[Problem] To obtain a train service control system in which an inexpensive on-board apparatus mounted in an existing system and transmission means are used, and when a train schedule is disrupted and a preceding train is shunted into a station, excessive deceleration of a following train is avoided, and a delay increase can be avoided.

[Means for Resolution] The position and speed of a preceding train are predicted by train state estimation means (12) from drop and lifting information of a track circuit, a track opening time of a station where the preceding train is shunted is predicted from the predicted train state of the preceding train by train running prediction means (13), coasting information of a following train is selected, based on the predicted track passing time, from a previously created coasting pattern (DB22) by coasting information selection means (23) so that the following train passes the track at maximum speed, the selected coasting information is transmitted to the following train, and the following train is coasted by automatic train control means (32) based on the coasting information received by information reception means (31) of the following train.

FIG. 1

SERVICE MANAGEMENT SYSTEM

11 CTC INFORMATION ACQUISITION MEANS
12 TRAIN STATE ESTIMATION MEANS
13 TRAIN RUNNING PREDICTION MEANS
22 COASTING PATTERN DB
21 COASTING PATTERN CREATION MEANS
23 COASTING INFORMATION SELECTION MEANS
24 INFORMATION TRANSMISSION MEANS
1 INFORMATION RECEPTION MEANS
3 AUTOMATIC TRAIN CONTROL MEANS
2 SERVICE CONTROL SUPPORT GROUND APPARATUS
3 SERVICE CONTROL SUPPORT ON-BOARD APPARATUS
Description

Technical Field

[0001] The present invention relates to a train service control system in which when a train schedule is disrupted and a preceding train is shunted into a station, excessive deceleration of a following train is avoided, and a delay increase is avoided.

Background Art

[0002] In a conventional train service control system, there has been a case in which when a preceding train scheduled to be shunted into a next station is delayed, a following train which is to pass the next station catches up with the preceding train, and with the deceleration of the preceding train for stopping at the next station, the following train must also be decelerated, and the train delay is further increased.

In patent document 1, in order to solve the problem as stated above, there is provided a method in which an on-board apparatus predictively calculates the route clearing time of a passing track occurring after a preceding train enters a next station as a shunting station, and a following train enters the section at the time and at high speed.

[0003] Patent document 1: JP-A-11-243609 (pages 4 to 8, Fig. 1)

Disclosure of the Invention

Problems that the Invention is to Solve

[0004] In the conventional system of patent document 1, there have been problems that since the processing capacity of the on-board apparatus is not generally high, a high performance processing apparatus is required, and only expensive means is put to practical use as transmission means from the train to a ground apparatus.

[0005] The invention has been made to solve the foregoing problems, and has an object to obtain a train service control system in which an inexpensive on-board apparatus mounted in an existing system and transmission means are used, and when a train schedule is disrupted and a preceding train is shunted into a station, excessive deceleration of a following train is avoided and a delay increase can be avoided.

Means for Solving the Problems

[0006] A train service control system of the invention includes a ground apparatus that predicts a track opening time of a station where a preceding train is shunted and transmits coasting information including section and speed information to a following train, and an on-board apparatus that coasts a train based on the coasting information transmitted from the ground apparatus, the ground apparatus includes train state estimation means for estimating a train state of a position and a speed of the shunted preceding train from drop and lifting information of a track circuit, train running prediction means for predicting, from the train state of the preceding train estimated by the train state estimation means, the track opening time when a track of the station where the preceding train is shunted is opened to a passing side for the following train, coasting information selection means for selecting, based on the track opening time predicted by the train running prediction means, coasting information of the following train from previously created coasting patterns so that the following train passes the coasting information at a high speed, and information transmission means for transmitting the coasting information selected by the coasting information selection means to the following train, and the on-board apparatus includes information reception means for receiving the coasting information transmitted by the information transmission means of the ground apparatus, and automatic train control means for coasting its train based on the coasting information received by the information reception means.

Effects of the Invention

[0007] According to the invention, as described above, there are provided the ground apparatus that predicts the track opening time of the station where the preceding train is shunted and transmits the coasting information including the section and speed information to the following train, and the on-board apparatus that coasts the train based on the coasting information transmitted from the ground apparatus, the ground apparatus includes the train state estimation means for estimating the train state of the position and the speed of the shunted preceding train from the drop and lifting information of the track circuit, the train running prediction means for predicting, from the train state of the preceding train estimated by the train state estimation means, the track opening time when the track of the station where the preceding train is shunted is opened to the passing side for the following train, the coasting information selection means for selecting, based on the track opening time predicted by the train running prediction means, the coasting information of the following train from the previously created coasting patterns so that the following train passes the track at a high speed, and the information transmission means for transmitting the coasting information selected by the coasting information selection means to the following train, and the on-board apparatus includes the information reception means for receiving the coasting information transmitted by the information transmission means of the ground apparatus, and the automatic train control means for coasting its train based on the coasting information received by the information reception means, and accordingly, there are effects that when the train schedule is disrupted, excessive deceleration of the following train due to the delay of the station shunting of the pre-
coasting train can be made to run efficiently and at high speed, and the delay increase can be avoided.

Best Mode for Carrying Out the Invention

Embodiment 1

[0008] Fig. 1 is a structural view showing a train service control system according to embodiment 1 of the invention.

In Fig. 1, in a service management system 1 (ground apparatus), based on information obtained from CTC information acquisition means 11, the train state of position and speed of a running train is estimated by train state estimation means 12 from the drop and lifting information of the train running prediction means 13 as keys, and selects coasting information. The obtained coasting information is transmitted from information transmission means 24 to the train through information reception means 23 of a service control support on-board apparatus 3 (on-board apparatus), and automatic train control means 32 controls a notch based on the transmitted coasting information and controls the train speed.

[0009] Fig. 2 is a view showing coasting patterns of a following train in the train service control system according to embodiment 1 of the invention.

In Fig. 2, the horizontal axis indicates position, and the vertical axis indicates speed. Track circuits 1T to 7T, a coasting target position 101, and a coasting target speed 102 are shown.

Fig. 3 is a view showing constant speed - deceleration patterns in the train service control system according to embodiment 1 of the invention.

In Fig. 3, the horizontal axis indicates position, and the vertical axis indicates speed. Track circuits 1T to 7T, a coasting target position 101, and a coasting target speed 102 are shown.

[0010] Fig. 4 is a view showing an example of a coasting pattern DB indicating coasting patterns in the train service control system according to embodiment 1 of the invention.

Fig. 5 is a view showing an example of a stop pattern of a preceding train in the train service control system according to embodiment 1 of the invention.

In Fig. 5, the horizontal axis indicates position, and the vertical axis indicates speed. Track circuits 1T to 7T, and an information target position 101 are shown. A shunting rail line branches from a track at station A, and a preceding train 300 enters the shunting rail line as shown by a thick line arrow indicating the traveling direction of the train.

Fig. 6 is a view showing an example of a deceleration pattern of a following train in the train service control system according to embodiment 1 of the invention.

In Fig. 6, the horizontal axis indicates position, and the vertical axis indicates speed. Track circuits 1T to 7T, a coasting target position 101, and a coasting target speed 102 are shown. A siding branches from a track at station A, and a following train 301 passes a passing rail line as shown by a thick line arrow indicating the traveling direction of the train.

[0011] Fig. 7 is a view showing an example in which an optimum coasting pattern is selected, based on a track opening prediction time according to the shunting of a preceding train, from the coasting pattern DB of the train service control system according to embodiment 1 of the invention.

In Fig. 7, the horizontal axis indicates position, and the vertical axis indicates speed. Track circuits 1T to 7T and a coasting target position 101 are shown.

Fig. 8 is a view showing that in the train service control system according to embodiment 1 of the invention, the time when a following train passes station A becomes early by performing the coasting control.

In Fig. 8, the horizontal axis indicates time, and the vertical axis indicates position. A coasting target speed 102 and a track opening time 104 are shown.

[0012] Next, an operation will be described.

First, a train running prediction method of the train running prediction means 13 will be described. The present position and speed of a train is estimated by the train state estimation means 12 from the drop and lifting information of a track circuit included in CTC information acquired by the CTC acquisition means 11 and based on the time when the head or tail of the train passes the boundary of the track circuit. When the present position and speed of the train are given, as disclosed in patent document 1 or the like, the train running can be predicted by simulation in accordance with the physical law from the acceleration and deceleration performance of the train, gradient information, transition information of ATC signals and ATS signals, and the like. The train running prediction means 13 carries out this operation.

[0013] Next, a creation method of coasting patterns in the coasting pattern creation means 21 will be described.

In a shunting station of an objective route, there is a track branching into a shunting rail line and a passing rail line. With respect to the track of each station, the optimum coasting target position 101 and the coasting target speed 102 are determined from conditions concerning equipment and are stored in the coasting pattern DB 22. Next, the coasting pattern creation means 21 calculates a coasting pattern in which coasting starts from each track circuit advance end outside of the coasting target
position, and after arrival at the coasting target speed, constant speed running is performed to the coasting target position. Calculation results become running curves as indicated by 201 to 209 of Fig. 2. A track circuit in which the speed reaches the coasting target speed 102 is made a coasting target track circuit.

At the same time, as indicated by 211 to 215 of Fig. 3, constant speed-deceleration patterns are also calculated in each of which running at constant speed is performed as long as possible from the start position and start speed of the coasting pattern in each track circuit, and the speed is decelerated to reach the coasting target speed 102 at the coasting target position 101, and in the case of arrival at the same coasting target position 101 and the coasting target speed 102 from the same start position and the speed, a running time increased by the running in the coasting pattern is made an increase time. A combination of the track circuit advancement speed, the coasting target track circuit, and the increase time in each pattern is stored for each track circuit as shown in Fig. 4.

Next, a selection method of coasting information in the coasting information selection means 23 will be described.

In order that a train enters a shunting rail line, in general, it is necessary to pass the branch track at low speed. The train running of the preceding train is predicted by the train running prediction means 13 as shown in Fig. 5, and the track opening prediction time (10:10:00 in Fig. 5) when the track is opened to the passing side for the following train after shunting of the preceding train in the shunting station is acquired from the prediction result. Besides, the train running of the following train is also similarly predicted by the train running prediction means 13 as shown in Fig. 6, and the coasting target position passing prediction time (10:09:12 in Fig. 6) is acquired from the prediction result.

In the prediction result of Fig. 6, since it is predicted that the coasting target position passing of the following train is earlier than the track opening prediction time, the following train must be stopped once before the track. Since an early arrival time Ts as a difference between the track opening prediction time and the coasting target position passing prediction time is 48 seconds, it is appropriate that the coasting control is performed so that the coasting target position passing time is increased by 48 seconds. A coasting pattern in which a difference between a train speed Vt in the present track circuit and an advancement speed Vp becomes minimum is searched from the coasting pattern DB 22, and an increase time Td is obtained. Next, a shift is sequentially made from the present track circuit to an inner track circuit to similarly search for the increase time, a track circuit in which the increase time Td has a value closest to the early time Ts is made a coasting start track circuit, and the coasting target track circuit of the coasting pattern and the advancement speed are obtained.

As shown in Fig. 7, in the case where the following train is present in 1T and runs at a speed of 255 km/h, the pattern 205 is searched as a suitable coasting pattern from the coasting pattern DB 22 of Fig. 4, and it is found to be appropriate to carry out the control so that the coasting is performed from 1T to 5T. As the result that other track circuits are also searched, in the case where the increase time in the coasting pattern at 1T is closest to the early time arrival, the coasting information of coasting start track circuit: 1T, coasting target track circuit: 5T, and coasting start speed: 254 km/h is obtained.

When the obtained coasting information is transmitted from the ground side by the information transmission means 24, it is received at the on-board side by the information reception means 31, and is transmitted to the automatic train control means 32. The automatic train control means 32 compares the received coasting information with the present position and speed, and when entrance is made into the section in which the coasting should be performed, the coasting is started.

Besides, when the speed has already reached the coasting target speed 102, the coasting target speed is kept and the running is performed.

Fig. 8 shows a delay increase avoidance effect according to the invention. In the case where a preceding train 220 is delayed and arrives at a station A 103, in the related art, although the following train originally passes the station A 103 in accordance with a running curve 221, since the track opening time 104 is delayed, an external stop is made before the track 102 like a running curve 222, and the passing time of the station A is delayed. On the other hand, in the invention, like a running curve 223, it becomes possible to start coasting before the track 102, and it is possible to pass the station A 103 earlier than the running curve 222.

Here, in the related art, although means for transmitting the train position and speed from the train to the ground is required, it is not required in this invention. Besides, in the related art, since the prediction of train running is performed by the on-board apparatus, a high performance processing apparatus is required for each train, however, in the invention, it is possible to perform the prediction by one service management system. Further, since the coasting information of the related art is time-based control information, it is necessary to achieve the time synchronization of the ground apparatus and the on-board apparatus, however, in the invention, since the position, not the time, is made a reference, the time synchronization is unnecessary.

According to embodiment 1, as stated above, when the train schedule is disrupted, braking control of the following train due to the delay of station shunting of the preceding train is avoided, and there are effects that the following train can run efficiently and at high speed, and the delay increase can be avoided.
Embodiment 2

[0021] In embodiment 1, although the notch is directly controlled based on the coasting information, in embodiment 2, coasting information display means is provided in a train to indicate coasting information to a driver, and the driver controls the train speed in accordance with the coasting information. Since the coasting control according to this system is simple, a sufficient effect can be obtained also by this method. For example, the driver compares the received coasting information with the present position and speed, and when entrance is made into a section in which coasting should be performed, the coasting is started. Besides, when the speed has already reached the coasting target speed, the coasting target speed is kept and the running is performed.

Embodiment 3

[0022] In the description, although the position and speed of the preceding train and the following train are estimated from change information of the track circuit by the ground apparatus side, the position and speed information may be directly obtained from the preceding train by using communication means such as train radio. That is, a service control support on-board apparatus 3 includes train information transmission means for transmitting train position and speed information from the train, a service control support ground apparatus 2 includes train information reception means for receiving the train information on the ground, and the train position and speed is obtained from the train, instead of the train state estimation means 12. In this case, the prediction accuracy of the train running is improved as compared with the estimation from the change information of the track circuit as in embodiment 1.

Brief Description of the Drawings

[0023] Fig. 1 is a structural view showing a train service control system according to embodiment 1 of the invention. Fig. 2 is a view showing coasting patterns of a following train in the train service control system according to embodiment 1 of the invention. Fig. 3 is a view showing constant speed - deceleration patterns in the train service control system according to embodiment 1 of the invention. Fig. 4 is a view showing an example of a coasting pattern DB indicating coasting patterns in the train service control system according to embodiment 1 of the invention. Fig. 5 is a view showing a stop pattern of a preceding train in the train service control system according to embodiment 1 of the invention. Fig. 6 is a view showing an example of a deceleration pattern of a following train in the train service control system according to embodiment 1 of the invention. Fig. 7 is a view showing an example in which an optimum coasting pattern is selected, based on a track opening prediction time according to the shunting of a preceding train, from the coasting pattern DB of the train service control system according to embodiment 1 of the invention. Fig. 8 is a view showing that a time when the following train passes a station A becomes early by performing the coasting control in the train service control system according to embodiment 1 of the invention.

Description of Reference Numerals and Signs

[0024]

1 service management system,
11 CTC information acquisition means,
12 train state estimation means,
13 train running prediction means,
2 service control support ground apparatus,
21 coasting pattern creation means,
22 coasting pattern DB,
23 coasting information selection means,
24 information transmission means,
3 service control support on-board apparatus,
31 information reception means,
32 information display means,
300 preceding train,
301 following train.

Claims

1. A train service control system, comprising:

 a ground apparatus that predicts a track opening time of a station where a preceding train is shunted, and transmits coasting information including section and speed information to a following train; and

 an on-board apparatus that coasts a train based on the coasting information transmitted from the ground apparatus, characterized in that the ground apparatus includes:

 train state estimation means for estimating a train state of a position and a speed of the shunted preceding train from drop and lifting information of a track circuit;

 train running prediction means for predicting, from the train state of the preceding train estimated by the train state estimation means, the track opening time when a track of the station where the preceding train is shunted is opened to a passing side for the
following train; coasting information selection means for selecting, based on the track opening time predicted by the train running prediction means, coasting information of the following train from previously created coasting patterns so that the following train passes the track at high speed; and information transmission means for transmitting the coasting information selected by the coasting information selection means to the following train, and

the on-board apparatus includes:

information reception means for receiving the coasting information transmitted by the information transmission means of the ground apparatus; and

coasting information display means for indicating the coasting information received by the information reception means to the driver.

3. A train service control system, comprising:

a ground apparatus that predicts a track opening time of a station where a preceding train is shunted, and transmits coasting information including section and speed information to a following train; and an on-board apparatus that coasts a train based on the coasting information transmitted from the ground apparatus, characterized in that the ground apparatus includes:

train state estimation means for estimating a train state of a position and a speed of the shunted preceding train from drop and lifting information of a track circuit;

train running prediction means for predicting, from the train state of the preceding train estimated by the train state estimation means, the track opening time when a track of the station where the preceding train is shunted is opened to a passing side for the following train;

coasting information selection means for selecting, based on the track opening time predicted by the train running prediction means, coasting information of the following train from previously created coasting patterns so that the following train passes the track at high speed; and

information transmission means for transmitting the coasting information selected by the coasting information selection means to the following train, and

the on-board apparatus includes:

train information reception means for receiving a train state of the preceding train transmitted from the on-board apparatus; train running prediction means for predicting, from the train state of the preceding train received by the train information reception means, the track opening time when a track of the station where the preceding train is shunted is opened to a passing side for the following train; and

coasting information selection means for selecting, based on the track opening time predicted by the train running prediction means, coasting information of the following train from previously created coasting patterns so that the following train passes the track at high speed; and

information transmission means for transmitting the coasting information selected by the coasting information selection means to the following train, and

the on-board apparatus includes:

train information transmission means for transmitting the train state of a position and a speed of its train to the ground apparatus; information reception means for receiving the coasting information transmitted by the information transmission means of the ground apparatus; and automatic train control means for coasting its train based on the coasting information received by the information reception means.

4. A train service control system, comprising:
a ground apparatus that predicts a track opening
time of a station where a preceding train is shunt-
ed, and transmits coasting information including
section and speed information to a following
train; and
an on-board apparatus that indicates the coast-
ing information transmitted from the ground ap-
paratus to a driver, **characterized in that**
the ground apparatus includes:

train information reception means for re-
ceiving a train state of the preceding train
transmitted from the on-board apparatus;

train running prediction means for predict-
ing, from the train state of the preceding
train received by the train information recep-
tion means, the track opening time when a
track of the station where the preceding train
is shunted is opened to a passing side for
the following train;

coasting information selection means for
selecting, based on the track opening time
predicted by the train running prediction
means, coasting information of the following
train from previously created coasting pat-
terns so that the following train passes the
track at high speed; and

information transmission means for trans-
mitting the coasting information selected by
the coasting information selection means to
the following train, and

the on-board apparatus includes:

train information transmission means
for transmitting the train state of a po-
sition and a speed of its train to the
ground apparatus;

information reception means for receiv-
ing the coasting information transmit-
ted by the information transmission
means of the ground apparatus; and

coasting information display means for
indicating the coasting information re-
ceived by the information reception
means to the driver.
FIG. 6

SPEED

POSITION AND SPEED OF FOLLOWING TRAIN

COASTING TARGET SPEED 180 km/h

COASTING TARGET PASSING PREDICTION TIME 10:09:12

TRACK OPENING PREDICTION TIME 10:10:00

1T 2T 3T 4T 5T 6T 7T
POSITION

FIG. 7

SPEED

POSITION AND SPEED OF FOLLOWING TRAIN

COASTING TARGET POSITION

COASTING TARGET SPEED 180 km/h

COASTING TARGET PASSING PREDICTION TIME 10:09:12

TRACK OPENING PREDICTION TIME 10:10:00

1T 2T 3T 4T 5T 6T 7T
POSITION
INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/004352

A. CLASSIFICATION OF SUBJECT MATTER

| Int.Cl | B61L27/00, B60L15/40 |

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

| Int.Cl | B61L27/00, B60L15/40 |

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

- Jitsuyo Shinan Koho 1922-1996
- Jitsuyo Shinan Toroku Koho 1996-2005
- Kokai Jitsuyo Shinan Koho 1971-2005
- Toroku Jitsuyo Shinan Koho 1994-2005

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 10-329718 A (Mitsubishi Electric Corp.), 15 December, 1998 (15.12.98), Par. Nos. [0010], [0028]; Fig. 2 & SG-55382 A</td>
<td>1-4</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2001-30905 A (Hitachi, Ltd.), 06 February, 2001 (06.02.01), Par. No. [0014]; Fig. 1 (Family: none)</td>
<td>1-4</td>
</tr>
<tr>
<td>Y</td>
<td>JP 11-255126 A (Toshiba Corp.), 21 September, 1999 (21.09.99), Par. Nos. [0033] to [0036] (Family: none)</td>
<td>1-4</td>
</tr>
</tbody>
</table>

Special categories of cited documents:

- **"A"** document defining the general state of the art which is not considered to be of particular relevance
- **"E"** earlier application or patent but published on or after the international filing date
- **"L"** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- **"O"** document referring to an oral disclosure, use, exhibition or other means
- **"P"** document published prior to the international filing date but later than the priority date claimed

- **"T"** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- **"X"** document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- **"Y"** document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- **"&"** document member of the same patent family

Date of the actual completion of the international search

04 April, 2005 (04.04.05)

Date of mailing of the international search report

26 April, 2005 (26.04.05)

Name and mailing address of the ISA

Japanese Patent Office

Authorized officer

Telephone No.

Form PCT/ISA/210 (second sheet) (January 2004)
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description