rough estimation of living and dead micro-organism.

This method is known since long and very well described in literature, but bears some disadvantages, such as lack of precision, high degree of manually performed procedures which are difficult to be automated. Furthermore limit is up to 10000 germs/ml.

An alternative microbiological method of the specific determination of germs is based on the growth of those germs on specific media and subsequent determination of the micro-organisms via microscopy. Methods of that kind are commercially available. The application of the specific method however, has substantially the same disadvantages as the above described method for the total count of viable cells. A further disadvantage is the long incubation time of at least 48 hours.

A further method to determine germs is based via biochemical reactions after cultivation on suitable media and total viable count of desired and undesired micro-organism.

Biochemical reactions (as e.g. the API test of Biomerieux) allows distinguishing between different micro-organisms and turbidity (e.g. tanning agent), a morphological identification of the micro-organism and a rough estimation of living and dead micro-organism.

This method is known since long and very well described in literature, but bears some disadvantages, such as lack of precision, high degree of manually performed procedures which are difficult to be automated. Furthermore limit is up to 10000 germs/ml.

An alternative microbiological method of the specific determination of germs is based on the growth of those germs on specific media and subsequent determination of the micro-organisms via microscopy. Methods of that kind are commercially available. The application of the specific method however, has substantially the same disadvantages as the above described method for the total count of viable cells. A further disadvantage is the long incubation time of at least 48 hours.

Further detection of some micro-organisms may occur by GC/MS or LC/MS by using some secondary metabolites that are synthesized by particular micro-organism. Such metabolites can be detected using a chromatographic separation and a subsequent determination using for example mass spectrometry or spectrophotometrical detection.

One important example in the wine producing industry is for example the repeating detection of the secondary metabolites 4-ethylphenol and 4-ethyl-guaiacol which serves as an indication for the presence of Dekkera bruxellensis. As already mentioned above the detection using GC/MS or LC/MS is a rather expensive method. The detection using secondary metabolites cannot be allocated to a unique micro-organism. Furthermore the production of secondary metabolites is strongly dependent on environmental conditions and is therefore not really suitable for quantitative determination.

The newly upcoming PCR Technology (for qualitative use) itself is based on the presence of DNA. The DNA either already exists in single strands or the DNA coil is split into single strands. Two oligonucleotide-primers are added in excess. They dock onto a specific part of the DNA not too distant apart from each other and in presence of an initializer for polymerization of nucleotides (polymerase) the specific segment defined / between the primers is replicated. When starting from a single DNA coil, i.e. of two strings, after polymerisation two new coils, i.e. four strings of identical composition are formed. Thereafter those can be used to be replicated in a other cycle. If these steps are reproduced, they lead to an exponential increase of the presence of this specific segment of DNA.

Further detection of some micro-organisms may occur by GC/MS or LC/MS by using some secondary metabolites that are synthesized by particular micro-organism. Such metabolites can be detected using a chromatographic separation and a subsequent determination using for example mass spectrometry or spectrophotometrical detection.

One important example in the wine producing industry is for example the repeating detection of the secondary metabolites 4-ethylphenol and 4-ethyl-guaiacol which serves as an indication for the presence of Dekkera bruxellensis. As already mentioned above the detection using GC/MS or LC/MS is a rather expensive method. The detection using secondary metabolites cannot be allocated to a unique micro-organism. Furthermore the production of secondary metabolites is strongly dependent on environmental conditions and is therefore not really suitable for quantitative determination.

The newly upcoming PCR Technology (for qualitative use) itself is based on the presence of DNA. The DNA either already exists in single strands or the DNA coil is split into single strands. Two oligonucleotide-primers are added in excess. They dock onto a specific part of the DNA not too distant apart from each other and in presence of an initializer for polymerization of nucleotides (polymerase) the specific segment defined / between the primers is replicated. When starting from a single DNA coil, i.e. of two strings, after polymerisation two new coils, i.e. four strings of identical composition are formed. Thereafter those can be used to be replicated in a other cycle. If these steps are reproduced, they lead to an exponential increase of the presence of this specific segment of DNA.

The quantitative PCR method is an improved methodology based on creating an oligonucleotide-probe that fits between the two primers and sits on the segment top be replicated. This methodology is based on the TaqMan (R)-Technology, which is based on the 5’-nuclease ‘PCR assay, published in 1991 by Holland et al., exploiting the 5’-nuclease activity of the TaqPolymerase and the application of fluorescence marked and sequences specific probes.

Those probes are labelled at the 5’- terminal with a fluorescing agent(reporter) and at the 3’-terminal with a fluorescence quencher (quencher).

As the space between them is restricted, the fluorescence emitted by the reporter is quenched by the quencher (or dark quencher) so no fluorescence can be observed. During the polymerase induced chain reaction both the reporter and the quencher or dark quencher, respectively, are released from their positions and are no longer staying close
together but are in solution. Under these circumstances, a resulting fluorescence of the reporter can be recorded. The more reporter molecules are released, the higher the intensity of the fluorescence signal results. The quantity of the fluorescence signal is proportional to the amount of sequences replicated. By an analysis of the kinetics, i.e. the number of cycles needed to obtain a certain signal the initial number of copies of that sequence can be calculated.

This method is extremely sensitive as it replicates the sequences present and hence intensifies the signal to be recorded with each cycle. There are many molecules that show molecules fluorescence under different conditions, which allow to design internal standards that control the success of each replication. Furthermore it is possible to test for the presence of different sequences in parallel using different wavelength to detect the resulting fluorescence of each one.

The optimisation of primer and probe pairs and the variable reaction conditions of the PCR method is essential. The PCR-technology is executed corresponding to the methods described in USP 4,683,195, USP 4,683,202 and USP 4,800,159.

USP 4,683,195 is directed to a process for amplifying and detecting any target nucleic acid contained in a nucleic acid or mixture thereof. The process comprises treating separate complementary strands of the nucleic acid with a molar excess of two oligonucleotide primers, extending the primers to form complementary primer extension products which act as templates for synthesizing the desired nucleic acid sequence, and detecting the sequence so amplified. The steps of the reaction may be carried out stepwise or simultaneously and can be repeated as often as desired.

USP 4,683,202 is directed to a process for amplifying any desired specific nucleic acid sequence contained in a nucleic acid or mixture thereof.

The process comprises treating separate complementary strands of the nucleic acid with a molar excess of two oligonucleotide primers, and extending the primers to form complementary primer extension products which act as templates for synthesizing the desired nucleic acid sequence. The steps of the reaction may be carried out stepwise or simultaneously and can be repeated as often as desired.

USP 4,800,159 claims a process for amplifying and detecting any target nucleic acid sequence contained in a nucleic acid or mixture thereof. The process comprises treating separate complementary strands of the nucleic acid with a molar excess of two oligonucleotide primers in the same manner as described above. In addition, a specific nucleic acid sequence may be cloned into a vector by using primers to amplify the sequence, which contain restriction sites on their non-complementary ends, and a nucleic acid fragment may be prepared from an existing shorter fragment using the amplification process.

USP 5,210,015 referring to the three above mentioned US patents is directed to a process of detecting a target nucleic acid using labelled oligonucleotides. This process uses the 5′ to 3′ nuclease activity of a nucleic acid polymerase to cleave annealed labelled oligonucleotide from hybridized duplexes and release labelled oligonucleotide fragments for detection. This can easily be incorporated into a PCR amplification assay.

G. Zapparoli et al. reported in Letters in Applied Microbiology/1998, 27, 243 - 245 on rapid identification and detection of Oenococcus oeni in wine achieved by specific PCR. Two primers flanking a 1025 bp region of the O. oeni gene encoding the malolactic enzyme were designed. The expected DNA amplificate was obtained only when purified DNA O. oeni was used.

The rapidity and reliability of the PCR procedure established suggests that the method may be profitably applied in winery laboratories for quality control. It has been suggested that the use of above mentioned PCR amplification procedure might also prove useful for the rapid and reliable identification/detection of O. oeni in quality control winery laboratories.

G. Bleve et al. published in Applied and Environmental Microbiology, July, 2003, p. 4116 - 4122 that reverse transcriptase PCR (RT-PCR) and real-time RT-PCR assays have been used to detect and quantify active mRNA from yeast and moulds. Universal primers were designed based on the available fungal actin sequences, and by RT-PCR they amplified a specific 353 bp fragment from species involved in food spoilage, e.g. rapid detection and quantification of viable yeasts and moulds contaminating yoghurts and pasteurised food products were developed, whereas rapid detection and quantification bacteria as micro-organism using actin mRNA have not been used and described yet.

Maria I. Castellanus et al. reported in Current Microbiology Vol. 33 (1996), pp. 100-103 that three lactic acid bacteria previously selected as probiotic for pig feeding, were identified by sequencing the variable V1 region of the 16 S rDNA after PCR amplification primed in the flanking constant region. A VR region showing strong nucleotide differences between the three probiotic and the reference strains was delimited. Oligonucleotides specific for each strain were designed, because this method is not really suitable for differentiation between living and dead microorganism and therefore not suitable for quantification.

Trevor G. Pfister and David A. Mills published in Applied and Enviromental Microbiology, December 2003, p. 7430 - 7434, a Real-time PCR assay for detection and enumeration of spoilage yeast Dekkera bruxellensis in wine without using and describing actin mRNA as target gene, because it is well known that mRNA of ribosomal genes do have a long half-life period.

Casey, Garrett D. et al discloses in International Journal of Food Microbiology 91, 15 March 2004, 327 - 335,
a Real-Time PCR method for detecting and identifying spoilage yeast, such as Saccharomyces cerevisiae in fruit-juice based on the 5.85 rDNA and the adjacent ITS 2 region of these yeasts without using and describing mRNA as target gene. Furthermore the described method is not really suitable to differ between living and dead microorganism, because as already said above it is commonly known that mRNA of ribosomal genes do have a long half-life period.

[0028] US-B1 6 248 519, Morenzoni Richard A. et al discloses a PCR method for detecting and identifying a fermentation-related microorganism, such as Saccharomyces cerevisiae, in a beverage sample comprising the steps of obtaining DNA from the sample and detecting S. bayanus or S. cerevisiae by PCR with primers specific for the S. bayanus or S. cerevisiae ITS sequences. This method is also not really suitable for differentiation between living and dead microorganism and therefore not suitable for quantification, because it is known from literature that mRNA ribosomal genes have on the average a long half-life period.

[0029] In Database EMBL of July 13, 1992 (1992-07-13) XP002304942 as well as in Database EMBL of July 31, 1991 (1991-07-31) XP002304943 the sequences of Saccharomyces bayanus and Saccharomyces cerevisiae have been described, but not the use thereof.

[0030] The publication of D. Kosse et al "Identification of yoghurt-spoiling yeast with 18S rRNA targeted oligonucleotide porbes" in Systematic and Applied Microbiology, Vol,20, 1997 , pages 468-480 is mainly to be seen as plain state of the art, not being relevant to the invention.

[0031] A specific assay for probiotic detection was developed, based on a PCR reaction with three primers to identify and detect the three probiotic strains among other LAB, starting from a small quantity of bacteria, each as only one colony. This has not been reported in alcoholic and non-alcoholic beverages, e.g. wines, musts and other juices.

[0032] None of the above mentioned methods or derived methods thereof are suitable to detect remaining genomic DNA in the detection methodology as well as to identify living organism, based on DNA level.

[0033] Surprisingly it had been found that in none of the above mentioned citations the special combination of defined primer/probe pairs, the optimised DNA extraction has been described to detect the micro-organism with a very selected and sufficient sensitivity and specificity.

[0034] In particular, aim of the invention was to develop a special selected process to identify and quantify living organism based on DNA levels by using a very special combination of defined primer/probe pairs and the optimised DNA extraction as mentioned above. This is the core of the invention with very characteristic features.

[0035] Moreover the inventive special selected methodology was developed.

[0036] Particularly the invention enables rapid detection and enumeration within 12 hours or less of desired and undesired micro-organism in food and alcoholic and non-alcoholic beverages, e.g. wine, must and other fruit-juices. Furthermore the selection of suitable target genes as molecular markers with the option of applicability with regard to the detection of living and dead micro-organism, this method being superior all known methods of prior art.

[0037] Special parts of the invention, for example the claimed procedure or test-kit is a special selected execution of the fluorescence PCR technology (Taq Man®) for the above mentioned target organism.

[0038] The invention claims reagents, methods, procedures and application of substances as a special selection that allow the detection, identification and rapid quantification of the above listed micro-organism, such as Dekkera brucellensis (Brettanomyces), Hanseniaspora uvarum, and others which are potential contaminants in wine and other beverages as undesired micro-organism and Saccharomyces cerevisiae, Saccharomycys bayanus, and others which are desired micro-organism. The invention also embraces test kits, as mentioned above, consisting of primers and probes homologues to the Actin, sequences. These invented kits allow the correct identification and quantification food relevant yeast and bacteria applying PCR (Polymerase Chain Reaction), respectively real-time PCR.

[0039] The applicability of the target sequences have been successfully demonstrated as described above, for example, for Saccharomycys cerevisiae, Saccharomycys bayanus, Hanseniaspora uvarum, Dekkera bruxellensis (Brettanomyces), in alcoholic and non-alcoholic beverages, e.g. in wine, musts and other juices. Kits ready for use are for example prepared by using three or more different parts:

[0040] The process and test-kit according to the invention are superior in many points to those mentioned previously as prior art, e.g. like microscopy or the so-called fast-detection kits and shall be able to replace these methods completely after validation of the procedure with the particular test product.

[0041] The invented method has the following advantages:

The new process (methods)disposes a considerable inventive height in comparison with the known methods for the detection of living and dead micro-organism. Especially the inventive process (methods) or the available test-kits are reacting faster with superior specificity or sensitivity and are useful for the detection of the total amount of living and dead micro-organism.

[0042] For the first time it is possible to detect the desired or contaminating micro-organisms Dekkera bruxellensis (Brettanomyces), Hanseniaspora uvarum, and others without using a microscope or precedent cultivation that are expressing genes.
In doing so, only *Dekkera bruxellensis* (Brettanomyces), *Hanseniaspora uvarum*, *Saccharomyces cerevisiae*, *Saccharomyces bayanus* that do express genes (which means living organism compared to living and dead organism to were possible to detect applying previous methods) are registered quantitative and precise with a sensitivity of 1-100 fungi in the product investigated.

The consequence of applying the new inventive methodology means higher safeties during the ripening of the wine, as *Dekkera bruxellensis* (Brettanomyces), *Hanseniaspora uvarum*, *Saccharomyces cerevisiae*, *Saccharomyces bayanus* and which is difficult to cultivate can be easily detected. Furthermore the results are available in a much shorter time period compared to the fastest detection method known up till now. All these factors lead to cheaper and qualitative superior products. On top of this no special safety requirements are needed as no components of the used kit underlies a safety regulation.

It was shown above, when prior art has been discussed that the enumeration of cells by real-time PCR has a very high correlation with the enumeration of cells performed with classical microbiological methods. In order to meet these requirements genes were chosen, which are constitutively expressed and which have fundamental attributes in the live cycle of the micro-organisms.

Detected organism	**Target gene**
Dekkera bruxellensis | Actin gene
Hanseniaspora uvarum | Actin gene
Saccharomyces bayanus | Actin gene
Saccharomyces cerevisiae | Actin gene

Definitions of some expressions used in the descriptive part of this application are:

A primer is a molecule which has at a polymer matrix a number of nucleotides. The sequence of the nucleotides is chosen in this way that there is more than 90% of homology to the sequence of the amplicon which has to be amplified. The molecule has at least one prolongable end. The term prolongation means the adding of nucleotides with the help of enzymes. As enzyme, preferably a DNA polymerase is used.

The nucleic acid which should be amplified serves as matrix for the specific integration of nucleotides.

The sequence of the matrix determines the sequence of the nucleotides which are added to the primer. Primers are usually used which have a length between 15 and 30 bases. The 3’end of the primer is optimal for the prolongation and therefore preferred.

A probe is a molecule that has as a primer a polymer matrix with a number of nucleotides. For designing a probe the teaching described in USP 5,210,015 is used.

The specific sequences are obtained by searching for a sequence of at least 13 bases of the matrix. This sequence has to be in between the two primers. The probe should show at least 90% of homology to the particular matrix. It is much more advisable if probes show a higher degree of homology.

The yeast strains mentioned herein before are common in the food and beverage manufacture, especially well known in the wine manufacturing industry and are well described in literature and need not to be described furthermore in its detail.

PCR reagents are substances which are important for a PCR with a maximum of sensitivity and specificity. Above all these are for example substances like DNA polymerase, Mg$^{2+}$ ions, potassium salts, additives (glycerine, DMSO or formamide), primers, probes, desoxynucleotide, buffers (tri base) and fluorescence dyes.

The invention ultimately allows replacing very effectively the conventional method for testing total viable count and absence or presence of *Dekkera bruxellensis* (Brettanomyces), *Hanseniaspora uvarum*, *Saccharomyces cerevisiae*, *Saccharomyces bayanus*.

The task will be solved by applying a method for the detection of the above mentioned micro-organism for example in food, wine, must or other alcoholic and non-alcoholic beverages containing at least a DNA fragment. The chosen DNA targets are expressed in living micro-organisms.

Therefore they are convenient for the detection of alive micro-organisms.

The DNA is detected by applying the following SEQ ID and spacer contains:

(a) the whole amplicon (SEQ ID complete amplicon)

(b) a forward primer (SEQ ID forward)
(c) a probe (SEQ ID probe)
(d) a reverse primer (SEQ 1D reverse)
(e) if necessary a spacer between forward primer and probe
(f) if necessary a spacer between probe and reverse primer
(g) if necessary a spacer upstream of the forward primer
(h) if necessary a spacer downstream of the reverse primer
- whereas SEQ ID (SEQ ID forward primer, SEQ ID probe and SEQ ID reverse primer) can include variants, where one, two or more nucleotides are substituted, deleted and/or inserted and all variants set on the same target gene:
- in doing so the variant has in general the same function as the sequence of SEQ ID (SEQ ID forward primer, SEQ 1D probe and SEQ 1D reverse primer) meaning the function of DNA-binding of the probe and DNA and delivering of a prolongable 3'-end for the DNA-polymerase of the primers.

[0057] The fragment taken out of this group

Specific System:

(i) for *Dekkera bruxellensis*
- SEQ ID No. 1 as complete amplicon
- SEQ ID No. 2 as forward-primer
- SEQ ID No. 3 as MGB probe
- SEQ ID No. 4 as reverse primer

(ii) for *Dekkera bruxellensis*
- SEQ ID No. 5 as complete amplicon
- SEQ ID No. 6 as forward-primer
- SEQ ID No. 7 as TaqMan® probe
- SEQ ID No. 8 as reverse primer

(iii) for *Hanseniaspora uvarum*
- SEQ ID No. 9 as complete amplicon
- SEQ ID No. 10 as forward-primer
- SEQ ID No. 11 as MGB probe
- SEQ ID No. 12 as reverse primer

(iv) for *Hanseniaspora uvarum*
- SEQ ID No. 13 as complete amplicon
- SEQ ID No. 14 as forward-primer
- SEQ ID No. 15 as TaqMan® probe
- SEQ ID No. 16 as reverse primer

(x) for *Saccharomyces bayanus*
- SEQ ID No. 37 as complete amplicon
- SEQ ID No. 38 as forward-primer
- SEQ ID No. 39 as TaqMan® probe
- SEQ ID No. 40 as reverse primer

(xi) for *Saccharomyces bayanus*
Favoured is the application of a kit with PCR reagents. Even more favoured is the application of a kit with PCR reagents and TaqMan® technology.

The sequences mentioned are listed in SEQ ID No. 1 to SEQ ID No. 44. For a successful TaqMan® PCR of the DNA fragments as short as possible have to be chosen. This improves and enlarges the possibilities of choosing primers and probes on the target fragment. Amplification of small fragments allows an easier determination of specific Systems. Besides normal TaqMan® probes, the invention includes as well Minor Groove Binder (MGB) with dark quencher.

The following demands are:

- primer have to be between 15 to 30 base pairs long
- the sequence of the probe has to be between the primer sequences on the amplifiable DNA
- the TaqMan® probes have to be between 15 and 30 bases long
- the Minor Groove Binder probes have to be between 14 and 20 base pairs long
- the probe should contain a GC-content of 40 to 60%
- the melting temperature of the probe have to be 8 to 12°C above the primer
- there should be no G at the 5’-end of the probe
- the sequence of the probe should not contain more than 3 times the same bases in a row
- there should be no complementary sequence between primer and probe or within the primers and no noticeable secondary structure within primers and probe.

In spite of the general guidelines for the design of primer and probe (Livak et al. 1995) the optimal combination of primer and probe of each TaqMan® PCR application has to be experimentally determined.

First it could be shown in a series of experiments that the development of an optimal TaqMan® PCR System was not possible although all the above mentioned guidelines have been followed. Second, it is sometimes necessary because of the characteristics of the target sequence of the corresponding organisms (e.g. high GC-content, highly repetitive elements or conserved regions of sequences) to choose primer and probe sequences that do not fulfil the above mentioned guidelines for the design of the Systems. Consequence of the limitation to the guidelines is that for the achievement of the necessary specificity and sensitivity of a Taqman® PCR test the choice of the diagnostic target sequence in the genome of the micro-organism to determine and the experimental determination of optimal primer and probe sequences are essential conditions including TaqMan buffer:

The specificity and sensitivity of a TaqMan® PCR test will be determined beside of the sequence of primer and probe of the following parameter:

- denaturation temperature of the first PCR cycle
- annealing temperature during the amplification phase
- number of PCR cycles
- use of PCR additives as e.g. glycerine and/or formamide
- use of 7-deaza-2-deoxy-GTP beside GTP in genes with a high G/C-content
- concentration of Mg²⁺ ions in the PCR buffer
- concentration of primers and probe
- units of Taq DNA-polymerase
- distance of the cis-oriented primers to the probe.

All these parameters were considered during the development of the described TaqMan® PCR tests.

Nucleic acids that are used as diagnostic targets are: Under the term nucleic acid, which has been used applying the reverse transcription step followed by the amplification procedure and the detection for the target organisms mentioned above, is seen genomic DNA. The genomic DNA sequence includes besides others fragments with sequences, which are characteristic for a species, genus, family or class micro-organisms. The DNA sequences can be used in a TaqMan® PCR test as diagnostic target sequence for species, genus, family or class.

There are no especial safety requirements as no components of the kit underlies a safety regulation.
Examples

Identification of Presence of Microbial Contaminants

[0067] The following examples are describing the developed PCR rapid detection kits for the detection of the targets *Dekkera bruxellensis*, *Hanseniaspora uvarum*, *Pediococcus damnosus*, *Pediococcus parvulus*, *Pediococcus pentosaceus*, *Lactobacillus brevis*, *Lactobacillus hilgardii*, *Saccharomyces bayanus*, *Saccharomyces cerevisiae* and *Oenococcus oeni*. Inclusively all sequence variations and target sequences:

<table>
<thead>
<tr>
<th></th>
<th>Example 1</th>
<th>Example 2</th>
<th>Example 5-7</th>
<th>Example 8-10</th>
<th>Example 29-31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component</td>
<td>Dekkera bruxellensis</td>
<td>Dekkera bruxellensis</td>
<td>Hanseniaspora uvarum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TaqMan® 2x Universal PCR Master Mix</td>
<td>1 x</td>
<td>1x</td>
<td>1 x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primer Forward</td>
<td>400 nM</td>
<td>400 nM</td>
<td>400 nM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primer Reverse</td>
<td>400 nM</td>
<td>400 nM</td>
<td>400 nM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probe</td>
<td>100 nM</td>
<td>100 nM (MGB probe)</td>
<td>100 nM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA Sample</td>
<td>5 µl</td>
<td>5 µl</td>
<td>5 µl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>Add H₂O to 25 µl total volume</td>
<td>Add H₂O to 25 µl total volume</td>
<td>Add H₂O to 25 µl total volume</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 1

[0068] The micro-organisms can be detected according to the table with following PCR conditions (no AmpErase UNG has been used):

<table>
<thead>
<tr>
<th>Component</th>
<th>Hanseniaspora uvarum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taqman® 2x Universal PCR Master Mix</td>
<td>1 x</td>
</tr>
<tr>
<td>Primer Forward</td>
<td>400 nM</td>
</tr>
<tr>
<td>Primer Reverse</td>
<td>400 nM</td>
</tr>
<tr>
<td>Probe</td>
<td>100 nM (MGB probe)</td>
</tr>
<tr>
<td>DNA Sample</td>
<td>5 µl</td>
</tr>
<tr>
<td>Add H₂O to 25 µl total volume</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Component</th>
<th>S.bayanus, S. uvarum, S. cerevisiae</th>
<th>Saccharomyces cerevisiae</th>
</tr>
</thead>
<tbody>
<tr>
<td>TaqMan® 2x Universal PCR Master Mix</td>
<td>1 x</td>
<td>1 x</td>
</tr>
<tr>
<td>Primer Forward</td>
<td>900 nM</td>
<td>900 nM</td>
</tr>
<tr>
<td>Primer Reverse</td>
<td>900 nM</td>
<td>900 nM</td>
</tr>
<tr>
<td>Probe</td>
<td>100 nM</td>
<td>100 nM</td>
</tr>
<tr>
<td>DNA Sample</td>
<td>5 µl</td>
<td>5 µl</td>
</tr>
<tr>
<td>Add H₂O to 25 µl total volume</td>
<td>Add H₂O to 25 µl total volume</td>
<td></td>
</tr>
</tbody>
</table>
The probes were manufactured by the Company Applied Biosystems, Weiterstadt, Germany. The probe is a single stranded oligonucleotide which was labelled at the 5' end with fluorescence derivative (FAM = 6-carboxyfluorescein) and at the 3' end with a fluorescent dye or Minor Groove Binder molecule (MGB).

Manufacturing and purification was performed according to the instructions of Applied Biosystems. The primers were manufactured by the Company MWG Biotech, Ebersberg, Germany. The primers are single stranded oligonucleotides which are not modified. Manufacturing and purification was performed according to the instructions of MWG Biotech.

Example 2
Real-Time-PCR Profile

Real-time PCR profile for specific Systems for the detection of Dekkera bruxellensis, Hanseniaspora uvarum, Saccharomyces bayanus, Saccharomyces cerevisiae, and further micro-organisms.

Incubation of the PCR-plate (Microamp® Optical/96-well reaction plate) in the TaqMan® using the following temperature-time-programme:

<table>
<thead>
<tr>
<th>steps</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>UNG-activity*</td>
<td>2 min./ 50 °C</td>
</tr>
<tr>
<td>activation of AmpliTaq Gold</td>
<td>10 min./95°C</td>
</tr>
<tr>
<td>amplification (45 cycles)</td>
<td>15 sec./95°C 60 sec./ 60°C</td>
</tr>
</tbody>
</table>

* Systems to avoid "carry-over"-contamination. Contaminating amplicons are digested before PCR by the enzyme Uracil-N-Glykosylase (UNG).

Example 3

Dekkera bruxellensis, Hanseniaspora uvarum, Saccharomyces bayanus and Saccharomyces cerevisiae can be detected in wine, beer and liquor to the according sequence of the Actin target gene, which is part of this application. Specific areas of the Actin gene served as diagnostical target for the development of a rapid detection kit for the detection of Dekkera bruxellensis, Hanseniaspora uvarum, Saccharomyces bayanus and Saccharomyces cerevisiae. Why was this gene selected as a diagnostical target? In contrast to higher eukaryotes, yeast produces a unique actin molecule encoded by a single gene. The sequence is highly conserved not only between yeast species but in comparison to other known sequences. The actin gene is a housekeeping gene, which plays a mayor role in the live cycle of the Dekkera bruxellensis, Hanseniaspora uvarum, Saccharomyces bayanus and Saccharomyces cerevisiae organisms.

Therefore it was chosen to serve as a genetic marker to detect the yeast specie Dekkera bruxellensis, Hanseniaspora uvarum, Saccharomyces bayanus and Saccharomyces cerevisiae.

Example 5

Due to DNA sequence comparison, practical optimisation work and use of different primer and probe combinations following Actin DNA sequences were determined as the optimal primer and probe combination for Dekkera bruxellensis:

Forward primer sequence:

5' TGTCAGAGACATCAAGGAGAAGCT 3' (SEQ ID NO 2)

Probe:

5' - FAM TGTTACGTTGCTTTGGAC - MGB - 3' (SEQ ID NO 3)

Reverse primer sequence:

5' CGTCTGCATTTCCTGGTCAA 3' (SEQ ID NO 4)
Example 6

Selectivity of the *Dekkera bruxellensis* PCR detection test to evaluate the selectivity of the PCR test specific for *Dekkera bruxellensis*, DNA was extracted from different organisms. The DNA was used to perform a fluorescence PCR Test. The amount of amplified PCR products was listed as the Ct value (Threshold Cycle) in following table:

List of the tested cDNA samples:

<table>
<thead>
<tr>
<th>Organism</th>
<th>Accession</th>
<th>Result (as Ct value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yeast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dekkera bruxellensis</td>
<td>DSM 70739</td>
<td>24.2</td>
</tr>
<tr>
<td>Jodat95</td>
<td></td>
<td>24.9</td>
</tr>
<tr>
<td>Buess a</td>
<td></td>
<td>24.4</td>
</tr>
<tr>
<td>Vallellina</td>
<td></td>
<td>23.9</td>
</tr>
<tr>
<td>Malanser</td>
<td></td>
<td>23.5</td>
</tr>
<tr>
<td>Cor94-41</td>
<td></td>
<td>23.5</td>
</tr>
<tr>
<td>Hanseniaspora uvarum</td>
<td>DSM 2768</td>
<td>45.0</td>
</tr>
<tr>
<td>FAW98/10-4</td>
<td></td>
<td>45.0</td>
</tr>
<tr>
<td>FAW75 403H</td>
<td></td>
<td>45.0</td>
</tr>
<tr>
<td>FAW Rbst-9/00-4</td>
<td></td>
<td>45.0</td>
</tr>
<tr>
<td>FAW74</td>
<td></td>
<td>45.0</td>
</tr>
<tr>
<td>Rst9/10</td>
<td></td>
<td>45.0</td>
</tr>
<tr>
<td>Saccharomyces cerevisiae</td>
<td>LalvinW15</td>
<td>45.0</td>
</tr>
<tr>
<td>Lalvin W27</td>
<td></td>
<td>45.0</td>
</tr>
<tr>
<td>Ceppo 20</td>
<td></td>
<td>45.0</td>
</tr>
<tr>
<td>DSM 4266</td>
<td></td>
<td>45.0</td>
</tr>
<tr>
<td>Lalvin EC 1118</td>
<td></td>
<td>45.0</td>
</tr>
<tr>
<td>Saccharomyces bayanus</td>
<td>FAW 43</td>
<td>45.0</td>
</tr>
<tr>
<td>Saccharomyces uvarum</td>
<td>S6U</td>
<td>45.0</td>
</tr>
<tr>
<td>Metschnikowia pulcherrima</td>
<td>Rst6</td>
<td>45.0</td>
</tr>
<tr>
<td>DSM 70321</td>
<td></td>
<td>45.0</td>
</tr>
<tr>
<td>Pichia anomala</td>
<td>FAW 10</td>
<td>45.0</td>
</tr>
<tr>
<td>Candida stellata</td>
<td>FAW3 Rst 98/1 0/7</td>
<td>45.0</td>
</tr>
<tr>
<td>Bacteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oenococcus oeni</td>
<td>DSM 20257</td>
<td>45.0</td>
</tr>
<tr>
<td>Pediococcus damnosus</td>
<td>DSM 20331</td>
<td>45.0</td>
</tr>
<tr>
<td>Lactobacillus brevis</td>
<td>DSM 2647</td>
<td>45.0</td>
</tr>
</tbody>
</table>

Example 7

Sensitivity of the *Dekkera bruxellensis* test to determine the *Dekkera bruxellensis* PCR test, DNA was prepared and deployed in the PCR experiments.

Different amounts of DNA of *Dekkera bruxellensis* were deployed in the fluorescence PCR. The number of starting cells for DNA extraction and the Ct values are given in the following table. The Ct values are mean values of six autonomous replications.
The result shows that RNA of 100 Dekkera bruxellensis cells could be detected in one ml using fluorescence PCR. The PCR detection test allows a linear quantification about 6 log steps, i.e. between 10^2 and 10^7 cells/ml.

Example 8

Due to cDNA sequence comparison, practical optimization work and use of different primer and probe combinations following Actin DNA sequences were determined as the optimal primer and probe combination for Hanseniaspora uvarum:

Forward primer sequence:

5' TCAAAGAAAAGTTATCYTACGTTTAC 3' (SEQ ID NO 10)

Probe:

5'- FAM AGACTTTGACCAAGAAA - MGB - 3' (SEQ ID NO 11)

Reverse primer sequence:

5' TGAAGATTGAGCAGCAGTTCC 3'

Example 9

Selectivity of the Hanseniaspora uvarum PCR detection test to evaluate the selectivity of the PCR test specific for Hanseniaspora uvarum, DNA was extracted from different organisms. The DNA was used to perform a fluorescence PCR Test. The amount of amplified PCR products was listed as the Ct value (Threshold Cycle) in following table:

<table>
<thead>
<tr>
<th>Organism</th>
<th>Accession</th>
<th>Result (as Ct value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yeast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hanseniaspora uvarum</td>
<td>DSM 2768</td>
<td>22.0</td>
</tr>
<tr>
<td>FAW98/10-4</td>
<td>FAW98/10-4</td>
<td>21.3</td>
</tr>
<tr>
<td></td>
<td>FAW75 403H</td>
<td>20.5</td>
</tr>
<tr>
<td></td>
<td>FAW Rbst-9/00-4</td>
<td>20.5</td>
</tr>
<tr>
<td></td>
<td>FAW74</td>
<td>21.0</td>
</tr>
<tr>
<td></td>
<td>Rst 9/10</td>
<td>22.0</td>
</tr>
<tr>
<td>Dekkera bruxellensis</td>
<td>DSM 70739</td>
<td>45.0</td>
</tr>
<tr>
<td></td>
<td>Jodat95</td>
<td>45.0</td>
</tr>
<tr>
<td></td>
<td>Buess a</td>
<td>45.0</td>
</tr>
</tbody>
</table>
Example 10

Sensitivity of the *Hanseniaspora uvarum* test to determine the *Hanseniaspora uvarum* PCR test, DNA was prepared and deployed in the PCR experiments. Different amounts of DNA of *Hanseniaspora uvarum* were deployed in the fluorescence PCR. The number of starting cells for DNA extraction and the Ct values are given in the following table. The Ct values are mean values of six autonomous replications.

<table>
<thead>
<tr>
<th>Organism</th>
<th>Accession</th>
<th>Result (as Ct value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valellina</td>
<td></td>
<td>45.0</td>
</tr>
<tr>
<td>Malanser</td>
<td></td>
<td>45.0</td>
</tr>
<tr>
<td>Cor94-41</td>
<td></td>
<td>45.0</td>
</tr>
<tr>
<td>Saccharomyces cerevisiae</td>
<td>Lalvin W15</td>
<td>45.0</td>
</tr>
<tr>
<td></td>
<td>Lalvin W27</td>
<td>45.0</td>
</tr>
<tr>
<td></td>
<td>Ceppo 20</td>
<td>45.0</td>
</tr>
<tr>
<td></td>
<td>DSM 4266</td>
<td>45.0</td>
</tr>
<tr>
<td></td>
<td>Lalvin EC 1118</td>
<td>45.0</td>
</tr>
<tr>
<td>Saccharomyces bayanus</td>
<td>FAW 43</td>
<td>45.0</td>
</tr>
<tr>
<td>Saccharomyces uvarum</td>
<td>S6U</td>
<td>45.0</td>
</tr>
<tr>
<td>Metschnikowia pulcherrima</td>
<td>Rst6</td>
<td>45.0</td>
</tr>
<tr>
<td></td>
<td>DSM 70321</td>
<td>45.0</td>
</tr>
<tr>
<td>Pichia anomala</td>
<td>FAW10</td>
<td>45.0</td>
</tr>
<tr>
<td>Candida stellata</td>
<td>FAW3</td>
<td>45.0</td>
</tr>
<tr>
<td></td>
<td>Rst 98/10/7</td>
<td>45.0</td>
</tr>
<tr>
<td>Bacteria</td>
<td></td>
<td>45.0</td>
</tr>
<tr>
<td>Oenococcus oeni</td>
<td>DSM 20257</td>
<td>45.0</td>
</tr>
<tr>
<td>Pediococcus damnosus</td>
<td>DSM 20331</td>
<td>45.0</td>
</tr>
<tr>
<td>Lactobacillus brevis</td>
<td>DSM 2647</td>
<td>45.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of cells/ml for DNA extraction</th>
<th>Mean Ct values</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^7</td>
<td>18.7</td>
</tr>
<tr>
<td>10^6</td>
<td>22.0</td>
</tr>
<tr>
<td>10^5</td>
<td>25.4</td>
</tr>
<tr>
<td>10^4</td>
<td>29.1</td>
</tr>
<tr>
<td>10^3</td>
<td>32.1</td>
</tr>
<tr>
<td>10^2</td>
<td>35.5</td>
</tr>
<tr>
<td>10^1</td>
<td>40.6</td>
</tr>
</tbody>
</table>

The result shows that DNA of 100 *Hanseniaspora uvarum* cells could be detected in one ml using fluorescence PCR. The PCR detection test allows a linear quantification about 6 log steps, i.e. between 10^2 and 10^7 cells/ml.
Example 30

[0085] Selectivity of the *Saccharomyces bayanus*, *Saccharomyces cerevisiae* and *Saccharomyces uvarum*. PCR detection test to evaluate the selectivity of the PCR test specific for *Saccharomyces bayanus*, *Saccharomyces cerevisiae* and *Saccharomyces uvarum*. DNA was extracted from different organisms. The cDNA was used to perform a fluorescence PCR Test. The amount of amplified PCR products was listed as the Ct value (Threshold Cycle) in following table:

List of the tested cDNA samples:

<table>
<thead>
<tr>
<th>Organism</th>
<th>Accession</th>
<th>Result (as Ct value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saccharomydes bayanus</td>
<td>DSM 4266</td>
<td>22.0</td>
</tr>
<tr>
<td>Saccharomydes cerevisiae</td>
<td>DSM 4266</td>
<td>23.1</td>
</tr>
<tr>
<td>Saccharomydes uvarum</td>
<td>DSM 4266</td>
<td>22.8</td>
</tr>
<tr>
<td>Oenococcus oeni</td>
<td>DSM 20257</td>
<td>45.0</td>
</tr>
<tr>
<td>Pediococcus damnosus</td>
<td>DSM 20331</td>
<td>45.0</td>
</tr>
<tr>
<td>Pediococcus damnosus</td>
<td>Bpe 176</td>
<td>45.0</td>
</tr>
<tr>
<td>Pediococcus damnosus</td>
<td>Bpe 181</td>
<td>45.0</td>
</tr>
<tr>
<td>Pediococcus parvulus</td>
<td>DSM 20332</td>
<td>45.0</td>
</tr>
<tr>
<td>Pediococcus parvulus</td>
<td>Bpe 124</td>
<td>45.0</td>
</tr>
<tr>
<td>Pediococcus parvulus</td>
<td>Bpe 150</td>
<td>45.0</td>
</tr>
<tr>
<td>Pediococcus parvulus</td>
<td>Bpe 160</td>
<td>45.0</td>
</tr>
<tr>
<td>Lactobacillus brevis</td>
<td>DSM 2647</td>
<td>45.0</td>
</tr>
<tr>
<td>Lactobacillus brevis</td>
<td>Lb 11 Aa</td>
<td>45.0</td>
</tr>
<tr>
<td>Lactobacillus brevis</td>
<td>Lb 15 Ca</td>
<td>45.0</td>
</tr>
<tr>
<td>Lactobacillus brevis</td>
<td>Lb 24A</td>
<td>45.0</td>
</tr>
<tr>
<td>Lactobacillus brevis</td>
<td>Lb 21E</td>
<td>39.9</td>
</tr>
<tr>
<td>Lactobacillus hilgardii</td>
<td>DSM 20051</td>
<td>38.5</td>
</tr>
<tr>
<td>Lactobacillus plantarum</td>
<td>DSM 20174</td>
<td>45.0</td>
</tr>
<tr>
<td>Hanseniaspora uvarum</td>
<td>DSM 2768</td>
<td>45.0</td>
</tr>
<tr>
<td>Brettanomyces bruxellensis</td>
<td>DSM 70739</td>
<td>45.0</td>
</tr>
</tbody>
</table>

Example 31

[0086] Sensitivity of the *Saccharomyces spp.* test to determine the *Saccharomyces spp* PCR test, DNA was prepared and deployed in the PCR experiments.

[0087] The sensitivity tests were performed using *Saccharomyces bayanus* DNA. Different amounts of DNA of *Saccharomyces bayanus* were deployed in the fluorescence PCR. The number of starting cells for DNA extraction and the Ct values are given in the following table. The Ct values are mean values of six autonomous replications:

<table>
<thead>
<tr>
<th>Number of cells/ml for DNA extraction</th>
<th>Mean Ct values</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^7</td>
<td>18.6</td>
</tr>
<tr>
<td>10^6</td>
<td>22.1</td>
</tr>
<tr>
<td>10^5</td>
<td>24.9</td>
</tr>
<tr>
<td>10^4</td>
<td>26.8</td>
</tr>
<tr>
<td>10^3</td>
<td>31.4</td>
</tr>
<tr>
<td>10^2</td>
<td>34.7</td>
</tr>
</tbody>
</table>
The result shows that DNA of 100 Saccharomyces bayanus cells could be detected in one ml using fluorescence PCR. The PCR detection test allows a linear quantification about 6 log steps, i.e. between 10^2 and 10^7 cells/ml.

Primers and Probes

for Dekkera bruxellensis

- SEQ ID No. 1 (5' to 3') / as amplicon

 TGTCAGAGACATCAAGGAGAAGCTTTGTACGTTGCTTTGGACCTTTGACCA GGAAATGCAAGACG

- SEQ ID No. 2 (5' to 3') / forward primer

 TGTCAGAGACATCAAGGAGAAGCT

- SEQ ID No. 3 (5' to 3') / as probe

 (FAM) TGTTACGTTGCTTTGGAC (MGB)

- SEQ ID No. 4 (5' to 3') / as reverse primer

 CGTCTGCAATTCCTGGTCAA

for Dekkera bruxellensis

- SEQ ID No. 5 (5' to 3') / as amplicon

 TGTCAGAGACATCAAGGAGAAGCTTTGTACGTTGCTTTGGACCTTTGACCA GGAAATGCAAGACGACG

- SEQ ID No. 6 (5' to 3') / forward primer

 TGTCAGAGACATCAAGGAGAAGCT

- SEQ ID No. 7 (5' to 3') / as probe

 (FAM) TGTTACGTTGCTTTGGACTTTGACCAGGA (TAMRA)

- SEQ ID No. 8 (5' to 3') / as reverse primer

 CTGTGCTGCCGTCTGCA

for Hanseniaspora uvarum

- SEQ ID No. 9 (5' to 3') / as amplicon

 TCAAAGAAAGTGATACGTTAGCTTTAGACTTTGACCAAGAAGATGGAA ATGTGTCTGCATACTTTCA

- SEQ ID No. 10 (5' to 3') / forward primer

 TCAAAGAAAGTGATACGTTGCTT

- SEQ ID No. 11 (5' to 3') / as probe

 (FAM) AGACTTTTGACCAAGAAAA (MGB)

- SEQ ID No. 12 (5' to 3') / as reverse primer

 TGAAGATGGAGCAGCAGTTT
for *Hanseniaspora uvarum*

SEQ ID No. 13 (5' to 3') / as amplicon

AGTCATCACCATTGGTAACGAAAGATTCAGAGCTCCAGAAGCCTTATTCC
AACCTTCCTTTATGGTCTCTAGAATCTGCTGG

SEQ ID No. 14 (5' to 3') / forward primer

AGTCATCACCATTGGTAACGAAAG

SEQ ID No. 15 (5' to 3') / as probe

(FAM) TTCAGAGCTCCAGAAGCCTTATTCCAAACCT (TAMRA)

SEQ ID No. 16 (5' to 3') / as reverse primer

CCAGCAGATTCTAAACCAATAAAGG

for *Saccharomyces bayanus*

SEQ ID No. 37 (5' to 3') / as amplicon

atttgcgcgttagagatttgaactctgtatgtaagatctttggtcgtgggttcaccactgtcgtaagagaagagaacagtgttagttctacggtcgtcg

SEQ ID No. 38 (5' to 3') / forward primer

ATTGCGCGTAGAGATTGGAC

SEQ ID No. 39 (5' to 3') / as probe

(FAM) TTGAGTGAACGTGGTTACTCTTTCTCCACCACCT (TAMRA)

SEQ ID No. 40 (5' to 3') / as reverse primer

TTG AGT GAA GGT TAC TCT TTC TCC ACC ACT

for *Saccharomyces spp* (*S. bayanus, S. cerevisiae, S. uvarum*)

SEQ ID No. 41 (5' to 3') / as amplicon

ttg aga gtt gcc cca gaa gaa cac cct gtt ctg act gct cca atg aac cct aaa tca aac aga gaa aag atg act c

SEQ ID No. 42 (5' to 3') / forward primer

TTG AGA GTT GCC CCA GAA GAA C

SEQ ID No. 43 (5' to 3') / as probe

(FAM) ACC CTG TTC TIT TGA C (MGB)

SEQ ID No. 44 (5' to 3') / as reverse primer

GAG TCA TCT TTT TCG TGT ATT TAG G

SEQUENCE LISTING

[0090]

<110> ETS Laboratories

<120> NEW METHODS AND KITS PERTAINING TO THE DETECTION, IDENTIFICATION AND QUANTIFICATION OF YEAST IN WINE, BEER AND JUICES

<130> P2998EPFC
EP 1 761 644 B1

<140> EP 05749752.1<141> 2005-06-06
<150> EP04014518.7<151> 2004-06-21

<160> 49

<170> BiSSAP 1.2

<210> 1
<211> 64
<212> DNA
<213> Dekkera bruxellensis

<220>
<221> source
<222> 1..64
<223> /organism="Dekkera bruxellensis" /mol_type="unassigned DNA"

<220>
<221> primer_bind
<222> 1..64
<223> /note="complete amplicon sequence"

<400> 1

tgtcagagac atcaaggaga agcttttgtta cgttgttttg gactttgacc aggaaatgca 60
gacg 64

<210> 2
<211> 24
<212> DNA
<213> Dekkera bruxellensis

<220>
<221> source
<222> 1..24
<223> /organism="Dekkera bruxellensis" /mol_type="unassigned DNA"

<220>
<221> primer_bind
<222> 1..24
<223> /note="forward primer"

<400> 2
tgtcagagac atcaaggaga agct 24

<210> 3
<211> 18
<212> DNA
<213> Dekkera bruxellensis

<220>
<221> source
<222> 1..18
<223> /organism="Dekkera bruxellensis" /mol_type="unassigned DNA"
<220>
primer_bind
<222> 1..18
<223> /note="MGB probe"

<400> 3
tgtacgttg ctttgac 18

<210> 4
<211> 20
<212> DNA
<213> Dekkera bruxellensis

<220>
source
<222> 1..20
<223> /organism="Dekkera bruxellensis" /mol_type="unassigned DNA"

<220>
primer_bind
<222> 1..20
<223> /note="reverse primer"

<400> 4
cgtctgcatt tcctggtcaa 20

<210> 5
<211> 73
<212> DNA
<213> Dekkera bruxellensis

<220>
source
<222> 1..73
<223> /organism="Dekkera bruxellensis" /mol_type="unassigned DNA"

<220>
primer_bind
<222> 1..73
<223> /note="complete amplicon sequence"

<400> 5
tgtcagagac atcaaggaga agctttgta cgttgctttg gactttgacc aggaaatgca 60
gacggcagca cag 73

<210> 6
<211> 24
<212> DNA
<213> Dekkera bruxellensis

<220>
source
<222> 1..24
<223> /organism="Dekkera bruxellensis" /mol_type="unassigned DNA"
<220>
<221> primer_bind
<222> 1..24
<223> /note="forward primer"

<400> 6
tgtcagagac atcaaggaga agct 24

<210> 7
<211> 29
<212> DNA
<213> Dekkera bruxellensis

<220>
<221> source
<222> 1..29
<223> /organism="Dekkera bruxellensis" /mol_type="unassigned DNA"

<220>
<221> primer_bind
<222> 1..29
<223> /note="TaqMan probe"

<400> 7
tgttacgttg ctttggactt tgaccaga 29

<210> 8
<211> 18
<212> DNA
<213> Dekkera bruxellensis

<220>
<221> source
<222> 1..18
<223> /organism="Dekkera bruxellensis" /mol_type="unassigned DNA"

<220>
<221> primer_bind
<222> 1..18
<223> /note="reverse primer"

<400> 8
ctgtgtgctgc gtcgcat 18

<210> 9
<211> 68
<212> DNA
<213> Hanseniaspora uvarum

<220>
<221> source
<222> 1..68
<223> /organism="Hanseniaspora uvarum" /mol_type="unassigned DNA"

<220>
<221> primer_bind
<222> 1..68
<223> /note="complete amplicon sequence"
<400> 9

tcaaaagaaaa gttatcytac gttgctttag actttgacca agaaatggaa actgctgctc

<201> 10
<202> 1.27
<203> /note="forward primer"

<400> 10
tcaaaagaaaa gttatcytac gttgctt 27

<201> 11
<202> 1.17
<203> /note="MGB probe"

<400> 11
agactttgac caagaaa 17

<201> 12
<202> 1.20
<203> /note="reverse primer"
tgaagattga gcagcagttt 20

<210> 13
<211> 81
<212> DNA
<213> Hanseniaspora uvarum

<220>
<221> source
<222> 1..81
<223> /organism="Hanseniaspora uvarum" /mol_type="unassigned DNA"

<220>
<221> primer_bind
<222> 1..81
<223> /note="complete amplicon sequence"

<400> 13
agtcattcacc attggtaacg aaagttcag agctccagaa gcctattcc aacctctcctt 60
tattggttta gaatctgctg g 81

<210> 14
<211> 24
<212> DNA
<213> Hanseniaspora uvarum

<220>
<221> source
<222> 1..24
<223> /organism="Hanseniaspora uvarum" /mol_type="unassigned DNA"

<220>
<221> primer_bind
<222> 1..24
<223> /note="forward primer"

<400> 14
agtcattcacc attggtaacg aa 24

<210> 15
<211> 30
<212> DNA
<213> Hanseniaspora uvarum

<220>
<221> source
<222> 1..30
<223> /organism="Hanseniaspora uvarum" /mol_type="unassigned DNA"

<220>
<221> primer_bind
<222> 1..30
<223> /note="TaqMan probe"
<220> 5
<211> 25
<212> DNA
<213> Hanseniaspora uvarum

<220> 10
<221> source
<222> 1..25
<223> /organism="Hanseniaspora uvarum" /mol_type="unassigned DNA"

<220> 15
<221> primer_bind
<222> 1..25
<223> /note="reverse primer"

<400> 16
tcagagctc cagaagcctt attcaacct 30

<400> 17
<210> 16
ccagcagatt ctaaaccaat aaagg 25

<400> 18
000

<400> 19
000

<400> 20
000

<400> 21
000

<400> 22
000

<400> 23
000

<400> 24
000

<210> 24
<table>
<thead>
<tr>
<th>5</th>
<th>000</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>000</td>
</tr>
<tr>
<td>15</td>
<td>000</td>
</tr>
<tr>
<td>20</td>
<td>000</td>
</tr>
<tr>
<td>25</td>
<td>000</td>
</tr>
<tr>
<td>30</td>
<td>000</td>
</tr>
<tr>
<td>35</td>
<td>000</td>
</tr>
<tr>
<td>40</td>
<td>000</td>
</tr>
<tr>
<td>45</td>
<td>000</td>
</tr>
<tr>
<td>50</td>
<td>000</td>
</tr>
<tr>
<td>55</td>
<td>000</td>
</tr>
</tbody>
</table>
<210> 36
<400> 36
000

<210> 37
<211> 123
<212> DNA
<213> Saccharomyces bayanus

<220>
<221> source
<222> 1..123
<223> /organism="Saccharomyces bayanus" /mol_type="unassigned DNA"

<220>
<221> primer_bind
<222> 1..123
<223> /note="complete amplicon sequence"

<400> 37

atgagaatgacgagtgacgacgtggtactc
<210> 38
<211> 22
<212> DNA
<213> Saccharomyces bayanus

<220>
<221> source
<222> 1..22
<223> /organism="Saccharomyces bayanus" /mol_type="unassigned DNA"

<220>
<221> primer_bind
<222> 1..22
<223> /note="forward primer"

<400> 38
atgagaatgacgagtgacgacgtggtactc

<210> 39
<211> 33
<212> DNA
<213> Saccharomyces bayanus

<220>
<221> source
<222> 1..33
<223> /organism="Saccharomyces bayanus" /mol_type="unassigned DNA"

<220>
<221> primer_bind
<222> 1..33
<223> /note="TaqMan probe"
<400> 39
ttgagtgaac gtggttactc tttctccacc act 33
<210> 40
<211> 33
<212> DNA
<213> Saccharomyces bayanus
<220>
<221> source
<222> 1..33
<223> /organism="Saccharomyces bayanus" /mol_type="unassigned DNA"
<220>
<221> primer_bind
<222> 1..33
<223> /note="reverse primer"
<400> 40
ttgagtgaac gtggttactc tttctccacc act 33
<210> 41
<211> 82
<212> DNA
<213> Saccharomyces spp
<220>
<221> source
<222> 1..82
<223> /organism="Saccharomyces spp" /mol_type="unassigned DNA"
<220>
<221> primer_bind
<222> 1..82
<223> /note="complete amplicon sequence"
<400> 41
ttgagagtgg ccccaggaga acacaccttt ctttgactg aagctccaat gaacccctaa 60
tcaaacagag aaaaagatgc tc 82
<210> 42
<211> 22
<212> DNA
<213> Saccharomyces spp
<220>
<221> source
<222> 1..22
<223> /organism="Saccharomyces spp" /mol_type="unassigned DNA"
<220>
<221> primer_bind
<222> 1..22
<223> /note="forward primer"
 ttgagacctg ccccagaaga ac 22

<210> 43
<211> 16
<212> DNA
<213> Saccharomyces spp

<220>
<221> source
<222> 1..16
<223> /organism="Saccharomyces spp" /mol_type="unassigned DNA"

<220>
<221> primer_bind
<222> 1..16
<223> /note="MGB probe"

<400> 43
 acacctgttct ttgac 16

<210> 44
<211> 28
<212> DNA
<213> Saccharomyces spp

<220>
<221> source
<222> 1..28
<223> /organism="Saccharomyces spp" /mol_type="unassigned DNA"

<220>
<221> primer_bind
<222> 1..28
<223> /note="reverse primer"

<400> 44
 gagctac ttcttgtt gatttagg 28

<210> 45
<400> 45 000

<210> 46
<400> 46 000

<210> 47
<210> 47
<400> 47 000

<210> 48
<400> 48 000
1. A method for the detection and identification of yeast organisms in alcoholic and non-alcoholic beverages, the method comprising:
 - Extracting a DNA sample from a beverage sample;
 - contacting the DNA sample with a DNA primer pair and probe comprising DNA primer molecules of sufficient length of contiguous nucleotides of gene actin or homologues thereof;
 - providing a nucleic acid amplification reaction condition performing said nucleic acid amplification reaction, thereby producing a DNA amplicon molecule;
 - detecting the amplicon molecule;

characterized in that the primer sequences and the probe sequence are selected among one of the following combinations:

- primer sequence SEQ ID No. 2 and 4 and probe sequence SEQ ID No. 3, for detecting Dekkera bruxellensis;
- primer sequence SEQ ID No. 6 and 8 and probe sequence SEQ ID No. 7, for detecting Dekkera bruxellensis;
- primer sequence SEQ ID No. 10 and 12 and probe sequence SEQ ID No. 11, for detecting Hanseniaspora uvarum;
- primer sequence SEQ ID No. 10 and TGAAGATTFAGCAGCAGTTTCC and probe sequence SEQ ID No. 11, for detecting Hanseniaspora uvarum.

2. The method according to claim 1, wherein the number of yeast organisms that were present in the beverage sample is determined based on the quantity of produced DNA amplicon molecules, and wherein the quantity of DNA amplicon molecules is determined by quantitative fluorescence PCR.

3. The method according to claim 2, wherein the number of yeast organisms that were present in the beverage sample is determined based on the number of replication cycles during the nucleic acid amplification reaction that are needed to obtain a certain fluorescence signal.

4. A method for the detection and identification of a DNA molecule selected from the gene actin or homologues thereof of yeast organisms in a DNA sample, the method comprising:
 - Extracting a DNA sample from a beverage sample;
 - contacting the DNA sample with a DNA primer pair and probe comprising DNA primer molecules of sufficient length of contiguous nucleotides of gene actin or homologues thereof;
 - providing a nucleic acid amplification reaction condition performing said nucleic acid amplification reaction, thereby producing a DNA amplicon molecule;
 - detecting the amplicon molecule;

characterized in that the primer sequences and the probe sequence are selected from at least one of the following combinations:
5. The method according to claim 4, wherein the number of DNA molecules that were present in the beverage sample is determined based on the quantity of produced DNA amplicon molecules, and wherein the quantity of DNA amplicon molecules is determined by quantitative fluorescence PCR.

6. The method according to claim 5, wherein the number of DNA molecules that were present in the beverage sample is determined based on the number of replication cycles during the nucleic acid amplification reaction that are needed to obtain a certain fluorescence signal.

7. A test kit for the detection and identification of yeast contaminations in alcoholic and non-alcoholic beverages, comprising at least one of the following combinations of primers and probes specific for a target gene of a yeast contaminant:

- primer sequence SEQ ID No. 2 and 4 and probe sequence SEQ ID No. 3, for detecting Dekkera bruxellensis;
- primer sequence SEQ ID No. 6 and 8 and probe sequence SEQ ID No. 7, for detecting Dekkera bruxellensis;
- primer sequence SEQ ID No. 10 and 12 and probe sequence SEQ ID No. 11, for detecting Hanseniaspora uvarum;
- primer sequence SEQ ID No. 14 and 16 and probe sequence SEQ ID No. 15, for detecting Hanseniaspora uvarum;
- primer sequence SEQ ID No. 10 and TGAAGATTGAGCAGCAGTTTCC and probe sequence SEQ ID No. 11, for detecting Hanseniaspora uvarum.

8. The test kit according to claim 7, characterized in that the test kit is intended for application in fluorescence PCR technology.

9. Use of a kit according to claim 7 or 8 for detecting and identifying yeast organisms in alcoholic and non-alcoholic beverages.

10. A method for the detection and identification of organisms in alcoholic and non-alcoholic beverages according to any of claims 1 to 6, using a test kit according to claim 7 or 8.

Patentansprüche

1. Verfahren zum Nachweisen und Identifizieren von Hefeorganismen in alkoholischen und nicht-alkoholischen Getränken, wobei das Verfahren umfasst:

- Extrahieren einer DNA-Probe aus einer Getränkeprobe;
- Inkontaktbringen der DNA-Probe mit einem DNA-Primerpaar und einer DNA-Sonde, die DNA-Primermoleküle mit einer ausreichenden Länge zusammenhängender Nukleotide des Gens Aktin oder Homologen davon umfasst;
- Bereitstellen einer Nukleinsäure-Amplifikationsreaktionsbedingung, die die Nukleinsäure-Amplifikationsreaktion durchführt, wodurch ein DNA-Amplikonmolekül produziert wird;
- Nachweisen des Amplikonmoleküls;

dadurch gekennzeichnet, dass die Primersequenzen und die Sondensequenz aus einer der folgenden Kombinationen ausgewählt sind:
1. Verfahren, das zum Nachweis von Dekkera bruxellensis oder Hanseniaspora uvarum verwendet wird.

2. Verfahren nach Anspruch 1, wobei die Anzahl von Hefeorganismen, die in der Getränkeprobe vorhanden waren, auf Basis der Menge produzierter DNA-Amplikonmoleküle ermittelt wird, und wobei die Menge der DNA-Amplikonmoleküle mittels quantitativer Fluoreszenz-PCR ermittelt wird.

3. Verfahren nach Anspruch 2, wobei die Anzahl von Hefeorganismen, die in der Getränkeprobe vorhanden waren, auf Basis der Anzahl von Replikationszyklen während der Nukleinsäure-Amplifikationsreaktion ermittelt wird, die notwendig sind, um ein gewisses Fluoreszenzsignal zu erhalten.

4. Verfahren zum Nachweisen und Identifizieren eines DNA-Moleküls, das ausgewählt ist aus dem Gen Aktin oder Homologen davon von Hefeorganismen in einer DNA-Probe, wobei das Verfahren umfasst:

- Extrahieren einer DNA-Probe aus einer Getränkeprobe;
- Inkontaktschichten der DNA-Probe mit einem DNA-Primerpaar und einer DNA-Sonde, die DNA-Primermoleküle mit einer ausreichenden Länge zusammenhängender Nukleotide des Gens Aktin oder Homologen davon umfasst;
- Bereitstellen einer Nukleinsäure-Amplifikationsreaktionsbedingung, die die Nukleinsäure-Amplifikationsreaktion durchführt, wodurch ein DNA-Amplikonmolekül produziert wird;
- Nachweisen des Amplikonmoleküls;

dadurch gekennzeichnet, dass die Primersequenzen und die Sondensequenz aus zumindest einer der folgenden Kombinationen ausgewählt sind:

- Primersequenz SEQ ID Nr. 2 und 4 und Sondensequenz SEQ ID Nr. 3 zum Nachweis von Dekkera bruxellensis;
- Primersequenz SEQ ID Nr. 6 und 8 und Sondensequenz SEQ ID Nr. 7 zum Nachweis von Dekkera bruxellensis;
- Primersequenz SEQ ID Nr. 10 und 12 und Sondensequenz SEQ ID Nr. 11 zum Nachweis von Hanseniaspora uvarum;
- Primersequenz SEQ ID Nr. 14 und 16 und Sondensequenz SEQ ID Nr. 15 zum Nachweis von Hanseniaspora uvarum;
- Primersequenz SEQ ID Nr. 10 und TGAAGATTGAGCAGCAGTTTCC und Sondensequenz SEQ ID Nr. 11 zum Nachweis von Hanseniaspora uvarum.

5. Verfahren nach Anspruch 4, wobei die Anzahl von DNA-Molekülen, die in der Getränkeprobe vorhanden waren, auf Basis der Menge produzierter DNA-Amplikonmoleküle ermittelt wird, und wobei die Menge der DNA-Amplikonmoleküle mittels quantitativer Fluoreszenz-PCR ermittelt wird.

6. Verfahren nach Anspruch 5, wobei die Anzahl von DNA-Molekülen, die in der Getränkeprobe vorhanden waren, auf Basis der Anzahl von Replikationszyklen während der Nukleinsäure-Amplifikationsreaktion ermittelt wird, die notwendig sind, um ein gewisses Fluoreszenzsignal zu erhalten.

7. Testkit zum Nachweisen und Identifizieren von Hefekontaminationen in alkoholischen und nicht-alkoholischen Getränken, umfassend zumindest eine der folgenden Kombinationen von Primern und Sonden, die für ein Zielgen eines Hefekontaminanten spezifisch sind:

- Primersequenz SEQ ID Nr. 2 und 4 und Sondensequenz SEQ ID Nr. 3 zum Nachweis von Dekkera bruxellensis;
- Primersequenz SEQ ID Nr. 6 und 8 und Sondensequenz SEQ ID Nr. 7 zum Nachweis von Dekkera bruxellensis;
- Primersequenz SEQ ID Nr. 10 und 12 und Sondensequenz SEQ ID Nr. 11 zum Nachweis von Hanseniaspora uvarum;
- Primersequenz SEQ ID Nr. 14 und 16 und Sondensequenz SEQ ID Nr. 15 zum Nachweis von Hanseniaspora uvarum;
- Primersequenz SEQ ID Nr. 10 und TGAAGATTGAGCAGCAGTTTCC und Sondensequenz SEQ ID Nr. 11 zum Nachweis von Hanseniaspora uvarum.

8. Testkit nach Anspruch 7, **dadurch gekennzeichnet, dass** das Testkit zur Anwendung in einer Fluoreszenz-PCR-Technologie vorgesehen ist.

Revendications

1. **Procédé pour la détection et l’identification d’organismes levures dans des boissons alcoolisées et non alcoolisées, le procédé comprenant:**

- extraire un échantillon d’ADN à partir d’un échantillon de boisson;
- mettre en contact l’échantillon d’ADN avec une paire d’amorces d’ADN et une sonde d’ADN comprenant des molécules d’amorce d’ADN de longueur suffisante de nucléotides contigus de gène actine ou d’homologues de celui-ci;
- se procurer une condition de réaction d’amplification d’acide nucléique effectuant ladite réaction d’amplification d’acide nucléique, permettant ainsi de produire une molécule d’amplicon d’ADN;
- détecter la molécule d’amplicon;

caractérisé par le fait que les séquences d’amorce et la séquence de sonde sont choisies parmi l’une des combinaisons suivantes:

- séquence d’amorce SEQ ID No. 2 et 4 et séquence de sonde SEQ ID No. 3, pour détecter Dekkera bruxellensis;
- séquence d’amorce SEQ ID No. 6 et 8 et séquence de sonde SEQ ID No. 7, pour détecter Dekkera bruxellensis;
- séquence d’amorce SEQ ID No. 10 et 12 et séquence de sonde SEQ ID No. 11, pour détecter Hanseniaspora uvarum;
- séquence d’amorce SEQ ID No. 14 et 16 et séquence de sonde SEQ ID No. 15, pour détecter Hanseniaspora uvarum;
- séquence d’amorce SEQ ID No. 10 et TGAAGATTGAGCAGCAGTTTCC et séquence de sonde SEQ ID No. 11, pour détecter Hanseniaspora uvarum.

2. **Procédé selon la revendication 1, dans lequel le nombre d’organismes levures qui étaient présents dans l’échantillon de boisson est déterminé sur la base de la quantité de molécules d’amplicon d’ADN produites, et dans lequel la quantité de molécules d’amplicon d’ADN est déterminée par PCR quantitative en fluorescence.**

3. **Procédé selon la revendication 2, dans lequel le nombre d’organismes levures qui étaient présents dans l’échantillon de boisson est déterminé sur la base du nombre de cycles de réplication pendant la réaction d’amplification d’acide nucléique qui sont nécessaires pour obtenir un certain signal de fluorescence.**

4. **Procédé pour la détection et l’identification d’une molécule d’ADN choisie parmi le gène actine ou des homologues de celui-ci d’organismes levures dans un échantillon d’ADN, le procédé comprenant:**

- extraire un échantillon d’ADN à partir d’un échantillon de boisson;
- mettre en contact l’échantillon d’ADN avec une paire d’amorces d’ADN et une sonde d’ADN comprenant des molécules d’amorce d’ADN de longueur suffisante de nucléotides contigus de gène actine ou d’homologues de celui-ci;
- se procurer une condition de réaction d’amplification d’acide nucléique effectuant ladite réaction d’amplification d’acide nucléique, permettant ainsi de produire une molécule d’amplicon d’ADN;
- détecter la molécule d’amplicon;

caractérisé par le fait que les séquences d’amorce et la séquence de sonde sont choisies parmi au moins l’une
des combinaisons suivantes:

- séquence d’amorce SEQ ID No. 2 et 4 et séquence de sonde SEQ ID No. 3, pour détecter Dekkera bruxellensis;
- séquence d’amorce SEQ ID No. 6 et 8 et séquence de sonde SEQ ID No. 7, pour détecter Dekkera bruxellensis;
- séquence d’amorce SEQ ID No. 10 et 12 et séquence de sonde SEQ ID No. 11, pour détecter Hanseniaspora uvarum;
- séquence d’amorce SEQ ID No. 14 et 16 et séquence de sonde SEQ ID No. 15, pour détecter Hanseniaspora uvarum;
- séquence d’amorce SEQ ID No. 10 et TGAAGATTGAGCAGCAGTTTCC et séquence de sonde SEQ ID No. 11, pour détecter Hanseniaspora uvarum.

5. Procédé selon la revendication 4, dans lequel le nombre de molécules d’ADN qui étaient présentes dans l’échantillon de boisson est déterminé sur la base de la quantité de molécules d’amplicon d’ADN produites, et dans lequel la quantité de molécules d’amplicon d’ADN est déterminée par PCR quantitative en fluorescence.

6. Procédé selon revendication 5, dans lequel le nombre de molécules d’ADN qui étaient présentes dans l’échantillon de boisson est déterminé sur la base du nombre de cycles de réplication pendant la réaction d’amplification d’acide nucléique qui sont nécessaires pour obtenir un certain signal de fluorescence.

7. Kit de test pour la détection et l’identification de contaminations par des levures dans des boissons alcoolisées et non alcoolisées, comprenant au moins l’une des combinaisons suivantes d’amorces et de sondes spécifiques pour un gène cible d’un contaminant levure:

- séquence d’amorce SEQ ID No. 2 et 4 et séquence de sonde SEQ ID No. 3, pour détecter Dekkera bruxellensis;
- séquence d’amorce SEQ ID No. 6 et 8 et séquence de sonde SEQ ID No. 7, pour détecter Dekkera bruxellensis;
- séquence d’amorce SEQ ID No. 10 et 12 et séquence de sonde SEQ ID No. 11, pour détecter Hanseniaspora uvarum;
- séquence d’amorce SEQ ID No. 14 et 16 et séquence de sonde SEQ ID No. 15, pour détecter Hanseniaspora uvarum;
- séquence d’amorce SEQ ID No. 10 et TGAAGATTGAGCAGCAGTTTCC et séquence de sonde SEQ ID No. 11, pour détecter Hanseniaspora uvarum.

8. Kit de test selon la revendication 7, caractérisé par le fait que le kit de test est destiné à une application en technologie de PCR en fluorescence.

9. Utilisation d’un kit selon l’une des revendications 7 ou 8 pour détecter et identifier des organismes levures dans des boissons alcoolisées et non alcoolisées.

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US P4683195 A [0016] [0017]
- US P4683202 A [0016] [0018]
- US P4800159 A [0016] [0020]
- US P5210015 A [0021] [0049]
- US 6248519 B1, Morenzoni Richard A. [0028]
- EP 05749752 A [0090]
- EP 04014518 A [0090]

Non-patent literature cited in the description

- HOLLAND. PCR assay, 1991 [0012]
- TREVOR G. PFISTER; DAVID A. MILLS. Applied and Enviromental Microbiology. December 2003, 7430-7434 [0026]
- Database EMBL. XP002304942 [0029]
- Database EMBL. XP002304943 [0029]